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Abstract: A multiscale and multidirectional network named the Contourlet convolutional neural
network (CCNN) is proposed for synthetic aperture radar (SAR) image despeckling. SAR image
resolution is not higher than that of optical images. If the network depth is increased blindly, the
SAR image detail information flow will become quite weak, resulting in severe vanishing/exploding
gradients. In this paper, a multiscale and multidirectional convolutional neural network is con-
structed, in which a single-stream structure of convolutional layers is replaced with a multiple-stream
structure to extract image features with multidirectional and multiscale properties, thus significantly
improving the despeckling performance. With the help of the Contourlet, the CCNN is designed
with multiple independent subnetworks to respectively capture abstract features of an image in a
certain frequency and direction band. The CCNN can increase the number of convolutional layers by
increasing the number of subnetworks, which makes the CCNN not only have enough convolutional
layers to capture the SAR image features, but also overcome the problem of vanishing/exploding
gradients caused by deepening the networks. Extensive quantitative and qualitative evaluations of
synthetic and real SAR images show the superiority of our proposed method over the state-of-the-art
speckle reduction method.

Keywords: synthetic aperture radar; Contourlet; convolutional neural network; despecking; mul-
tiscale; multidirection

1. Introduction

Synthetic aperture radar (SAR) images are images of the Earth’s surface obtained by
the observation tool (SAR systems) under any weather condition. However, SAR images
are inevitably obscured by speckle noise due to their coherent imaging mechanism, which
makes it extremely difficult for computer vision systems to automatically interpret SAR
data. Removing speckle is an essential step before applying SAR images to various tasks [1].

Conventional methods remove speckle, either in the spatial domain, such as Lee [2],
Kuan [3] and Frost [4], which operate on the pixels by sliding a window over the entire
image, or in the frequency domain, where some transforms that can sparsely represent
images, such as wavelets [5] and contourlets [6], are employed to reduce speckle by thresh-
olding the small coefficients of the frequency domain. The frequency domain methods
improve the performance of speckle reduction in the following two aspects: representing
SAR image features more sparsely and more accurately distinguishing the transforma-
tion coefficients of the image content from the speckle. The former analyzes geometrical
structures in SAR images from the multiscale and multidirection of the transform and
represents many detailed features with fewer high-magnitude transform coefficients [7,8].
The goal of the latter is to optimize the threshold determination strategy to identify the
coefficients representing the image content from all the transform coefficients as accurately
as possible [9].

In the past decade, non-local self-similarity (NSS)-based methods [10–13] for speckle
reduction have received wide attention due to their ability to eliminate speckle while

Remote Sens. 2021, 13, 764. https://doi.org/10.3390/rs13040764 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0726-3164
https://doi.org/10.3390/rs13040764
https://doi.org/10.3390/rs13040764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13040764
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/4/764?type=check_update&version=2


Remote Sens. 2021, 13, 764 2 of 20

sacrificing fewer image details. Deledalle et al. [10] proposed the first nonlocal patch-based
despeckling method, where each despeckled pixel is a weighted average of pixels centered
at some blocks that are similar to the block centered at the current pixel. Two perfect
variants of this kind of method are NL-SAR [12] and SAR-BM3D [13], which can obtain
a desired result for the SAR images with regular and repetitive textures. However, it is
difficult for this kind of method to create an optimal balance between preserving SAR
image features and removing artifacts because the NSS models are sensitive to the spatial
features of SAR images.

Inspired by the success of deep convolutional neural networks (CNNs) in the field of
optical image denoising, Chierchia et al. [14] first proposed a residual CNN for subtracting
speckle noise from SAR images. Considering that speckle noise is assumed to be multi-
plicative, the method first transforms multiplicative speckle into an additive form and then
regards the additive speckle as the residual of the network. The ID-CNN [15] can directly
train SAR images without requiring a homomorphic transformation. In this method, the
SAR image subtracts the learned speckle through skip connections, thus yielding a clean
SAR image. SAR-DRN [16] employs dilated convolutions and a combination structure
of skip connections with a residual learning. Similar to [15], SAR-DRN is also trained
in an end-to-end way. Yue et al. [17] exploited a deep neural network architecture to
extract image features and reconstruct the probability density function (PDF) of the radar
cross section (RCS) that is obscured by speckle noise. Lattari et al. [18] proposed a deep
encoder-decoder CNN based on the architecture of the U-Net to capture speckle statistical
features. Cozzolino et al. [19] proposed a nonlocal despeckling method for SAR images, in
which the weight of the target pixel is estimated using a convolutional neural network.

From the above deep-learning-based despeckling methods, it can be seen that these
methods all employ CNNs with a single-stream structure for training, either outputting a
clean image in an end-to-end fashion or learning the underlying noise model. However, it is
very difficult for models that adopt a single-stream structure to capture the multidirectional
features of images, which will result in the loss of many detailed edge and textural features
in the process of removing speckle noise.

