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Abstract: European countries are obligated to monitor and estimate ecological status of lakes under
European Union Water Framework Directive (2000/60/EC) for sustainable lakes’ ecosystems in
the future. In large and shallow lakes, physical, chemical, and biological water quality parameters
are influenced by the high natural variability of water level, exceeding anthropogenic variability,
and causing large uncertainty to the assessment of ecological status. Correction of metric values
used for the assessment of ecological status for the effect of natural water level fluctuation reduces
the signal-to-noise ratio in data and decreases the uncertainty of the status estimate. Here we
have explored the potential to create synergy between optical and altimetry data for more accurate
estimation of ecological status class of lakes. We have combined data from Sentinel-3 Synthetic
Aperture Radar Altimeter and Cryosat-2 SAR Interferometric Radar Altimeter to derive water level
estimations in order to apply corrections for chlorophyll a, phytoplankton biomass, and Secchi disc
depth estimations from Sentinel-3 Ocean and Land Color Instrument data. Long-term in situ data
was used to develop the methodology for the correction of water quality data for the effects of
water level applicable on the satellite data. The study shows suitability and potential to combine
optical and altimetry data to support in situ measurements and thereby support lake monitoring and
management. Combination of two different types of satellite data from the continuous Copernicus
program will advance the monitoring of lakes and improves the estimation of ecological status under
European Union Water Framework Directive.

Keywords: ecological status class of lakes; European Union Water Framework Directive (2000/60/EC);
water quality parameters; water level; Sentinel-3; Cryosat-2; shallow lakes; synergy; altimetry data;
optical data

1. Introduction

Consistent monitoring and estimation of the ecological status of lakes is essential for
having an overview of current conditions and prediction of water quality (WQ) [1,2]. As
lakes regulate the climate and carbon cycle, provide habitat for biota, drinking water, and
other ecosystem services, it is important to monitor their ecological status and indications
of their decline. To implement water management for sustainable environment, it is
essential to evaluate the influence of human activity to lake ecosystems and also take into
account variability of natural factors [3,4]. The European Union (EU) has established Water
Framework Directive (2000/60/EC) [5] (WFD) for all European countries to achieve at least
“good” ecological status class in lakes through consistent monitoring and water policy by
the latest 2027 [6,7]. In total, five ecological quality classes from “high” to “bad” have been
determined for every defined natural water body type, according to different biological
(e.g., phytoplankton), physico-chemical (e.g., transparency) and hydro-morphological (e.g.,
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depth variations) quality elements [5]. The main emphasis is given to the biological quality
elements while the physico-chemical and hydro-morphological quality elements only affect
the decision indirectly through their effect on the state of biological elements [5].

Traditional in situ measurements (e.g., collection of water samples, laboratory analyses,
gauging stations, etc.) tend to be money and time consuming, and tend to take a lot of
resources [8]. It is difficult to collect data from remote areas, where infrastructure is missing
and access to the water body is complicated [9]. In situ gauging stations provide more
frequent data than traditional measurements, but transmission of the data to the further
workflow is rather slow and time consuming [10–12]. These kinds of systems are usually
expensive to buy and difficult to maintain, therefore the number of gauging stations has
decreased in recent years [11–14]. As lakes are mostly categorized as heterogeneous bodies,
the biggest disadvantage of traditional in situ measurements is providing only point
measurements, which do not represent spatial and temporal variations of the entire water
body [1,11,15]. The combination of Earth Observation (EO) and in situ measurements
complement each other by fulfilling their shortages and also helps to optimize and improve
the selection of sampling locations and surveying times [16–18]. Earth Observation gives
opportunity to have large scale data for spatial analysis and synchronized view of group of
lakes [8,19]. In addition, digital data forms accelerates data reading and processing time
and helps to produce historical and long time series [15]. The European Space Agency’s
(ESA) Copernicus program [20] provides full, free, open access, high quality near-real-
time EO data on a global level for all users. Since the launch of the first Sentinel mission
satellite in 2014, the purpose of the program is to launch nearly 20 satellites by the year
of 2030 to provide long-term time series for various applications, e.g., environmental
protection, climate change monitoring, and civil security [21]. The continuity of data
allows to develop and advance methods to better integrate EO data into environmental
monitoring, management, and policy.

As the satellite era has lasted almost 40 years by now, many algorithms and methods
have been developed for different domains in lake research [10,22–31]. As the WFD require-
ments are obligatory to every EU country, it has been indicated that the in situ methods are
not feasible to cover the monitoring expectations, therefore many EO-based applications
have been developed for implementation of requirements of WFD [32]. According to the
WFD, phytoplankton is the key parameter of estimating ecological status of water [33–36],
which also indicates eutrophication status of the lake [37]. Estimation of the concentration
of the photosynthetic pigment chlorophyll a (chl a) has been one of the main goals in all
ocean color missions starting from the first National Aeronautics and Space Administration
(NASA) Coastal Zone Color Scanner on board Nimbus-7 in 1978. Additionally, water
transparency is one of the key indicators for lake’s ecological status class according to
the WFD [38–40], where also EO-based assessment methods have shown the suitability
to obtain additional information [7,25,32,41]. Covering various ocean color missions, the
approaches and algorithms have been developed to provide trophic status based estima-
tions [31,42–48] to obtain chl a and transparency estimates. However, estimation is based
only on certain parameters (e.g., chl a and transparency), which do not take into account
any external factors [34,35,38,49]. Ranges of different ecological status classes of lakes
may be very narrow, which is the main reason why accurate WQ parameter estimation
is essential. Water level (WL) estimation, using satellite altimetry data over inland water
bodies, has become more advanced during recent years [10,16,17,50–52], which allows the
monitoring of its influence on the physical environment, which in turn changes the biota
and whole lake ecosystem [53], especially in the case of shallow lakes.

