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Abstract: Nitrogen dioxide (NO2) is an important pollutant related to human activities, which has
short-term and long-term effects on human health. An ensemble learning model was constructed
and applied to estimate daily NO2 concentrations in the Beijing–Tianjin–Hebei region between 2010
and 2016. A variety of predictive variables included satellite-based troposphere NO2 vertical column
concentration, meteorology, elevation, gross domestic product (GDP), population, land-use variables,
and road network. The ensemble learning model achieved two things: a 0.01◦ × 0.01◦ grid resolution
and the estimation of historical data for the years 2010–2013. The ensemble model showed good
performance, whereby the R2 of tenfold cross-validation was 0.72 and the R2 of test validation was
0.71. Meteorological hysteretic effects were incorporated into the model, where the one-day lagged
boundary layer height contributed the most. The annual NO2 estimation showed little change from
2010 to 2016. The seasonal NO2 estimation from highest to lowest occurred in winter, autumn, spring,
and summer. In the annual maps and seasonal maps, the NO2 estimations in the northwest region
were lower than those in the southeast region, and there was a heavily polluted band in the south
of the Taihang Mountains. In coastal areas, the annual NO2 estimations were higher than the NO2

monitored values. The drawback of the model is underestimation at high values and overestimation
at low values. This study indicates that the ensemble learning model has excellent performance in the
simulation of NO2 with high spatial and temporal resolution. Furthermore, the research framework
in this study can be a generally applied for drawing implications for other regions, especially for
other cities in China.

Keywords: NO2 estimation; high spatiotemporal resolution; ensemble learning model; typical
polluted area

1. Introduction

As an important air pollutant closely related to human activities, nitrogen dioxide
(NO2) mainly derives from agricultural burning, traffic emissions, and industrial emis-
sions [1–3]. Environmental epidemiological studies have shown that long-term and short-
term NO2 exposure can lead to the exacerbation of respiratory and cardio-cerebrovascular
diseases, as well as lung function damage, resulting in increased mortality and hospital-
ization rates [4–7]. Population exposure levels are usually obtained directly from NO2
monitoring sites, but monitoring sites are sparse and unevenly distributed, and they cannot
effectively characterize NO2 concentration differences at fine scales. Meanwhile, the lack
of historical monitoring data will limit the study of long-term health effects. Therefore, it is
necessary to estimate long-term, full-coverage, and high-spatiotemporal-resolution NO2
concentrations to provide basic data for environmental epidemiological studies on NO2
exposure. The Beijing–Tianjin–Hebei region is the most serious NO2 pollution region in
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China, with high population density and high NO2 emissions [8]. Since the population has
been exposed to high NO2 levels for a long time, there is a growing need for accurate NO2
estimation in the Beijing–Tianjin–Hebei region.

Various statistical methods have been used to construct models to calculate exposure
to NO2 concentrations, evolving from linear regression models to nonlinear machine learn-
ing models. The essence of linear regression models is that the predictor variables and
the dependent variable are linearly related, including land-use regression models [9–12],
linear mixed-effects models [13], and geographically weighted regression models [14,15].
Land-use regression models focus on the spatial variation of pollutants, and they have
been applied at spatial scales from global to urban [16]. Land-use models usually have
high spatial resolution and low temporal resolution, mostly presented in terms of months,
seasons, and years. Linear mixed-effects models focus on the effects of influencing factors
on pollutant concentrations in time and tend to have a high temporal resolution of mostly
daily and low spatial resolution, mostly 10 km × 10 km. Geographically weighted regres-
sion models are similar to linear mixed-effects models. Both land use models and linear
mixed-effects models need to reach trade-offs in temporal and spatial resolution, whereby
it is difficult to achieve both. In high-spatiotemporal-resolution air pollutant simulation,
linear models cannot adequately express the relationship between the predicted variables
and the monitored values of pollutant. In recent years, machine learning models have
been applied and performed well. The estimation of air pollutants is already available
at a temporal resolution of days and spatial resolution of 1 km × 1 km [13,17]. Machine
learning models consider that there is a nonlinear relationship between predictor variables
and dependent variables, including random forest models [18–20], gradient boosting tree
models [17,21], and neural network models [17]. Compared with neural network models,
random forest models are simple in structure, require less computational resources, and
have stronger interpretation abilities. Random forest models provide the importance of
variables to select the model predictor variables. The random forest model is also less
prone to overfitting and less sensitive to outliers than the gradient boosting tree model.