In this paper, we propose a multiscale and multidirectional CNN (CCNN) model to
capture image features and to achieve better performance in suppressing speckle noise.
The CCNN consists of multiple independent subnetworks (shown in Figure 1), each of
which adopts a network structure and a loss function according to the characteristic of
the subband. Each subnetwork captures feature details and removes speckle noise from a
specific direction and a specific scale. When the loss function of each subnetwork reaches
the optimal value, the despeckled SAR image is obtained in a coarse-to-fine manner through
the in-verse Contourlet transform.
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Benefiting from the multiscale and multidirectional decomposition of the Contourlet
transform, the CCNN can capture the detailed features in multiscales and multidirections,
thus preserving image resolution while suppressing speckle noise. Compared with state-
of-the-art despeckling methods, the CCNN can preserve relatively more detailed features
while suppressing speckle noise.

In summary, the main contributions of the proposed method are fourfold: (1) the
CCNN uses the Contourlet transform to divide a problem of SAR image despeckling into
multiple subproblems and then suppresses speckle noises of the Contourlet sub-bands
using multiple independent subnetworks, which means that our proposed CCNN can
provide sufficient convolutional layers for capturing the image features, but overcome
the problem of vanishing/exploding gradients; (2) each subnetwork has its structure and
loss function, which ensures that each sub-band is the most similar to the corresponding
sub-bands of the clean SAR image; (3) the features in each sub-band are concentrated
in the horizontal or vertical or diagonal direction, etc., which reduces the requirement
of a convolutional neural network, that is, each sub-band does not require too many
convolution layers or a complex network to capture SAR image features and suppress
speckle noise; (4) the subnetwork used to train each sub-band is independent and can run
in parallel, thus shortening the training time.

This paper is organized as follows: Section 2 briefly introduces the related work on
CNN-based despeckling and the Contourlet analysis. The architecture of the proposed
CCNN and the adopted loss functions are described in detail in Section 3. We describe and
discuss experimental results for synthetic and real-world SAR data in Section 4. Finally,
Section 5 concludes and outlines future work.

2. Related Work

Many schemes for improving the visual quality of SAR image despeckling have been
developed. Here, we focus on the schemes that are relative to the proposed CCNN.

With the success of AlexNet [20] in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC-2012), CNNs have attracted great attention in the field of SAR image
despeckling. In the last two years, a surge in SAR image despeckling methods based on
CNNs has been presented, which adopted the architecture of U-Net [21], ResNet [22], or
DenseNet [23]. These CNN architectures are designed with many convolutional layers to
make them deep enough to capture abundant enough features for images. To alleviate the
problem of vanishing/exploding gradients caused by deepening the networks, the common
characteristic of these networks is that not only neighboring layers, but also any other two
layers, are linked by using skip connections. U-Net uses skip connections to concatenate
feature mapping from the first convolutional layer to the last, second to second to last, etc.
In ResNet, the input of convolutional blocks (containing multiple convolutional layers)
is added to their output via skip connections. In DenseNet, all preceding convolutional
layers were connected to their subsequent layers, which can overcome the shortcomings
of ResNet, such as some layers being selectively discarded, or information being blocked.
The basic idea of such a design is that only the deep network with a greater number of
convolution layers can capture as many features as possible, helping to upgrade the visual
quality of SAR image despeckling.

However, SAR image resolution is inferior to that of optical images. If capturing the
detailed features of SAR images by only increasing the network depth, network training
will become quite difficult and fail to capture some feature details. Multiscale and mul-
tidirection are natural attributes of an image. Analyzing the characteristics of multiscale
and multidirectional images can reveal more essences of SAR images [24]. The Contourlet
transform plays an important role in the multiscale and multidirectional analysis of images
and can produce large magnitude coefficients for image details in a certain scale and direc-
tion, which can effectively analyze and sparsely represent the edges and textures of SAR
images. This helps us to improve the despeckling performance of the CNN-based method.
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The Contourlet transform [6] is an efficient multiresolution image representation,
which has properties such as multiresolution, multiscale, multidirectionality, and anisotropy.
The original image can be decomposed into lossless multiscale sub-bands in different direc-
tions and different frequency bands through Contourlet transform. In Contourlet transform,
the Laplacian pyramid (LP) [6] is first used to decompose an image into a bandpass sub-
band and a lowpass sub-band. The bandpass sub-bands from the LP are then fed into
a directional filter bank (DFB) [6] to decompose into bandpass sub-bands with specific
directional features. The process can be iterated on the lowpass sub-band, generating
multiple sub-bands with different scales and different directions. These sub-bands use a
few high-magnitude coefficients to represent image features along specific directions, while
noise is generally represented by smaller coefficients [25]. Through Contourlet decomposi-
tion, we can divide the problem of requiring a deep and complicated CNN to handle SAR
image despeckling into multiple small problems, each of which, using a simple CNN, trains
the features of a Contourlet sub-band with a specific scale and direction. The features in the
Contourlet sub-bands are concentrated in a specific direction, and their feature coefficients
are large; the subnetwork that has a relatively simple structure and fewer convolutional
layers will be sufficient to fully learn the feature details of each sub-band and effectively
suppress speckle noise.

3. Proposed Method

In this section, we first introduce the architecture of the CCNN and describe its
subnetworks. Second, we analyze the loss function of each subnetwork. Finally, the CCNN
training procedure is described.