In general, the ecological status of lakes is affected by anthropogenic factors, such as
agricultural pollution by nutrients and industrial waste and various chemical elements [54],
nevertheless natural factors, such as diurnal and seasonal changes, and prolonged changes
in atmospheric circulations should be taken into account as well [55–57]. Water level is one
of the natural factors, which affects WQ directly, worsening WQ parameters in low WL
periods [58,59]. Especially in large, shallow lakes, the influence of lake depth variations on
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biota is remarkable, due to large seasonal and inter-annual WL fluctuations. The periods of
extremely low WL are the most critical for the ecological status in such lakes, strengthening
sediment resuspension, increasing concentrations of ions, phytoplankton biovolume and
chl a concentration [60]. In contrast, the phytoplankton biomass (FBM) is significantly
lower due to light limitation in years of high WL [61]. Such high variation in biological
quality indicators, caused by natural factors, may over-mask human induced effects on
a water body [62]. Based on the long-term in situ data, Tuvikene et. al. [62] showed the
significant influence of WL while estimating the ecological status class according to the
chl a, FBM and transparency in case of large shallow lakes. It was shown that, while
phytoplankton species composition and traditional WQ parameters indicated different
ecological status class, correction of metrics for WL enabled more consistent assessment of
the ecological status of the lake.

As assessment of ecological status of lakes is currently parameter-based, thus ac-
counting for the external natural factors is needed for more precise estimation. In the
increasing constellation of ocean color satellites, carrying passive optical sensor usable for
mapping various optical WQ parameters, and altimeters for estimating WL, the synergy of
data could potentially improve the ecological status assessment over large shallow lakes.
Therefore, the aim of this paper is to (1) create synergy between the optical and altimetry
data in order to, (2) derive chl a, total FBM and transparency based ecological status classes
taking into account the dependence of biological status indicators on the changing WL
over large shallow lakes.

2. Materials and Methods
2.1. Study Sites Description

Data from two large and shallow lakes are used for this study. Võrtsjärv is situated in
the central part of Estonia (Figure 1) with surface area 270 km2 (length 35 km, width ~14
km). With the average depth of 2.8 m (the maximum depth is 6 m), the lake has strong WL
fluctuation as the annual mean amplitude is 1.4 m and absolute range is 3.1 m, causing
up to 3.2-fold difference in the lake volume [61]. Water level is generally characterized by
a high period in spring, due to snow melting until end of April or beginning of May, a
low period in winter and summer, and increasing WL from middle of the October due to
autumn rainfalls. Võrtsjärv is a eutrophic lake with low water transparency (<1 m) [63].
According to the Estonian regulation of Water Act [64], Võrtsjärv belongs to independent
ecological status class Type 6 (Table 1) (non-stratified, light water color, low amount of
chlorides, moderate hardness, surface area 100–300 km2). Annually, national monitoring is
performed at one station once in a month and from additional 2 or 9 stations in August [65].

Peipsi is a transboundary lake situated in the border of Estonia and Russia (Figure 1)
with surface area 3555 km2 (length 152 km, width 48 km). The average depth is 7.1 m (the
maximum depth is 15.3 m) and the annual mean amplitude of WL change is 1.5 m. Water
level of Peipsi is characterized the highest in spring during the ice melting period and is
the lowest in October [66]. It is a eutrophic lake, which consists of three parts: Peipsi sensu
stricto (s.s., 2611 km2 average depth 8.3 m), Lämmijärv (236 km2 average depth 2.5 m) and
Pihkva (708 km2, average depth 3.8 m). According to the Estonian regulation of Water
Act [8], Peipsi belongs also to the independent ecological status class Type 7 (Table 1)
(non-stratified, light water color, low amount of chloride, moderate hardness, surface area
>1000 km2) and is monitored 7 times per year (in March, when the lake is ice-covered, and
from May to October) from 7 stations [65].

The both lakes are eutrophic and shallow, with similar WL fluctuation in terms of the
annual mean (Võrtsjärv 1.4 m and Peipsi 1.5 m), but with different average depth (Võrtsjärv
2.8 m and Peipsi 7.1 m) leading to differences in the effect of WL. In addition, both lakes
were considered unique, having no undisturbed reference sites for comparison, therefore,
pressure-based approach, morphoedaphic index, and historical data were used to derive
site-specific reference conditions and classification criteria for them [67].
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are shown in brown. Locations of hydrometric stations are numbered as 1 Rannu-Jõesuu (blue), 2 Mustvee (green), 3 Praaga
(yellow), 4 Mehikoorma (red).

Table 1. Thresholds for chlorophyll a (chl a) (mg/m3), phytoplankton biomass (FBM) (g/m3) and Secchi disk depth (SDD)
(m) estimating ecological status class in Võrtsjärv and Peipsi according to Estonian regulation of Water Act [64]. Each color
represents ecological status class defined by Water Framework Directive (WFD) [5] and the range of measured values for
each parameter during the study period from both lakes are shown in the last column, whereas the number in the brackets
indicates average of the measured values.

Very Good Good Moderate Bad Very Bad Study Site
2016–2019

Võrtsjärv
Chl a (mg/m3) ≤24 >24–38 >38–45 >45–51 >51 5–81 (33)

FBM (g/m3) – – – – – –
SDD (m) ≥0.9 <0.9–0.7 <0.7–0.6 <0.6–0.5 <0.5 0.4–2.15 (0.9)

Peipsi

Chl a (mg/m3)
≤3 (Peipsi s.s.)
≤6 (Lämmijärv,

Pihkva)

>3–8 (Peipsi s.s.)
>6–13

(Lämmijärv,
Pihkva)

>8–20 (Peipsi
s.s.)

>13–37
(Lämmijärv,

Pihkva)

>20–38 (Peipsi
s.s.)