Narrow land-use models only consider land-use types as predictor variables [22].
Broad land-use models also consider meteorological conditions, population density, el-
evation, road type and length, and coastal distance as predictor variables [23,24]. Some
land-use models use satellite data as an important predictor variable [25–27]. Since its
release in 2004, the tropospheric NO2 vertical column concentration inversion data pro-
vided by the Ozone Monitoring Instrument (OMI) have been widely used due to their high
spatiotemporal resolution (13 × 24 km, daily), which enhances the seasonal and monthly
performance of land-use models. Predictive variables of typical machine learning models
in daily high-spatial-resolution air pollutant simulation (fine particulate matter (PM2.5),
O3, NO2, SO2) studies usually include satellite data, meteorology, population density,
elevation, road type and length, and land-use type variables [18,28–34]. Currently, there
are still relatively few studies that built daily NO2 models for high spatial simulations of
0.01◦ × 0.01◦, and the maximum spatial resolution for daily NO2 estimations is 0.1◦ × 0.1◦

in the Beijing–Tianjin–Hebei region [18].
The lack of historical data becomes a bottleneck problem in the long-term NO2 simula-

tion studies. The NO2 monitoring network covering the whole country was only completed
in China at the end of 2012. Long-term NO2 exposure levels are usually estimated with
NO2 measurements over several years. In PM2.5 simulations, Chen et al. used monitoring
values between 2013 and 2016 to estimate the lacking historical data from 2010–2012 [34].
Building statistical models with NO2 monitoring data over several years is a general way
of bringing down annual variability and guaranteeing the accuracy of the estimation.

By constructing an ensemble learning model for 2010–2016 in the Beijing–Tianjin–
Hebei region, this study aimed to (1) estimate the daily NO2 concentrations with a high
spatial resolution of 0.01◦ × 0.01◦, (2) incorporate satellite data, meteorological hysteretic
effects, and the influence of human activities into model, (3) simulate the historical NO2
measurements from 2010 to 2012, and (4) describe the NO2 maps for 2010–2016. This study
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fills a gap by providing NO2 estimation at high spatial and temporal resolution in the
Beijing–Tianjin–Hebei region, and it provides the necessary data for an environmental
epidemiological study of the short-term and long-term health effects of NO2 exposure and
air quality management on coordinated inter-regional prevention and control.

2. Materials and Methods
2.1. Study Area

The study area (113.45◦–119.85◦ east (E), 36.03◦–42.62◦ north (N)) was the Beijing–
Tianjin–Hebei region in eastern China, located in the northern part of the North China
Plain, with the Yanshan Mountains to the north, the Taihang Mountains to the west, and
the Bohai Bay to the east. The topography is complex and diverse, with high altitudes
in the northwest and low altitudes in the southeast. The Beijing–Tianjin–Hebei region in-
cludes Beijing, Tianjin, and 11 prefecture-level cities in Hebei Province: Hengshui, Xingtai,
Handan, Qinhuangdao, Tangshan, Langfang, Baoding, Shijiazhuang, Cangzhou, Zhangji-
akou, and Chengde. (Figure 1) With a high population (1.13 × 108 people) and large area
(2.18 × 105 km2), the Beijing–Tianjin–Hebei study area has a developed transportation
network and advanced economy; therefore, the NO2 levels are more than anywhere else
across China. To eliminate the boundary effect, the study regional boundary was extended
by 0.5◦ with respect to the overall study region (112.95◦–120.35◦ E, 35.53◦–43.12◦ N). The
study period covered 1 January 2010–31 December 2016.
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2.2. Datasets
2.2.1. Ground-Based NO2 Measurements

The ground-based daily NO2 measurements were collected from the China Environ-
mental Monitoring Center (http://www.cnemc.cn/(accessed on 14 February 2021)) from
2010–2016. The study area contained a total of 156 state-controlled monitoring stations.
Chemiluminescence was applied to measure the ground NO2 concentration for the mon-
itoring sites. The mean values of the NO2 measurements for 2013–2016 at all sites are
shown in Figure 1. The annual means and the descriptive statistical analysis of the NO2
monitoring values between 2013 and 2016 at all sites are shown in Figure S2 and Table S1
(Supplementary Materials).