3.1. Network Structure

The CCNN is composed of multiple independent subnetworks, each of which captures
feature details from a specific direction and a specific scale and removes SAR image
speckle noise. Each subnetwork has a structure and objective function for learning the
corresponding frequency sub-band independently. When the objective function of the
subnetwork reaches the optimal value, it means that the sub-band of the contaminated
SAR image has been trained to be very close to that of the clean image and, at this time, the
parameters of the subnetwork have been adjusted to the optimal value. Now, the inverse
Contourlet transform can be applied to all the well-trained sub-bands, resulting in a clean
SAR image. As shown in Figure 1, the CCNN does not seek to improve the performance of
capturing image features and eliminating speckles by deepening the network. The CCNN
attempts to decompose images into several sub-bands or multiple subproblems using the
Contourlet transform and then suppress speckle noise using multiple multidirectional and
multiscale subnetworks. Thus, not only is the performance-suppressing speckle noise of
the network guaranteed, but as many SAR image feature details as possible are preserved,
thus balancing the despeckling performance against the lost feature details.

Figure 1 shows the overall structure of the CCNN based on 2-level Contourlet de-
composition. We use the ResNet [22] structure to design the eight subnetworks (shown
in Figure 2a) for training the directional sub-bands in the first level of the Contourlet
transform. This is based on the fact that these sub-bands contain most of the speckle noise
of SAR images. We use the subnetworks with residual learning to directly estimate speckle
noise and then obtain the sub-band of the estimated image via skip connections. The
subnetworks consist of six convolutional layers. The subnetworks that are responsible
for training the directional sub-bands in the second level of the Contourlet are designed
with the UNet structure (shown in Figure 2b, UNet1, UNet2, UNet3 and UNet4). This
is based on the fact that UNet [21] can perform well in image segmentation and capture
the features of the refined edges of an image. These subnetworks have five convolutional
layers, among which three are mixed convolution layers. The mixed convolution layer is
obtained from the dilated convolution and the standard convolution, which can not only
enlarge the receptive field of suppressing speckle noise, but also fully capture the small
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features of the image, thus preserving as many of the detailed features as possible. S-CNN,
shown in Figure 2c, which is responsible for training the coarse sub-band of the Contourlet,
is composed of four convolution layers, among which are three mixed convolution layers.
In addition, we add skip connections between the input and the output to ensure that
the overall features of the image can be passed into the output. More details about each
subnetwork setting are shown in Figure 2.
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3.2. Loss Functions

Loss functions is key to ensuring the performance of the CCNN. We explored differ-
ent loss functions and their combinations to effectively learn various tasks [26–28]. The
per-pixel Euclidean loss was considered an effective quantitative assessment. However,
we observed that it may cause the loss of image details and result in artifacts on the final
estimated image if minimizing pixelwise error depends only on the per-pixel loss. Addi-
tionally, the loss of the image details can be evaluated by capturing the difference in the
detailed features [29]. Considering this, we combine the total variation (TV) regularization
term with the Euclidean loss (EL) as the final loss function to judge the visual quality of
each sub-band (the output of each subnetwork). The Euclidean loss is defined as

EL =
1

CWH

W

∑
i=1

H

∑
j=1

(x(i, j)− y(i, j))2 (1)

The TV regularization term can be calculated as follows

TV =
W

∑
i=1

H

∑
j=1

λ

(
2
√(

xi,j+1 − xi,j
)2

+
(

xi+1,j − xi,j
)2
)

(2)
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Finally, the loss function can be represented as

Lcs = TV + EL (3)

where x(i, j) and y(i, j) represent the Contourlet coefficient values of the estimated SAR
image and the corresponding clean image, respectively. C, W, and H represent the channel,
width, and height of the input subband pair, respectively. The loss function use of the
Lcs metric can measure the difference between the sub-bands of the estimated image and
that of the clean image, resulting in a relatively good peak signal to noise ratio (PSNR)
for images.

However, the restored image with a higher PSNR does not mean that the image details
are well preserved. To create a better balance between preserving the detail features and
suppressing speckle noise, we introduce a weight of λ into the loss function Lcs. Because
the coarse sub-band hardly contains speckle noise energy, we set the weight λ of the loss
function Lcs of the low-frequency sub-band to 1. For the loss function, Lcs, of the directional
sub-bands, λ is obtained as follows

λ =

{
1.1 if(|x(i, j)| ≥ ave)
0.9 else

(4)

where ave represents the average value of the Contourlet coefficients of each directional
subband. It can be calculated as

ave =
1

wh

w

∑
i=1

h

∑
j=1
|x(i, j)| (5)

Note that the ave of each directional subband is different and is closely related to the
noise coefficients and the feature coefficients of each subband. Therefore, the loss function
of each subband is also different. The image feature energy far surpasses the noise energy
in images and noise has no directivity, meaning that the Contourlet coefficients of the
image features are relatively larger, while the noise coefficients are relatively smaller. In
computing the loss function of each subband, all coefficients larger than the ave threshold
are considered to represent the features of the image details and are assigned a larger weight
to enhance these features. All coefficients lower than the ave threshold are considered
noise information and are assigned a smaller weight to suppress the noise.