>37–75
(Lämmijärv,

Pihkva)

>38 (Peipsi s.s.)
>75 (Lämmijärv,

Pihkva)

5–89 (19)
(Peipsi s.s.) 4–90
(46) (Lämmijärv,

Pihkva)
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Table 1. Cont.

Very Good Good Moderate Bad Very Bad Study Site
2016–2019

FBM (g/m3)

≤1 (Peipsi s.s.)
≤2.6

(Lämmijärv,
Pihkva)

>1–2.6 (Peipsi
s.s.)

>2.6–6.4
(Lämmijärv,

Pihkva)

>2.6–9.4 (Peipsi
s.s.)

>6.4–16.1
(Lämmijärv,

Pihkva)

>9.4–17.3
(Peipsi s.s.)
>16.1–37

(Lämmijärv,
Pihkva)

>17.3 (Peipsi
s.s.)

>37 (Lämmijärv,
Pihkva)

1.4–98.5 (7.1)
(Peipsi s.s.)

2.0–74.4 (18.6)
(Lämmijärv,

Pihkva)

SDD (m)

≥3.5 (Peipsi s.s.)
≥2.0

(Lämmijärv,
Pihkva)

<3.5–2.5 (Peipsi
s.s.)

<2.0–1.5
(Lämmijärv,

Pihkva)

<2.5–1.5 (Peipsi
s.s.)

<1.5–1.0
(Lämmijärv,

Pihkva)

<1.5–1.0 (Peipsi
s.s.)

<1.0–0.7
(Lämmijärv,

Pihkva)

<1.0 (Peipsi s.s.)
<0.7

(Lämmijärv,
Pihkva)

0.12–3.1 (1.0)
(Peipsi s.s.)

0.13–1.1 (0.5)
(Lämmijärv,

Pihkva)

2.2. In Situ Data
2.2.1. Water Level

Water level was measured by the Vaisala automatic weather station named as MAWS110,
which sensor was located near the bottom of the lake and it measured the pressure of
the water column, which is converted to the WL in centimeters [68]. Measurements were
performed every hour, but WL was averaged over a day for the study. To derive WL
above sea level (in Estonian Height system (EH2000), which corresponds to European
Vertical Reference System), height of the sensor from sea level (national geoid named as
EST-GEOID2017 (Estonian national geoid model)) [69] was added. Hydrometric stations
were located near the shore or in the mouth of the river (Figure 1). Water level data was
available in Rannu–Jõesuu (hereafter Rannu) hydrometric station from 1927, in Mustvee
and Praaga from 1921 and in Mehikoorma from 1949 until 2019.

2.2.2. Chl a, FBM, and SDD

Chl a and FBM samples of integral water at discrete depths (0.5 m, 1 m, etc., until 0.5 m
from the bottom) were collected from different stations and analyzed in a laboratory from
the 1960s. Chl a samples were filtered through Whatman glass-microfiber filters (GF/F)
ø 25 mm filter and pigment extraction was done with 5 mL 96% ethanol [70]. Chl a was
measured spectrophotometrically with Hitachi U-3010 (430–750 nm) and the concentrations
of chl a were derived according to Jeffrey and Humphrey [71]. For determination of FBM,
up to 400 counting units were counted and measured with an inverted microscope based
on Utermöhl technique [72]. SDD values were measured with white Secchi disc from
the 1950s.

2.3. Satellite Data

Sentinel-3A/3B (S3A/S3B) and CryoSat-2 (C2) data from 2016 to 2019 covering the
period from May to October were used. Buffers of 1 km (Võrtsjärv) and 2 km (Peipsi) were
created to reduce the possible errors in the vicinity of land in case of optical and altimetry
data (Figure 1). Depending on the cloud cover, 300 m resolution data from S3 Ocean and
Land Colour Instrument (OLCI) is available daily in the study location. Surface elevations
from the Synthetic Aperture Radar Altimeter (SRAL) sensor onboard S3A and S3B are
available every 27 days for a given track. Lake Peipsi is measured by both S3A and S3B,
hence, data are available from 2016 and onwards. Lake Võrtsjärv is only measured by
S3B, hence data are available from the launch in 2018. C2, carrying Synthetic Aperture
Radar/Interferometric Radar Altimeter (SIRAL) sensor, is operating in a geodetic orbit
with a repeat period of 369 days. S3 and C2 tracks during the study period are shown on
the Figure 1 in blue and gray, respectively.

2.3.1. Optical Data

S3 OLCI Level-1 (L1B) Full Resolution “Non Time Critical” images were used from
Estonian National Satellite images database named as ESTHub [73]. Data were used from
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the beginning of S3 operation, respectively, S3A since 2016, and additional data from S3B
since 2018. L1B data was filtered by quality flags (“bright”, “sun_glint_risk”, “duplicated”,
“invalid”) and phytoplankton related parameters were derived via lake specific empirical
relationship (Equations (2) and (3)) [74] applied on Maximum Chlorophyll Index (MCI)
(Equation (1)) [75]:

MCI = L709 − L681 −
709− 681
753− 681

× (L753 − L681) (1)

where Lx corresponds to top-of-atmosphere radiance at certain wavelength.

Chl a = 10.9×MCI + 15.3 (2)

FBM = 5.8×MCI + 5.4 (3)

For water transparency estimates, OLCI L1B data was processed with Polymer v4.10
for retrieving water-leaving reflectance (ρw). Processed data were filtered by quality
flag Bitmask (“0”, “1024”, “1023”). For the SDD estimates, first the weighting function
(Equation (4)) [39] was applied on ρw which defined the appropriate empirical algorithm
to derive diffuse attenuation coefficient of downwelling irradiance (Kd(490)) (Equation (5)).