2.2.2. Satellite Data

The OMI (Ozone Monitoring Instrument) on board the Aura satellite is a trace gas
detector that can be used to accurately measure NO2. OMI provides daily global data
at a local time of around 1:40 p.m. (https://search.earthdata.nasa.gov/ (accessed on
14 February 2021)). In this study, OMI tropospheric NO2 vertical column concentration
level-3 global gridded data (OMI-NO2) from 1 January 2010 to 31 December 2016 were
used [35]. The level-3 products are gridded OMI level-2 data averaged over a normalized
grid (0.25◦ × 0.25◦), mainly after the quality screening criteria of topographic reflectivity
<30%, 0 ≤ solar zenith angle ≤ 85◦, and a few row anomalies. OMI-NO2 data have missing
values mainly due to the influence of clouds or high reflections from the ground. The overall
absence rate was 34.46%, with the highest rate in winter (39.44%) and the lowest rate in sum-
mer (29.86%). Decision tree models were built to fill the missing values of OMI-NO2 and
the performance of decision tree models is shown in Table S2 (Supplementary Materials).

2.2.3. Meteorological Data

The meteorological data for 2010–2016 were obtained from the ERA-interim (European
Centre for Medium-Range Weather Forecasts Re-Analysis-Interim) reanalysis data of the
mesoscale weather forecasts from the European Center (http://apps.ecmwf.int/datasets/
data/interim-full-daily/levtype=sfc/ (accessed on 14 February 2021)). The spatial and
temporal resolution of the daily near-surface meteorological data is 0.125◦ × 0.125◦ and
6/12 h. A total of 15 meteorological parameters are available, namely, atmospheric bound-
ary layer height, low cloud cover, surface pressure, 2 m temperature, medium cloud cover,
2 m dew-point temperature, 10 m u wind, 10 m v wind, high cloud cover, downward
surface solar radiation, surface evaporation, total precipitation, albedo, snowfall, and snow
depth. The meteorological hysteresis effects were incorporated into model construction,
whereas the 1 day and the 2 day lags of the meteorological data were also included in the
model as important predictor variables.

2.2.4. Elevation Data, Population Data, and Gross Domestic Product (GDP) Data

The elevation, national population, and GDP data were collected from the Envi-
ronmental Resource Science Data Center, the Chinese Academy of Sciences (RESDC)
(http://www.resdc.cn (accessed on 14 February 2021)), in 2010, with a spatial resolution
of 1 km × 1 km.

2.2.5. Land-Use Data

Land-use data were obtained from the European Space Agency’s Climate Change
Initiative website for 2010–2016 (http://maps.elie.ucl.ac.be/CCI/viewer/ (accessed on
14 February 2021)). The spatial resolution of annual land-use data is 300 m. Data were
gained from the 300 m Medium-Resolution Imaging Spectroradiometer (MERIS), reduced
resolution products (RR), and full resolution products (FR), as well as the French Center for
Space Research’s Earth Observation System, sensors AVHRR (Advanced Very High Reso-
lution Radiometer) and PROBA-V (Airborne Autonomous Vegetation Program) mounted
on NOAA’s (National Oceanic and Atmospheric Administration) meteorological satellites.

http://www.cnemc.cn/
https://search.earthdata.nasa.gov/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://www.resdc.cn
http://maps.elie.ucl.ac.be/CCI/viewer/
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The extracted land-use data can be divided into three types, namely, farmland coverage,
natural vegetation coverage, and urban coverage.

2.2.6. Road Network Data

All road network data were obtained from the Resource and Environmental Science
Data Center, the Chinese Academy of Sciences (RESDC) (http://www.resdc.cn (accessed
on 14 February 2021)), which utilized the latest navigation map information. The road
network consisted of national roads, provincial roads, county roads, township roads,
highways, railroads, other vehicular roads, and footpaths. This study used data on country
roads, county roads, provincial highways, national highways, railways, highways, and
road density as road variables.