3.3. Training Procedure
3.3.1. Training Set and Parameter Setting

We train two CCNN models: one using the synthetic SAR image dataset and one using
the real SAR image dataset. The synthetic SAR image dataset was built using 2500 optical
images by injecting single-look speckle, and were collected from ISLVRC 2012 [30] and the
Waterloo Exploration Database [31]. The real SAR image dataset is from 800 images from
the UC Merced Dataset [32], the UCID [33], and scraped Google Maps images [34]. For
the real SAR image dataset, the challenge is to create corresponding pairs of speckled and
target images. Now that it is not possible to physically obtain a thoroughly despeckled
SAR image, we adopt an alternative strategy to obtain speckle-free references as target
images. We obtain the speckle-free targets by averaging multilooked images (25 dates) and
keeping only the regions that do not significantly change over time. Specifically, we pick
out those objects that have continuous single-look images from the UC Merced Dataset
and the UCID Dataset. The first image of each object was used as the speckle SAR image,
and the next series of 25 images were used to calculate the speckle-free data. We discarded
the regions with significant temporal changes and averaged the same regions of 25 images,
yielding the “clean” data. Of course, such a reference is far from a “clean” image, not
only for the presence of temporal changes, but also for the limited number of SAR images,
resulting in imperfect rejection of speckle. We use this real SAR image dataset to fine-tune
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the CCNN, which has been well trained via the synthetic SAR image dataset. All images
are resized to 256×256 and the training data are augmented by random combinations, such
as vertical and horizontal flipping, 90◦ and 270◦ rotation, changes in image contrast, etc.
The test images are from the PatternNet dataset [35] and BSD500. The entire network is
implemented in the TensorFlow framework and is updated using the Adam optimizer [36].
The activation function used is ReLU [37]. The convolution kernels for feature extraction
are 3×3, and the kernel size for feature aggregation is 1×1. The final convolution layer
is 3 (corresponding to a color SAR image) or 1 (referring to a grayscale SAR image). The
learning rate is initially set to 0.0002 for all the subnetworks and it decreases by one-quarter
after every 25 epochs. It takes approximately 9 h to train the CCNN with an NVIDIA RTX
2080Ti in the case that the 13 subnetworks (both grayscale SAR images and color SAR
images via Contourlet decomposition of two levels) can work in parallel.

3.3.2. Network Training

Both Contourlet transform and CNN are suitable for dealing with additive noise.
Therefore, we need to use the homomorphic transform to change the multiplicative speckle
noise that contaminates the SAR images into additive noise before the Contourlet transform
is applied to the SAR images. At the output of the CCNN, after the inverse Contourlet
transform is used to composite the estimated images, the exponential function is needed to
map the estimated image back to the multiplicative domain. In the CCNN, we decompose
the speckled images through the Contourlet two times and obtain the thirteen Contourlet
sub-bands, which concentrate the image features of the vertical, horizontal, diagonal di-
rections, etc., and highlight these detailed features. Meanwhile, the subnetworks that
are responsible for training the directional sub-bands of the first level of the Contourlet
are designed with the Resnet structure to directly train the speckle noise rather than to
train the estimated images. Therefore, these subnetworks can achieve the best despeckling
performance with relatively shorter run time, creating a better balance between the per-
formance of suppressing speckle and running efficiency. Each sub-band of the speckled
images, incorporated with the corresponding Contourlet sub-bands of the clean images,
is input into its network for training. The loss function of each subnetwork is calculated
using Equation (3), learning the function mapping from the noisy sub-band to the clean
sub-band. When the loss function of each subnetwork reaches the minimum, the feature
mappings of all the subnetworks are obtained. Subsequently, the CCNN is used to remove
the speckle from a tested SAR image.

4. Results

We carried out experiments on both synthetic and real SAR images. The motivation
for designing the CCNN was to improve the performance of suppressing convolutional
neural network speckle while shortening the training time. To this end, multiple experi-
ments were conducted to evaluate the performance of the CCNN. First, we investigated
the advantages of each independently learned Contourlet sub-band. Second, we examined
the impacts of the different structures of the subnetworks on the despeckling quality of the
SAR images. Third, we investigated the effect of different subnetworks with different loss
functions. These experiments belong to our ablation studies, displaying the impact of each
basic component on the performance of the CCNN. Finally, we selected four representa-
tive despeckling methods as the comparison baselines to compare and comprehensively
analyze the performance of the proposed CCNN method: three CNN-based methods
(SAR-CNN [14], ID-CNN [15], and SAR-UNet [18]), and the representative traditional
method (SAR-BM3D [13]).

We used the PSNR to evaluate the despeckling results of the synthetic SAR images.
In addition, the structural similarity (SSIM) [38] was used to evaluate the ability to retain
the image details. Sheikh et al. [39] discussed many quantitative metrics for the estimated
images and stated that the SSIM index is good at assessing the fidelity of detailed features.
The higher the values, the more similar the local feature of the image will be, and the better
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the fidelity of the image. For SAR images from real-world scenarios, speckle suppression
ability is measured objectively using no-reference image quality evaluation such as the
natural image quality evaluator (NIQE) [40] and the equivalent number of looks (ENL) [41],
which are calculated on homogeneous regions of the despeckled SAR images. The former
can objectively measure the ability to suppress speckle noise in the absence of clean
reference images, and the latter is sensitive to the content sharpness, texture diversity,
and detail contrast of the images. Therefore, they are suitable for evaluating the speckle
suppressing results of SAR images from real-world scenarios. The larger the NIQE and the
larger the ENL, the better the preserved image details will be, and the speckle results will
be suppressed.