W = 5.098− 2.2099
(

ρ(560)
ρ(709)

)
(4)

Kd(490) = (1−W)× exp(−0.9 ∗ (log10

(
ρ490

ρ709

)
+ 0.4) + 0.02) + W× exp(−1.2 ∗ (log10

(
ρ560

ρ709

)
+ 1.4) + 0.02) (5)

Calculated W ≤ 0 corresponds to more transparent waters and algorithm (ρ490/ρ709)
was used by assigning W = 0. Calculated W ≥ 1 corresponds to more turbid waters and
the algorithm ρ560/ρ709 was used by assigning W = 1. When the W is between 0 and 1, then
the algorithm merges the retrievals from both (ρ490/ρ709 and ρ490/ρ709) algorithms [39].

Secondly, the SDD was derived based on the empirical algorithm from Kd(490):

SDDVortsjarv = −0.038× Kd(490) + 0.9448 (6)

SDD for Peipsi s.s. (Equation (7)) was calculated using band ratio Kd(490) algorithm
(Equation (5)) [38]:

SDDPeipsi s.s. = 3.42× Kd(490)−0.82 (7)

SDD for Lämmijärv and Pihkva was calculated using empirical algorithm (Equation (8)) [38]:

SDDLammijarv,Pihkva =

(
ρ(490)
ρ(709)

)0.7
× 2.14 (8)

2.3.2. Altimetry Data

To construct water surface elevations from S3A and S3B the ESA “Non Time Critical”
Level-2 product “Enhanced measurements” was used. This product consists of 20Hz along-
track measurements of, e.g., tracker range, satellite altitude, atmospheric and geophysical
corrections, and waveforms. To identify the nadir water surface, the waveforms were
retracked with a narrow primary peak threshold retracker [76]. For C2 we applied the
ESA L1B product from baseline D. This product also contains 20Hz measurements of,
e.g., waveforms, tracker range, satellite altitude and corrections. The same retracker was
applied to the C2 waveforms.

The water surface elevations are derived from the following relation (Equation (9))

H = h− R− N, (9)
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where h is the altitude of the satellite, and N is the geoid height, which here is the EST-
GEOID2017 national geoid model. R is the range, i.e., the distance from the satellite to the
surface which can be expressed as (Equation (10))

R = Rtracker + Rretrack + Ratm + Rgeo. (10)

Here Rtracker is the distance to the presumed surface measured by the onboard tracker
and Rretrack is the retracking correction. Ratm represents the atmospheric corrections con-
sisting of the wet and dry troposphere and ionosphere. Rgeo represents the geophysical
corrections including solid earth tide, pole tide, and ocean loading tide. All corrections are
here taken from the altimetry products.

The altimetry-based WL time series based for Peipsi and Võrtsjärv were reconstructed
using the “R” package “tsHydro” available from https://github.com/cavios/tshydro
(accessed on 14 October 2020). The software package is based on an implementation of a
simple state-space model where the observations are assumed to be described by a random
walk plus noise. The observation noise is described by a mixture of a Normal and the
heavy tailed Cauchy distributions making it more robust against erroneous observation. In
the solution, bias between the different missions is also estimated. The model is described
in detail in [10]. Here, one time series based on all available altimetry data is constructed
for each lake.

2.4. Data Correction for the Effects of Water Level

EO-derived WQ variables (chl a, FBM, SDD) were corrected for the effects of changing
WL by the methodology developed by Tuvikene et al. [62]. The methodology is based
on the long-term in situ data, where statistically significant relationships (p-value < 0.05)
between the specific WQ variables and WL were found (Table A1). Corrected WQ variables
were calculated using regression equations according to the long-term monthly mean WL
and daily measured WL. If the WL of the sampling day corresponded to the long-term
average for that period, no correction was needed, but if it differed, the correction either up
or down was proportional to the deviation of the WL from the mean.

3. Results
3.1. Inter-Annual Dynamics in Water Level

Comparison of long-term WL measured in three hydrometric stations (Mustvee,
Mehikoorma, Praaga) in Peipsi (Figure 2) show similar dynamics and very small spatial
differences, e.g., the mean difference between Praaga and Mustvee is 0.02 m, and between
Mehikoorma and Mustvee is 0.04 m. In both lakes, the higher and lower WL periods
vary similarly and long-term monthly mean WL is highest in May and decreases towards
October. While the annual difference can exceed the long-term monthly mean WL (Figure 2)
in some years more than 1 meter, its effect is more pronounced in shallower Võrtsjärv
(average depth 2.8 m) compared to Peipsi (average depth 7.1 m).

Water levels based on altimetry data and WL measured at the Mustvee hydrometric
station show very similar dynamics (Figure 3) with a bias of 0.4 m. Bias corrected Root Mean
Standard Error (RMSE) is 0.07 m, whereas the Pearson correlation between WL measured
in Mustvee hydrometric station, and derived from altimetry data, is 0.99. Comparison
between altimetry data and Rannu hydrometric station in Võrtsjärv shows similar results,
with a bias 0.4 m. Bias corrected RMSE is 0.08, whereas the Pearson correlation between
WL measured in Rannu hydrometric station and WL, derived from altimetry data, is 0.98.
The combination of altimetry data from C2 and S3 missions allows to obtain much more
frequent time series, especially since 2018 due to the launch of S3B (Figure 3).

https://github.com/cavios/tshydro
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3.2. Inter-Annual Dynamics of Water Quality Parameters

Long-term in situ time series of chl a, FBM, and SDD show variation in seasonal
dynamics and pronounced inter-annual differences in Võrtsjärv (Figure 4A). For exam-
ple, chl a shows increasing trend from 1995 until 2008, then it started to decrease again
(Figure 4A). FBM shows increasing trend from the early 2000′s. SDD shows seasonal varia-
tion from less than 0.5 to 1.5 m. As WQ parameters are in situ measured once during the
vegetation period in Võrtsjärv station named as V2 (Figure 4B), the seasonal dynamics are
better obtained with more frequent satellite data resulting on average 50 points, which
doubled with S3B launch. This allows to acquire more representative data to analyze the
WQ parameters over specific time period and have better knowledge of the seasonal and
inter-annual differences.