The classification, spatial resolution, temporal resolution, study time, and source of
the dataset are shown in Table S3 (Supplementary Materials).

2.3. Data Processing

The whole study area extended by 0.5◦ was divided into a standardized grid with
a spatial resolution of 0.01◦ × 0.01◦, for a total of 560,180 grid cells. The datasets were
resampled to the standardized grids by using the bilinear interpolation method. When
calculating land-use coverage, a 0.03◦ × 0.03◦ grid was used as a buffer for the specified
grid to calculate the land-use coverage of a certain type, and the proportion of that type
of data was counted. The vector road data length was sliced through the standardized
grid, and the final data were extracted to the standardized grid. In light of the latitude
values and longitude values corresponding to each point, the data with ground-based
NO2 measurements were extracted as the dataset required for model establishment. Data
standardization was adopted in the data preprocessing to make data dimensionless that
could be expressed as follows:

X∗ = (X − µ)/σ (1)

where X*, X, µ, and σ are the standardized value, the raw value, the mean value, and the
standard deviation of the variables on the grid cell. ArcGIS and Python were used for data
preprocessing and graphical plotting.

2.4. Modeling

Random forest, as a representative algorithm of the bagging method in the ensemble
learning approach, is composed of several different and mutually independent decision
trees [36]. The principle of ensemble learning methods is to combine weak evaluators
into strong evaluators; therefore, ensemble learning methods perform better than a weak
evaluator. For example, random forest usually performs better than a single decision
tree. A decision tree is a forked structure where each internal node represents an attribute
judgment, each branch represents the output of a judgment result, and each leaf node
represents a classification result. Random forest generates a new set of training samples by
repeatedly sampling k samples at random from the original training sample set N in a put-
back manner through the self-service method resampling technique, and then generates k
regression trees as a function of the self-service sample set. The results of the prediction
data are determined by the average of different regression trees. The ground-level NO2
concentrations were simulated by building an ensemble learning model using the random
forest method with the following expressions:

NO2ij ∼ OMI − NO2ij + METij + METlag1ij + METlag2ij + POPj + GDPj + ELEj + RODj + LUj (2)

where NO2ij is the ground NO2 concentration on grid cell j and day i, OMI-NO2, MET,
POP, ELE, ROD, and LU are the OMI-NO2, meteorological variables, population, GDP,
elevation, road length and density, and the coverage rate of land-use types on grid cell j,
and MET_lag1 and MET_lag2 are the 1 day lag and 2 day lag of the meteorological variables.
The maximum depth (the depth of the tree) and n_estimators (the number of trees) were two
important parameters for model adjustment. During model adjustments, the model had

http://www.resdc.cn
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high prediction accuracy when the maximum depth and n_estimators were set to 50 and 200.
The error rate of the model was calculated by predicting the out-of-bag samples.

An ensemble learning model was developed to estimate NO2 concentrations in the
whole study area for 2010–2016, including the historical years of 2010–2012 without NO2
measurements. The scikit-learn package in Python was used to construct the model.

2.5. Validation

In this study, the tenfold cross-validation method and test set validation method were
used to evaluate the model’s performance. The entire dataset was randomly divided into
a training set and a test set with a ratio of 9:1. Tenfold cross-validation method involves
dividing the data in the training set into 10 randomly equal parts, of which nine parts are
used for the training of the model and the remaining part is used for the validation of the
model; this process is performed 10 times, and the final validation result of the model is
averaged over these 10 times. Test set validation is the validation of the model results
when the whole training set is used for the training of the model. The indicators of model
evaluation included the R2 value, mean absolute prediction error (MAE), and root-mean-
square prediction error (RMSE). The R2 value was applied to the tenfold cross-validation
(cv-R2) and the test validation (test-R2), whereas the MAE and RMSE were only included
in the test set evaluation (test-MAE and test-RMSE).