4.1. Ablation Studies
4.1.1. Subband Training

In this section, we aim to verify that each Contourlet sub-band being trained indepen-
dently not only shortens the training time but is also helpful for enhancing the denoising
quality. One of the advantages of the CCNN is that it can be divided into several subnet-
works. These subnetworks can learn the feature mapping of each Contourlet subband on
multiple computers in parallel, and the well-trained sub-band can then be integrated to
obtain a clean image through the inverse Contourlet. The CCNN that is trained in this
way is denoted as CCNN-1. The CCNN learns its feature mapping on a single computer.
Here, we compare the CCNN with the SAR-BM3D [13], SAR-CNN [14], ID-CNN [15], and
SAR-UNet [18], despeckling benchmark methods. The results of these methods, shown in
Table 1, come from their paper or cite their paper.

Table 1. Average results of the comparison methods.

Metrics

Methods
Training Time (h) Run Time(s)

Synthetic SAR Images Real SAR Images

PSNR (dB) SSIM NIQE ENL

SAR-BM3D - 1.2561 27.56 0.8235 0.7462 283.2

SAR-CNN 24 0.0159 28.32 0.8311 0.7539 290.9

ID-CNN 48 0.0586 28.36 0.8342 0.7584 296.2

SAR-UNet 48 0.0973 28.48 0.8439 0.7757 301.7

CCNN 16 0.0137 28.76 0.8671 0.7894 322.5

CCNN_1 9 0.0113 28.94 0.8681 0.7902 331.3

Table 1 displays the averages of PSNRs/SSIMs/NIQEs/ENLs and the GPU runtime
when the CCNN and the four comparison methods handle the 100 images from the BSD
500 (added with the speckle noise of σ = 0.08) and the PatternNet dataset. The CCNN-1
and the CCNN both achieved the best metric values, with a relatively shorter execution
time when compared with state-of-the-art image despeckling methods. It can also be seen
that the execution time and training time of the CCNN were slightly greater than those of
CCNN-1. This is because the subnetworks of CCNN-1 can be independently trained on
multiple computers in parallel. The subnetworks of the CCNN are confined to running on a
single computer. Due to the multiscale and multidirectional decomposition of Contourlets,
the sub-bands of the Contourlet can not only intensively represent common characteristics
in a certain direction, but also use larger coefficients than those of the noise to represent
these features (for example, the coefficients of the horizontal directional edges in the LH
sub-bands are larger). Each sub-band does not lose any detailed features because it does
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not require clipping. Therefore, each subnetwork does not require a deep CNN with many
convolution layers to capture the characteristics of these sub-bands; moreover, each subnet-
work has a loss function, which can control and adjust the parameters of the subnetwork, to
ensure that each sub-band is most similar to that of the clean SAR image. These measures
ensure that the proposed CCNN can achieve better PSNR/SSIM/NIQE/ENL metrics than
those of other comparison methods at a relatively faster speed, even if the CCNN works
on a single computer.

4.1.2. The Structure of the Subnetwork

Here, we verify that the mechanism, i.e., each subnetwork that adopts a training
structure to suit the characteristic of each sub-band, is helpful for improving the perfor-
mance of the CCNN. In the CCNN, the structure of the subnetwork that is responsible
for training each Contourlet sub-band can be different. We explore a CNN architecture
that is fit for them according to each of their Contourlet sub-band attributes. The common
feature of these subnetworks is that they all have few convolutional layers, which means
that our proposed CCNN can have enough convolutional layers to capture the image
features without causing the problem of vanishing/exploding gradients. The directional
sub-bands in the low level contain most of the speckle noise of an SAR image and the
size is larger. We adopt the ResNet structure to capture the speckle noise features from
the sub-bands and learn the speckle noise feature mappings. Although these sub-bands
are large, the subnetworks train the speckle noise features rather than the image content
by using residual learning, which is not only easy to train but also reduces the learned
parameters. This is based on the fact that there are far fewer contents to be learned from the
noise than from an image. For the directional sub-bands in the highest level, the sub-bands
contain more detailed features and less noise, and these detailed features may be very thin,
which requires that the fine features extracted from the previous convolution layers can be
passed to the subsequent convolution layers. Therefore, the subnetworks that are in charge
of the directional sub-bands at the second level adopt the U-Net structure. Symmetric
connections are added between the convolution layers and their corresponding layers,
ensuring that the overall features captured by the previous convolution layers are passed
into the subsequent feature maps. Furthermore, we also utilize dilate convolutions to
enlarge the receptive field of the convolutional layers and to capture the thin features. For
the coarse sub-bands in the highest level, the sub-bands contain much more overall image
information, fewer detailed features and the least noise. The S-CNN that contains fewer
mixed convolutional layers and has a skip connection will be competent enough to capture
and learn the overall features of the coarse sub-bands.