The dynamics of satellite data corresponded well to in situ measured WQ parameters,
showing similar dynamics during vegetation period with a bias for chl a 4.9 ± 11.8 mg/m3,
for FBM 2.7 ± 14.2 g/m3, and for SDD was 0.3 ± 0.8 m. Chl a derived from OLCI
corresponds to in situ data with Pearson correlation 0.7, whereas FBM 0.6 and SDD 0.4.

Depending on the monitoring system, some areas are not covered with sufficient
monitoring frequency (Figure A1 Pihkva A) or include gaps (Figure A1 Peipsi s.s A.,
Figure A1 Lämmijärv A) in its long-term time series. Satellite data covers these areas
2–3 times per week and with two satellites the amount of data is doubled from 2018.
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3.3. Correction of chl a, FBM, and SDD Based on the Water Evel

Relationships between WL and WQ parameters vary in both lakes (Table A1). In
Võrtsjärv, chl a was significantly related to WL (p < 0.05) in July, August, and October, FBM
was significantly related in July, whereas SDD was related in all months (from May to
October). In Peipsi s.s., WL was significantly related only with FBM in June and September
and in Pihkva, FBM was related in August. In Lämmijärv, chl a was significantly related
in July and August, FBM was related in June and SDD in June, July, and August. When
the relationship was significant between WL and specific WQ parameter, correction was
applied on a daily basis according to the WL value in respect to long-term monthly mean
WL. When WL was higher than long-term monthly mean WL, WQ parameter values
increased after correction, if the WL was lower, then WQ parameters were corrected
to lower values. This changed the mean value of the month, as well as minimum and
maximum values.

In Võrtsjärv, WL was higher than long-term monthly mean WL in 2016 (up to 0.3 m)
and lower in 2017 until 2019, especially low in 2018 and 2019 towards autumn, when WL
was lower by more than 0.5 m (Figure 5). As WL was high in 2016, the mean value of
chl a and SDD increased after applying the WL correction, whereas, in 2017 until 2019,
mean values decreased. Due to the decrease in mean values, ecological status class of WQ
parameters also changed. In 2017 and 2018, the ecological status class of chl a changed from
“moderate” to “good”, and in 2019 from “bad” to “moderate”, whereas the ecological status
class remained the same in 2016, although mean value of chl a increased. The ecological
status class of SDD, changed from “good” to “very good” in 2018 and 2019, when the WL
was the lowest compared to long-term monthly mean WL (Figure 5).

In Peipsi, there was less significant relationships between WL and WQ parameters
than in Võrtsjärv (Table A1). In Peipsi s.s., there was no statistically significant relationships
between WL and WQ parameters, except for FBM in June and September, which only leads
to a small change of mean values of FBM (Figure A2 Peipsi s.s. FBM). As WL was lower than
long-term monthly mean WL in 2016, 2018, and 2019, mean FBM value slightly decreased
without changing the ecological status class. More significant relationships between WL
and WQ parameters appeared in Lämmijärv (Figure A2 Lämmijärv), which also changed
the ecological status class of SDD. As WL was more than 0.4 m lower than long-term
monthly mean WL in 2019, then ecological status class of SDD changed from “moderate”
to “good”, and the mean value of SDD in 2016 also decreased. In Pihkva, the amount of in
situ data was mostly insufficient for statistical analysis (significant relationship was found
only in August for FBM) and therefore, there were no changes in ecological status class
estimations of WQ parameters (Figure A2 Pihkva).

As Võrtsjärv and Lämmijärv are shallower than Peipsi s.s., statistically significant
relationships between WL and specific WQ parameters tend to occur more frequently there
on a monthly basis. More pronounced changes in WL (difference approximately from
0.4 m) from long-term monthly mean WL were influencing not only the mean values of
WQ parameters, but even changed the ecological status class from one to another. Smaller
changes in WL in respective to long-term monthly mean influenced only the mean values
of WQ, not the ecological status class. However, it is still important, considering long-term
monitoring of the lake.



Remote Sens. 2021, 13, 770 11 of 23

Remote Sens. 2021, 13, 770 11 of 24  

 

In Võrtsjärv, WL was higher than long-term monthly mean WL in 2016 (up to 0.3 m) 
and lower in 2017 until 2019, especially low in 2018 and 2019 towards autumn, when WL 
was lower by more than 0.5 m (Figure 5). As WL was high in 2016, the mean value of chl a 
and SDD increased after applying the WL correction, whereas, in 2017 until 2019, mean 
values decreased. Due to the decrease in mean values, ecological status class of WQ 
parameters also changed. In 2017 and 2018, the ecological status class of chl a changed from 
“moderate” to “good”, and in 2019 from “bad” to “moderate”, whereas the ecological status 
class remained the same in 2016, although mean value of chl a increased. The ecological 
status class of SDD, changed from “good” to “very good” in 2018 and 2019, when the WL 
was the lowest compared to long-term monthly mean WL (Figure 5). 

In Peipsi, there was less significant relationships between WL and WQ parameters 
than in Võrtsjärv (Table A1). In Peipsi s.s., there was no statistically significant 
relationships between WL and WQ parameters, except for FBM in June and September, 
which only leads to a small change of mean values of FBM (Figure A2 Peipsi s.s. FBM). As 
WL was lower than long-term monthly mean WL in 2016, 2018, and 2019, mean FBM value 
slightly decreased without changing the ecological status class. More significant 
relationships between WL and WQ parameters appeared in Lämmijärv (Figure A2 
Lämmijärv), which also changed the ecological status class of SDD. As WL was more than 
0.4 m lower than long-term monthly mean WL in 2019, then ecological status class of SDD 
changed from “moderate” to “good”, and the mean value of SDD in 2016 also decreased. 
In Pihkva, the amount of in situ data was mostly insufficient for statistical analysis 
(significant relationship was found only in August for FBM) and therefore, there were no 
changes in ecological status class estimations of WQ parameters (Figure A2 Pihkva). 