3. Results
3.1. Descriptive Analysis

A total of 59 predictor variables and 160,371 modeled data were available in the NO2
model construction. The mean value and standard deviation value of NO2 concentrations
at the monitoring stations were 46.80 µg/m3 and 26.91 µg/m3, respectively, which were
significantly higher than 40 µg/m3. The annual mean guideline of the World Health
Organization (WHO) and China’s GB 3095-2012 for NO2 is no more than 40 µg/m3 [37,38];
therefore, the study area was in a perennial pollution state between 2013 and 2016. The
mean value of urban coverage was 81.3%, which meant that most of the locations of
the currently collected monitoring data were concentrated in urban areas. The standard
deviation value and mean value of OMI-NO2 were 23.44 × 1015 molecules/cm2 and
8.30 × 1015 molecules/cm2. The descriptive statistical analysis of these predictor variables
is shown in Table S4 (Supplementary Materials). The variables such as GDP, population,
and elevation are visualized in Figure S1 (Supplementary Materials).

3.2. Importance Percentage of Predictor Variables

The importance percentages of all predictor variables for the NO2 model are shown in
Table S5 (Supplementary Materials). The summation of all variables was 1. The meteoro-
logical lag factor had a very high contribution to the importance of the variables, with the
top five being all meteorological variables with 1 day lag and 2 day lag. The 1 day lagged
atmospheric boundary layer height was the most important variable, contributing 29.9%.
Furthermore, GDP, elevation, OMI-NO2, and population density contributed 1.6%, 1.6%,
1.5%, and 1.3%, respectively. However, the contributions of the various types of road data
and land-use variables were less than 1%.

3.3. Temporal Performance

Figure 2 shows the daily-level simulation results of the estimations and measurements
of NO2, where cv-R2 and test-R2 were 0.72 and 0.71. The daily-level performance of the
model for the different years and seasons is shown in Figure 3, indicating the model’s
stability on these time scales. The model’s test-R2 was 0.77 and 0.76 in 2016 and 2015, which
is better than the 0.65 and 0.64 obtained in 2014 and 2013. The differences between years
may be related to the number of the daily measurements for different years. The number
of daily measurements showed an increasing trend year by year. As a result, the model
performed best in 2016 and worst in 2013.The model’s test-R2 was different in the four
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seasons. The model performed best in winter with a test-R2 of 0.71, followed by autumn
and spring with 0.67 and 0.65, and the worst performance was in summer with 0.53.
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3.4. Spatial Performance

The performance of the model in different provinces (Hebei), municipalities (Beijing
and Tianjin), and prefecture-level cities of Hebei is statistically shown in Table 1. According
to the evaluation index test-R2, the model had the highest performance in Beijing (0.82),
followed by Tianjin (0.77) and finally Hebei (0.72). According to the evaluation indices
test-RMSE and test-MAE, the model had the lowest performance in Beijing (11.65 µg/m3

and 8.45 µg/m3), followed by Tianjin (11.91 µg/m3 and 8.76 µg/m3) and finally Hebei
(15.14 µg/m3 and 10.33 µg/m3). Therefore, the overall performance of the model was best
in Beijing, followed by Tianjin and finally Hebei. In the validation results of 11 prefecture-
level cities, the model simulation results were the best in Xingtai, Hengshui, Shijiazhuang,
and Tangshan, with a test-R2 higher than 0.7. However, the model performed worst in
Handan, Cangzhou, and Qinhuangdao, with a test-R2 lower than 0.5. The model performed
better in Beijing and Tianjin than in Hebei because the distribution density of monitoring
stations in Beijing and Tianjin is much higher than that in Hebei. Due to the large number
of monitoring stations in Beijing, Tianjin, Tangshan, Baoding, Shijiazhuang, Hengshui, and
Xingtai, the model performed well in these places. Qinhuangdao and Cangzhou are far
from these cities; thus, the model performed poorly in these two cities.

Table 1. The model’s performance of the test set validation results in the whole region, different provinces (including
municipalities), and 11 prefecture-level cities of Hebei. RMSE, root-mean-square error; MAE, mean absolute error.