Figure 3 shows the positive impact of the subnetwork structures on the performance
of the CCNN. The CCNN-2 represents a variant of the CCNN in which all the subnetworks
are designed with the ResNet structure (i.e., the structure shown in Figure 2a) and each
subnetwork has eight convolutional layers. We consider SAR-UNet [18] as a comparison
baseline because it uses the same structure to extract detailed features at different scales.
The comparison of the proposed CCNN method, the CCNN-2 method and the SAR-UNet
method in terms of PSNRs/SSIMs/NIQEs/ENLs is shown in Figure 3a,d. These data are
from the average of the 100 synthetic SAR images that included speckle noise with the
variance σ = 0.06, 0.08, . . . , 0.2. Figure 3 illustrates that the performance of the CCNN
is significantly superior to that of SAR-UNet. Additionally, the performance of CCNN-2
slightly surpasses that of the SAR-UNet method. This indicates that the strategy that uses
the different CNN structures to train the different sub-bands can significantly improve the
performance of suppressing speckles of the CCNN.
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4.1.3. Loss Function

In the CCNN, the subnetwork used to independently train each Contourlet sub-band
has not only its own structure but also its own loss function. As is known, the image
contents and noise can be partially separated through multidirectional and multiscale
Contourlet decomposition. The correlation of the image information is large, and the
correlation of the noise information is small. Therefore, the amplitudes of most coefficients
of the image details are higher than those of most of the noise coefficients, even if the noise
intensity is high. Therefore, in the directional sub-bands, the high-magnitude coefficients
convey most of the image detail energy and most of the low-magnitude coefficients are
due to noise. If the high-magnitude coefficients can play a leading role in the loss func-
tion, it is conducive to the learning and preservation of image details and suppressing
noise. Considering this point, we introduce a weight factor λ into the loss function of the
directional sub-bands. The weight factor λ is set to two different values according to the
coefficient values of the directional sub-band. Only coefficients greater than the average of
the coefficients of each directional sub-band are assigned a higher λ value, and the rest are
assigned a lower λ. However, the averages of the coefficients of each directional sub-band
are bound to be different, which means that the objective function of each subnetwork
has its own standard. This mechanism is helpful for suppressing speckle noise while
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preserving the feature details. To verify the effectiveness of this scheme, we conducted the
following experiments: each subnetwork uses the same loss function, i.e., weight factor
λ of Equation (1) is set to 1, to learn its feature mapping, and this CCNN is denoted as
CCNN-3. Here, we consider the ID-CNN [15] as a comparison baseline because its weight
factor λ of the loss function is also a constant.

Figure 4 shows the probability distributions of the PSNR, SSIM, NIQE, and ENL
gains of these 200 SAR images (100 synthetic and 100 real images). These gain val-
ues were obtained from the CCNN and CCNN-3 relative to the ID-CNN baseline. The
PSNR/SSIM/NIQE/ENL gains shown in Figure 4 illustrate that the performance of the
CCNN exceeds those of the ID-CNN by a large margin and that CCNN-3 is slightly superior
to the ID-CNN, which demonstrates that using different loss functions to supervise learning
of each sub-band is helpful for improving the despeckling performance of the CCNN.
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4.2. The CCNN Performance

To comprehensively verify the CCNN performance, we investigate the despeckling
results of the CCNN and the four comparison methods on synthetic SAR images and real
SAR images. In particular, we also investigate the performance of the CCNN+, a variant of
the CCNN, in which the number of convolutional layers increases to 10 or the number of
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the mixed convolution layers increases to five in each subnetwork. The regions of interest
(ROIs) in each despeckled image are enlarged by two times using bicubic interpolation and
are shown in the corners to highlight the details obtained from different methods.

4.2.1. Results on Synthetic SAR Images

The 100 test images were randomly selected from the BSD500 and speckle noise was
added with variance σ = 0.06, 0.08, . . . , and 0.2. Among them, the representatives of
grayscale and color images and their corresponding single-look speckle synthetic images
are shown in Figure 5. The two assessment values in terms of PSNR and SSIM (averaging
values of 100 synthetic images obtained from these methods are presented in Table 2. The
visual quality of the despeckled images is shown in Figures 6 and 7.
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Table 2. Numerical comparison in terms of average PSNR (dB)/SSIM of different methods.