As Võrtsjärv and Lämmijärv are shallower than Peipsi s.s., statistically significant 
relationships between WL and specific WQ parameters tend to occur more frequently 
there on a monthly basis. More pronounced changes in WL (difference approximately 
from 0.4 m) from long-term monthly mean WL were influencing not only the mean values 
of WQ parameters, but even changed the ecological status class from one to another. 
Smaller changes in WL in respective to long-term monthly mean influenced only the mean 
values of WQ, not the ecological status class. However, it is still important, considering 
long-term monitoring of the lake. 

 
Figure 5. Water level change from long-term monthly mean WL during study period in Võrtsjärv (1). Value 0 indicates 
long-term monthly mean WL. Mean, maximum and minimum values of EO-derived WQ parameters are represented on 
the graphs (2–4), where dark gray indicates values before and light gray indicates values after applying WL correction. 
Different colors represent ecological status classes according to EU WFD. 

Figure 5. Water level change from long-term monthly mean WL during study period in Võrtsjärv (1).
Value 0 indicates long-term monthly mean WL. Mean, maximum and minimum values of EO-derived
WQ parameters are represented on the graphs (2–4), where dark gray indicates values before and
light gray indicates values after applying WL correction. Different colors represent ecological status
classes according to EU WFD.

4. Discussion

Long-term time series of WQ parameters in lakes are important to obtain information
about the seasonal dynamics, their past and present situation and form the basis for
future predictions [77,78]. The variety of measured parameters allow the partition of the
influences by anthropogenic, as well as natural factors. Moreover, long-term time series
help to understand the necessity for current management improvements for the future [79].
Water level as a natural factor, has an impact on lakes ecosystem and on WQ parameters,
which in turn have a high impact on the ecological status of lakes [80,81]. Changes in the
lake ecosystem influence biota existence and survival complexity in the lake, which affect
ecosystem structure and future perspective [82–84]. Water level plays an important role in
the lake ecosystem, especially in large shallow lakes [85], where monthly WL differences
can be highly different from long-term observations, therefore removing WL influence from
WQ parameters is beneficial for fair status assessment [62]. This study shows the possibility
to create synergy between optical and altimetry data for lakes research, especially in terms
of WFD reporting needs. The removal of one natural aspect will improve the estimation of
the ecological status class of a lake, which will allow to keep the focus on the anthropogenic
changes in the lake ecosystem.

The study shows high variations between seasonal and long-term WL in large and
shallow lakes. Low WL periods vary with higher WL periods in both Võrtsjärv and Peipsi,
which are caused by variation in precipitation, hydrological inflows, and evaporation in
different years [86]. Long-term monthly mean WL decrease, from May towards October,
characterizing higher WL after snow and ice melting, and lower WL in summer due to less
inflow and higher rate of evaporation during the warm period [86,87]. Not only seasonal
temperature and precipitation variability influences WL, but climate change has also direct
effect to lake ecosystem [88–91], which has been even pointed out by The Intergovernmental
Panel on Climate Change [92] referring to a global problem. The decrease in WL in
some areas is often not compensated by the precipitation, which is caused by the higher
annual mean air temperature, which, in turn, causes intensive evaporation and higher
water temperature, causing a decrease in ice cover thickness and duration [93,94]. On
the other hand, extreme events (flooding, rainfalls, storms, etc.) due to climate change
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are causing an abrupt increase in the WL in some areas, causing also more apparent WL
fluctuations [81,86].

As WL is sensitive to external factors, it is important to monitor it continuously [86,90,95–97].
As the number of in situ gauging stations is decreasing due to their cost and mainte-
nance needs, the use of altimetry data becomes an important supplement to measure
lake level variations. The use of altimetry has already provided promising results over
lakes [10,11,16,50,98–105]. This is confirmed in this study, where a good agreement be-
tween the altimetry-based WL and WL measured at hydrometric stations with a correlation
up to 0.99 in both lakes, with RMSE for Võrtsjärv 0.07 and for Peipsi 0.08, respectively. By
applying measurements from different altimetry satellites the amount of data is increased,
hence, providing a better understanding of WL dynamics and its changes [106–108]. How-
ever, combining data located at different tracks may introduce errors due to unresolved
geoid signals, or other effects that causes the lake surface so be spatially different such as
wind or land signals near the shoreline, but could be combined when the spatial differences
in WL are small inside the water body. For example, comparing WL in Peipsi hydrometric
stations, seasonal dynamics of the WL were similar and differences remained between 0.02
and 0.04 m, which shows possible WL homogeneity in the water body. Here, S3 SRAL and
C2 SIRAL data were combined to increase the data frequency, but other missions could
also have been used. Additionally, S3 and C2 provide SAR mode data in the study area,
which give higher along-track resolution than conventional altimetry, with dense C2 spatial
tracks suitable for lakes. The continuation of S3 missions, and the recently launched S6
mission, ensure data for future monitoring, which allows to continue developing EO-based
applications to monitor WL and its implication for ecosystems and their services.

The possibility to derive certain WQ parameters from satellites helps to collect data
more frequently and from places, which are not easily accessible. Satellite data corre-
sponded to in situ data showing correlation 0.7 for chl a and lower than 0.6 for FBM and
SDD, whereas bias for chl a was 4.9 ± 11.8 mg/m3, for FBM 2.7 ± 14.2 g/m3, and for
SDD 0.3 ± 0.8 m. More data from satellites gives an extra information to in situ data,
which enables to detect seasonal dynamics and rapid changes in different parts of a lake,
especially in terms of estimating chl a, FBM, SDD based ecological status class. In some
cases, satellite data overestimated (Figure 4 Võrtsjärv B SDD, Figure A1 Lämmijärv B SDD)
or underestimated (Figure A1 Peipsi s.s. B chl a) in comparison of in situ data. This can
be due to spatial differences (point measurement vs. 300 m × 300 m pixel), measurement
technique (integral sample vs upper water column captured by satellite), but still, both in
situ and EO data show similar trends during the vegetation period and complement each
other. Different WQ parameters have been used for estimating ecological status of lakes
from satellite data by many authors already for a while [7,25,33,36,41,109], which confirms
necessity of this work for WFD.