Province
Region Test-R2 Test-RMSE

(µg/m3)
Test-MAE

(µg/m3)
Prefecture-Level

City Test-R2 Test-RMSE
(µg/m3)

Test-MAE
(µg/m3)

Total 0.71 14.36 9.90
Beijing 0.82 11.65 8.45 – – – –
Tianjin 0.77 11.91 8.76 – – – –
Hebei 0.72 15.14 10.33 Baoding 0.70 17.31 11.44

Langfang 0.58 14.19 8.66
Shijiazhuang 0.74 16.55 11.63

Cangzhou 0.49 17.20 9.33

Hengshui 0.76 14.31 10.46
Xingtai 0.78 11.38 8.41
Handan 0.45 21.15 15.23

Zhangjiekou 0.60 11.78 7.35
Chengde 0.66 12.09 8.26

Qinhuangdao 0.49 15.66 11.53
Tangshan 0.73 13.79 10.23

3.5. Spatial and Temporal Distribution

The statistical analysis results based on model simulation are shown in Table S6
(Supplementary Materials). The daily NO2 estimation achieved the spatial resolution of
0.01◦ × 0.01◦. Between 2010 and 2016, the annual mean NO2 estimation ranged from
46.72 µg/m3 to 47.63 µg/m3 in the Beijing–Tianjin–Hebei region. Therefore, the annual
mean NO2 estimation from 2010 to 2016 did not vary much and was generally consistent
with the monitored values. Figure 4 shows that the NO2 estimations of the southeast part
of the study region were higher than those in the northwest part. There was a heavily
polluted band to the south of the Taihang Mountains, where annual NO2 estimations were
higher than 55µg/m3, including Beijing, Shijiazhuang, Xingtai, and Handan. High NO2
estimations also appeared in the coastal areas of Tianjin and Qinhuangdao. The annual
NO2 estimated maps show similarity in spatial distribution to the annual NO2 monitored
maps (Figure S2, Supplementary Materials).
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Figure 5 shows the seasonal distribution of NO2 estimations from 2010 to 2016. In
any season, the NO2 estimations in the northwest region were lower than those in the
southeast region, and there was a heavily polluted band to the south of the Taihang
Mountains, where NO2 estimations were higher than 55 µg/m3. There was a similar spatial
distribution between the seasonal NO2 estimations and the annual NO2 estimations. In the
southeast region, the heavily polluted bands from large to small occurred in winter, autumn,
spring, and summer. The winter mean NO2 estimations for 2010–2016 were 49.05 µg/m3,
47.68 µg/m3, 47.77 µg/m3, 49.34 µg/m3, 49.42 µg/m3, 48.90 µg/m3, and 50.19 µg/m3

(Table S6, Supplementary Materials). From 2013 to 2016, the NO2 measurements in the
southeastern region in winter were all higher than 60 µg/m3 (Table S7, Supplementary
Materials), with similar results obtained for the NO2 estimations. The seasonal simulated
values in autumn and winter in the northwestern region showed different results from
those in the southeast for 2013–2016, whereby the seasonal simulated values in autumn
were greater than those in winter. From the monitoring site, the seasonal simulated
values in autumn were greater than those in winter from 2013 to 2014, and this difference
lessened from 2014 to 2015; eventually, the seasonal simulated values in autumn were
lower than those in winter from 2015 to 2016. Along the coast, seasonal variation was also
different from that inland, showing high values in spring and summer and low values in
autumn and winter, which was inconsistent with the nearby monitored values (Figure S3,
Supplementary Materials).
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for winter in 2016 only include December. High values are represented by the red color and low values are represented by
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4. Discussion

An ensemble learning model was constructed and applied to estimate daily NO2
concentrations in the Beijing–Tianjin–Hebei region. This study achieved a spatial resolution
of 0.01◦ × 0.01◦ (~1 km × 1 km) in the study area. The ensemble learning model achieved
pretty good performance considering that cv-R2 and test-R2 were 0.72 and 0.71, respectively.
Meteorological lag variables made great contributions to the model. Taking NO2 ground
monitoring values from 2013 to 2016 as the dependent variable, a pervasive model was
constructed to simulate the historical NO2 measurements between 2010 and 2012.