σ

Method SAR-BM3D SAR-CNN ID-CNN SAR-UNet CCNN CCNN+

Gray Color Gray Color Gray Color Gray Color Gray Color Gray Color

0.06 29.06
0.8527

30.65
0.8538

29.27
0.8676

30.71
0.8696

29.32
0.8677

30.76
0.8745

29.46
0.8723

30.83
0.8854

29.95
0.8976

31.09
0.9061

30.15
0.9012

31.26
0.9112

0.08 27.24
0.8223

28.15
0.8309

27.39
0.8277

28.22
0.8316

27.40
0.8357

28.25
0.8384

27.49
0.8472

28.32
0.8491

27.52
0.8669

28.31
0.8686

27.62
0.8684

28.49
0.8713

0.1 24.37
0.7496

27.92
0.7585

24.66
0.7571

25.02
0.7603

25.15
0.7714

25.66
0.7805

25.36
0.7808

25.84
0.7813

25.81
0.8116

25.98
0.8211

25.93
0.8152

26.05
0.8214

0.12 21.34
0.7108

21.42
0.7153

21.56
0.7186

21.77
0.7204

21.73
0.7225

22.08
0.7279

22.27
0.7331

22.79
0.7334

24.29
0.7637

24.77
0.7785

24.36
0.7694

24.95
0.7849

0.14 20.69
0.7524

20.29
0.7386

20.82
0.7598

20.69
0.7401

20.24
0.7621

20.74
0.7412

21.31
0.7634

21.86
0.7421

23.45
0.7647

23.86
0.7424

23.61
0.7827

23.92
0.7459

0.16 20.64
0.6952

20.97
0.6773

20.69
0.6971

21.47
0.6793

20.84
0.6975

21.53
0.6806

21.05
0.6978

21.69
0.6783

22.03
0.6987

22.06
0.6782

22.35
0.6997

22.46
0.6804

0.18 19.75
0.5207

20.18
0.5339

20.06
0.5218

20.33
0.5356

20.18
0.5229

20.35
0.5363

20.26
0.5289

20.43
0.5376

21.33
0.6025

21.78
0.6106

21.47
0.6134

21.84
0.6178

0.2 18.31
0.4403

19.39
0.4483

18.48
0.4432

19.04
0.4525

18.76
0.4477

19.32
0.4534

20.18
0.4682

20.42
0.4731

20.32
0.5086

20.61
0.5137

21.05
0.5188

21. 31
0.5265
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The assessment values from the methods shown in Table 2 are high, illustrating that
these methods all yield good speckle-suppressing results. High PSNR values indicate that
the despeckled image is closest to the original clean image; high SSIM values demonstrate
that the methods can retain the edge and texture details while suppressing speckle noise.
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Overall, the assessment values obtained from the CNN-based methods (SAR-CNN,ID-
CNN,SAR-UNet and CCNN) are superior to those of the traditional method (SAR-BM3D).
This is because the traditional despeckling method distinguishes the image energy from the
speckle noise based on image similarity and sparse representation, while the CNN-based
methods can extract useful end-to-end data by integrating multiple convolutional layers
and/or convolutional blocks, thus having a powerful learning capability and providing
accurate predictive features for the estimated images. Figures 6 and 7 indicate that the
visual quality of images obtained from the traditional despeckling methods is indeed
inferior to the image quality obtained from the CNN-based methods. There are significant
block artifacts around the edges of images obtained from the SAR-BM3D method. With the
help of residual learning, the SAR-CNN and the ID-CNN can retain the edge and texture
details well while removing noise and they generate slight artifacts only at the sharp
edges. In contrast, the visual results of the ID-CNN are surperior to those of the SAR-CNN,
perhaps benefiting from the ID-CNN using the improved loss function. Due to introducing
downscaling and upscaling convolutional layers, the numerical results of the despeckled
images from SAR-UNet are relatively better; most of the details are preserved, although
the details in the textural regions are lost. The CCNN learns the deep characteristics of
the images in multiple scales and multiple directions by using the Contourlet transform to
build a multiple-stream structure, thus estimating fully detailed image information. The
obtained numerical results from the CCNN are desired and have not only the highest PSNR
mean values, but also relatively high SSIMs. Additionally, the visual quality obtained
from the CCNN is also outstanding, with few slight artifacts appearing only at some
edges. Moreover, when the number of convolutional layers of the CCNN increases, namely,
CCNN+, the obtained metrics are better in terms of the PSNRs/SSIMs. This indicates that
there is still room for improvement in the structure and the performance of the CCNN.
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4.2.2. Results on Real SAR Images

The experiments on the synthetic images cannot adequately validate the effective-
ness of the proposed method since the synthetic images in the simulation experiments
are not acquired in a real degradation way. Here, we repeat the experiments on real
SAR images to illustrate the feasibility and robustness of the proposed CCNN in some
real-world scenarios.

We selected eight SAR images that have multilooked images from the PatternNet
dataset to test the CCNN. Two of these SAR images and their corresponding multilook
references are shown in Figure 8. The red boxes on the multilooked images represent the
regions used to compute the ENL. In this experiment, temporal multilooking was used
as the reference image for training. This reference is quite different from the ideal “clean”
image, which implies that the speckle noise cannot be completely suppressed. Therefore,
we focus on the comparisons of the quantitative indicators NIQE and ENL.
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The quantitative evaluation of the baseline methods and our CCNN are shown in
Table 3. The metric NIQE can measure the quality of the despeckled images and is expressed
as a simple distance between the despeckled images and the model that is constructed via
statistical features collected from many real SAR images. The larger the metric NIQE is, the
better the image detail preservation will be. The index ENL indicates the smooth degree of
the despeckled image by calculating the mean and standard deviation of a homogeneous
region. The larger the ENL is, the smoother the region will be and the better the speckle
noise suppression.
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Table 3. Numerical comparison in terms of NIQE/ENL of different methods.