Based on the long-term in situ data, the study shows significant relationships (p < 0.05)
between WL and WQ more frequently in Võrtsjärv than in Peipsi. It is caused by the fact,
that Võrtsjärv is shallower than Peipsi and high seasonal WL amplitude affects its biota
in greater extent. In addition, the relationships between WL and WQ parameters were
more often significant in the shallower parts of Peipsi (e.g., in Lämmjärv). Correcting WQ
parameters with WL results in the change of mean annual WQ parameter values and even
in changes of their ecological status class. The impact was more pronounced in Võrtsjärv,
where WL was much lower than long-term monthly mean WL (approximately from 0.5 m),
which did not only decrease the mean value of WQ parameters, but even changed the
ecological status estimation to a higher class. As WL has a high impact to WQ parameters
and the whole ecosystem, it is encouraging to see that EO data can be used to remove WL
effect from data of WQ estimates in large shallow lakes, thus it could be one of the research
topics deserving more attention due to its applicability to other large and shallow lakes.
Moreover, the variety of past, present, and future satellite missions allows to apply the
demonstrated methodology to extend the temporal and also spatial extent of the results.
This could be done by combining satellite sensors for WQ, e.g., Environmental Satellite
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(ENVISAT) Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution
Imaging Spectroradiometer (MODIS) to estimate WQ parameters [35,40,110–114], with
Topex Poseidon and Jason mission satellites to estimate WL data [51,104,105,115,116].
Additionally, several databases like Hydroweb [105,117], Database for Hydrological Time
Series of Inland Waters (DAHITI) [98,118], Global Reservoirs and Lakes Monitor database
(G-REALM) of United States Department of Agriculture (USDA) [119] provide water level
data of lakes, whereas Globolakes [120,121] and Climate Change Initiative (CCI) [122]
provide data of WQ parameters from different satellites. However, Sentinel missions will
provide data at least for 20 years, which gives a possibility to gather continuous data
from now.

As sustainable lake ecosystems are essential in the present and in the future, it is
important to ensure frequent monitoring system and to develop EO-based approaches to
improve monitoring and assessment of the ecological status class of lakes, leading, finally, to
the better management of lakes. In situ monitoring is still essential to gather data to monitor
the ecosystem, but also it is basis for developing and improving new tools and approaches,
while satellite data would support it with better spatial and temporal resolution for certain
parameters. Synergy between altimetry and optical data, gives possibility to estimate WL,
as well as WQ parameters for more precise analysis. Results of this study show that, WL
can have a strong impact on WQ parameters in large shallow lakes, where amplitude in
WL change is high. This effect can be corrected with the proposed method to improve the
estimation of ecological status class of such lakes.

5. Conclusions

EU WFD obligates European countries to monitor WQ of lakes and estimate their
ecological status according to reference condition. The ecological status of lakes is influ-
enced by anthropogenic, as well as by natural factors. To decrease the effect of natural
factors, WQ parameters should be corrected for WL in case of shallow lakes with chang-
ing WL for more accurate identification of human impact and estimation of ecological
status. Traditional monitoring methods give valuable long-term time series, however often
with constrained spatial and temporal coverage, while satellites provide more frequent
data. Many water quality parameters (e.g., chl a, FBM, and SDD) and WL can be derived
using EO based data. The development and validation of EO algorithms allow to create
synergy between different types of satellite data which enables to analyze and assess the
lake ecosystems and provide complementary information to improve the monitoring and
management decisions.

Long-term in situ data show inter-annual and seasonal dynamics of indicators charac-
terizing lake ecosystems. In large and shallow lakes such as Võrtsjärv and Peipsi, amplitude
of seasonal WL changes is high (more than 1 m), which influences WQ parameters, espe-
cially in shallower Võrtsjärv. The results support previous studies [10,99,101,104] in the fact
that WL can be estimated with high accuracy (bias 0.4 m, R 0.99) over lakes with EO data.
Correcting WQ parameters with the WL data derived from satellite, the mean values of
the parameters and resulting ecological status classes changed in some cases. The highest
changes occurred in Võrtsjärv during the years with lower WL compared to the long-term
monthly mean. In this case the correction of the values of WQ parameters changed the
resulting ecological status to better quality class. Therefore, taking into account the vari-
ability of WL and correcting its effect in case of shallow lakes is important to decrease the
influence of the natural factors on the assessment of the lakes ecological status class in
terms of EU WFD.
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Figure A1. Long-term time series of in situ measured chl a, FBM, and SDD in Peipsi s.s., Lämmijärv, and Pihkva (A) and 
same parameters measured from S3 OLCI (B). Dots indicate in situ measured values. Triangles and squares indicates S3A 
and S3B values, respectively. Different colors represent ecological status classes according to EU WFD. 
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Table A1. Relationship between in situ measured WL (cm) and water quality parameters from 
May (5) to October (10), where bold values indicate statistically significant relationships (p < 0.05), 
N indicates number of observations during the study period and “-” indicates not enough 
observations for statistical analysis. 