Method.
Images

SAR-BM3D SAR-CNN ID-CNN SAR-UNet CCNN CCNN+

#1 0.7654/164.62 0.7718/157.36 0.7731/175.83 0.7835/184.54 0.8094/225.0 0.8127/236.2

#2 0.4295/106.35 0.4313/94.38 0.4326/125.69 0.4437/131.48 0.4731/168.78 0.4904/175.81

#3 0.6387/130.63 0.6416/125.21 0.6527/144.75 0.6736/154.63 0.6860/189.95 0.6949/200.94

#4 0.7299/150.74 0.7325/144.38 0.7335/160.55 0.7435/175.96 0.7825/196.23 0.7895/215.87

#5 0.5274/114.87 0.5304/105.88 0.5329/134.63 05406/141.22 0.5434/175.73 0.5388/182.21

#6 0.6356/125.09 0.6389/120.74 0.6403/139.88 0.6528/149.66 0.6574/181.25 0.6593/192.36

#7 0.4884/110.63 0.4905/99.85 0.5146/124.39 0.5295/138.63 0.5312/166.22 0.5325/172.61

#8 0.5764/118.45 0.5803/110.23 0.5819/138.67 0.5872/150.26 0.5919/178.53 0.5941/183.45

In Table 3, the ENL of the SAR-CNN method is the lowest while the NIQE of the SAR-
BM3D network is the lowest, which indicates that the former cannot effectively suppress
speckle noise and the latter cannot preserve fine details in the textural region. Overall,
the metrics obtained from the CCNN on the eight SAR images (#1, #2, . . . , #8) are the
most satisfactory and have the highest ENL and NIQE, which indicates that the CCNN can
effectively suppress speckle noise without significantly impairing the image resolution.

Figures 9 and 10 show the visual qualities of the despeckled images obtained from the
baseline methods and the proposed CCNN. In contrast, we observe that the SAR-BM3D,
SAR-CNN, ID-CNN, and SAR-UNet lose details to some extent, blur some texture details
and edges, or have a large level of residual speckle noise, while our proposed CCNN
and the CCNN+ preserve most details well, even for thin lines and complex textures.
Additionally, very few speckle noises are left and very few artifacts are introduced.
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Figure 10. Visual quality comparison of speckle removal of the real color SAR image. (a) SAR-BM3D; (b) SAR-CNN; (c)
ID-CNN; (d) SAR-UNet; (e) CCNN; (f) CCNN+.

5. Discussion

In summary, the proposed CCNN provides very satisfying results considering de-
speckling performance and detail preservation. For real-world SAR images, we observe the
same results with the synthetic SAR images as before, only less pronounced. This probably
has to do with the imperfect reference images used for training the CCNN. In fact, a 25-look
image (obtained by averaging a series of 25 SAR images) is not a true clean SAR image, but
only an approximation of it, based on temporal multilooking. The regions characterized
by a different average intensity from the rest of the image probably correspond to regions
where the despeckled image approaches the reference image but not the original noisy
image. Thus, the CCNN behaves as instructed to do based on bad examples. With this
premise, the reference multilooking images can only provide bad results. If our conjecture
is right, the CCNN performance will be further improved when better reference data
are available.

The CCNN can be extended to higher level of Contourlet decomposition. Nevertheless,
higher level inevitably results in deeper network and heavier computational burden. Thus,
a suitable level is required to balance efficiency and performance. We examined the PSNR
and runtime results of CCNNs with the levels of 1 to 3. We observed that CCNN with
2-level architecture performs much better than CCNN with 1-level, while CCNN with
3-level architecture only performs negligibly better than CCNN with 2-level in terms of
the PSNR metric. Moreover, the speed of CCNN with 2-level is also moderate compared
with many more decomposition levels. Taking both efficiency and performance gain into
account, we choose CCNN with 2-level as the default setting.

6. Conclusions

In this paper, we proposed a convolutional neural network for suppressing speckle
noise (CCNN) that captures feature details and suppresses speckle noise from multiple
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scales and multiple directions. The CCNN uses the Contourlet transform to decompose
SAR image despeckling into multiple subproblems and then suppress speckle noise us-
ing multiple multidirectional and multiscale subnetworks. Each subnetwork is in charge
of learning the feature mapping and suppressing the speckle noise coefficients of each
Contourlet subband under the supervision of its loss function. Considering the attribute
of each subband, we design a different structure and a different loss function for each
subnetwork. The subnetworks do not require too many convolutional layers and a complex
network structure to capture the features or speckle noise in a specific scale and specific
direction of an image, which means that our proposed CCNN not only provides sufficient
convolutional layers to capture the image features but also avoids the problem of van-
ishing/exploding gradients. The ability to preserve feature details of the CCNN can be
significantly improved by capturing the detailed texture and clear structure at multiple
scales and in multiple directions. In addition, these subnetworks can be executed in par-
allel on different computers, resulting in shortening the training time of the network. In
addition, these subnetworks can be executed in parallel on different computers, resulting
in shortening the training time of the network. The results for the synthetic and real SAR
images show that the CCNN achieves the best performance with the lowest runtime when
compared with the state-of-the-art methods for suppressing speckle, resulting in a good
tradeoff between efficiency and performance.

In the future, we will explore a suitable generative model by exploiting the tech-
niques [42,43] to generate training samples more similar to the data distribution of real
SAR images.
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