Parameter Month p-Value r Intercept Slope N 
Võrtsjärv 

Ln (chl a) 5 0.12 −0.20 8.76 −0.002 61 
 6 0.67 −0.06 5.85 −0.001 58 
 7 0.01 −0.35 15.12 −0.003 57 
 8 0.01 −0.31 14.36 −0.003 65 
 9 0.19 −0.17 9.37 −0.002 57 
 10 0.02 −0.31 12.17 −0.002 57 

Ln (FBM) 5 0.61 0.06 −0.88 0.001 78 
 6 0.48 −0.08 6.83 −0.001 74 
 7 0.01 −0.28 16.00 −0.004 76 
 8 0.23 −0.14 9.59 −0.002 76 
 9 0.17 −0.16 9.06 −0.002 78 
 10 0.15 −0.17 8.99 −0.002 70 

Ln (1/SDD) 5 0.02 −0.24 4.37 −0.001 85 
 6 0.02 −0.27 6.56 −0.002 78 
 7 0.00 −0.41 8.66 −0.002 72 

Figure A1. Long-term time series of in situ measured chl a, FBM, and SDD in Peipsi s.s., Lämmijärv, and Pihkva (A) and
same parameters measured from S3 OLCI (B). Dots indicate in situ measured values. Triangles and squares indicates S3A
and S3B values, respectively. Different colors represent ecological status classes according to EU WFD.
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Appendix B

Table A1. Relationship between in situ measured WL (cm) and water quality parameters from May
(5) to October (10), where bold values indicate statistically significant relationships (p < 0.05), N
indicates number of observations during the study period and “-” indicates not enough observations
for statistical analysis.

Parameter Month p-Value r Intercept Slope N

Võrtsjärv
Ln (chl a) 5 0.12 −0.20 8.76 −0.002 61

6 0.67 −0.06 5.85 −0.001 58
7 0.01 −0.35 15.12 −0.003 57
8 0.01 −0.31 14.36 −0.003 65
9 0.19 −0.17 9.37 −0.002 57

10 0.02 −0.31 12.17 −0.002 57
Ln (FBM) 5 0.61 0.06 −0.88 0.001 78

6 0.48 −0.08 6.83 −0.001 74
7 0.01 −0.28 16.00 −0.004 76
8 0.23 −0.14 9.59 −0.002 76
9 0.17 −0.16 9.06 −0.002 78

10 0.15 −0.17 8.99 −0.002 70
Ln (1/SDD) 5 0.02 −0.24 4.37 −0.001 85

6 0.02 −0.27 6.56 −0.002 78
7 0.00 −0.41 8.66 −0.002 72
8 0.00 −0.54 11.46 −0.003 77
9 0.00 −0.58 14.77 −0.004 78

10 0.00 −0.48 10.82 −0.003 75
Peipsi s.s.

Ln (chl a) 5 0.45 −0.15 9.85 −0.002 29
6 0.11 −0.35 25.58 −0.008 22
7 0.88 0.03 1.34 0.000 25
8 0.20 −0.26 16.39 −0.004 26
9 0.13 −0.30 18.30 −0.005 27

10 0.90 0.03 1.97 0.000 24
Ln (FBM) 5 0.59 0.11 −5.32 0.002 28

6 0.00 −0.58 33.07 −0.011 22
7 0.95 0.01 0.60 0.000 25
8 0.52 −0.13 11.26 −0.003 26
9 0.01 −0.48 33.50 −0.011 25

10 0.76 0.06 −1.74 0.001 27
Ln (1/SDD) 5 1.00 0.00 −0.89 0.000 53

6 0.07 −0.27 5.97 −0.002 46
7 0.48 −0.09 2.91 −0.001 62
8 0.48 −0.11 3.96 −0.002 47
9 0.71 −0.06 1.00 −0.001 47

10 0.45 −0.11 1.82 −0.001 47
Lämmijärv

Ln (chl a) 5 0.33 −0.20 11.25 −0.003 26
6 1.00 0.00 2.97 0.000 22
7 0.00 −0.62 26.65 −0.008 22
8 0.03 −0.46 23.17 −0.006 23
9 0.38 −0.20 13.54 −0.003 22

10 0.45 −0.17 11.97 −0.003 21
Ln (FBM) 5 0.54 −0.11 7.21 −0.002 31

6 0.04 −0.44 23.63 −0.007 22
7 0.21 −0.26 9.39 −0.002 25
8 0.09 −0.34 23.96 −0.007 26
9 0.05 −0.40 21.75 −0.006 24

10 0.20 −0.28 14.40 −0.004 23
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Table A1. Cont.

Parameter Month p-Value r Intercept Slope N

Ln (1/SDD) 5 0.21 −0.27 4.82 −0.002 23
6 0.00 −0.61 11.25 −0.004 22
7 0.01 −0.56 13.38 −0.004 21
8 0.04 −0.43 12.46 −0.004 23
9 0.17 −0.31 8.22 −0.003 21

10 0.10 −0.37 8.53 −0.003 21
Pihkva

Ln (chl a) 5 - - - - -
6 - - - - -
7 - - - - -
8 0.05 −0.47 27.75 −0.008 18
9 - - - - -

10 - - - - -
Ln (FBM) 5 0.96 −0.02 3.14 0.000 7

6 - - - - -
7 - - - - -
8 0.00 −0.67 46.28 −0.014 17
9 - - - - -

10 - - - - -
Ln (1/SDD) 5 0.17 −0.64 19.19 −0.006 6

6 0.63 0.19 −10.91 0.003 9
7 0.31 0.50 −7.50 0.002 6
8 0.14 −0.34 14.57 −0.005 20
9 0.36 −0.46 27.64 −0.009 6

10 0.26 −0.62 15.38 −0.005 5
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Figure A2. Water level change from long-term monthly mean WL during the study period in Peipsi 
s.s., Lämmijärv, and Pihkva (1). Value 0 indicates long-term monthly mean WL. Mean, maximum, 
and minimum values of water quality parameters are represented on the graphs (2–4), where dark 
gray indicates values before and light gray indicates values after applying WL correction. Different 
colors represent ecological classes according to EU WFD. 
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