4.1. Comparsion with other NO2 Models

This study achieved the highest spatial resolution of 0.01◦ × 0.01◦ (~1 km × 1 km)
in the Beijing–Tianjin–Hebei region, and the model performed better than those pre-
sented in the Zhan et al. study [18] and Qin et al. studies [14,19], with cv-R2 = 0.72
and RMSE = 14.35 µg/m3. Zhan et al. simulated daily NO2 concentrations across China
from 2013 to 2016 by building a random forest spatiotemporal kriging model with a spatial
resolution of 0.1◦ × 0.1◦ (~10 km × 10 km), with cv-R2 = 0.62 and RMSE = 13.3 µg/m3 [18].
Qin et al. simulated NO2 concentrations in the eastern region of China from March 2013
to April 2014 using a spatiotemporal geographically weighted regression (GTWR) model
with a spatial resolution of 0.1◦ × 0.1◦, with cv-R2 = 0.60 and RMSE = 9.38 µg/m3 [14].
Qin et al. simulated NO2 concentrations in the eastern region of China from December
2016 to November 2017 using a random forest (RF) model and an extreme random tree
(ET) model with a spatial resolution of 0.25◦ × 0.25◦, with cv-R2 = 0.69 and 0.70, and
RMSE = 9.47 and 9.42 µg/m3 [19]. The NO2 simulations at high spatial resolution showed
a greater range of variation and higher values of RMSE than those studied at low spatial
resolution. Similar to the study by Zhan et al. [18], this study was simulated for historical
missing data from 2010 to 2012, which is important for long-term health risk studies of NO2
exposure. Studies based on longer-scale monitoring data would accommodate more data
and build more generalized models than studies using only short-term monitoring data
to predict historical data. For example, in the PM2.5 estimations over the historical years,
Zhao et al. used the monitoring values for 2013–2016 to estimate the historical monitoring
values between 2010 and 2012 [34]. Ma et al. adopted the monitoring values of 2013 to
estimate the long-term historical monitoring values lacking for 2004–2012 [39]. The study
by Zhao et al. was better than the study by Ma et al. in the simulation of historical missing
values over several years.

Compared with other NO2 simulation studies at the spatial resolution of 0.01◦ × 0.01◦,
our model performed better than the linear mixed-effects model (R2 = 0.56–0.64) used
by de Hoogh et al. in their study across Switzerland [13], but worse than the random
forest model (cv-R2 = 0.79), gradient boosting tree (cv-R2 = 0.75), neural network model
(cv-R2 = 0.76), and their superposition (cv-R2 = 0.79) used by Di et al. in their study in the
United States [17]. Among the applications of machine learning models, ensemble learning
models were used more than other models, especially the random forest model. According
to the generation method of the base learner, ensemble learning can be divided into two
categories. One is the bagging method, which exploits the independence of the base
learners, of which the outstanding representative is the random forest, and the other is the
boosting method, which exploits the relevance of the base learners, of which an excellent
representative is xgboost [40]. In this study, these two models were compared, where the
xgboost model performed with cv-R2 = 0.70, test-R2 = 0.64, and RMSE = 16.13 µg/m3. The
xgboost model was much less computationally intensive compared to the random forest
model, but easily overfitted. Compared to neural network models, random forest models
were less computationally intensive, simple in structure, and easy to tune and use. The
ensemble learning models including random forest and xgboost provided the importance
share of all predictor variables.



Remote Sens. 2021, 13, 758 12 of 16

4.2. Predicator Variable Selection

There are three factors that affect NO2 concentration in the atmosphere: meteorology,
topography, and emissions. In terms of meteorology, 15 possibly related meteorological
variables were selected. Elevation was chosen as a representation of the terrain. Emission
sources were divided into anthropogenic sources and natural sources, including land-use
cover types, population, GDP, and road network. Land-use cover types have a significant
impact on NO2 emissions [41]. Li et al. found that land-use cover types were important
factors influencing the spatial pattern of NOx emissions in the Beijing–Tianjin–Hebei region
except for Beijing [42]. In addition to land cover, there are other influencing factors in
Beijing, such as industrial structure and pollution control level. As a result, GDP and
population were also selected [43–46]. The amount of traffic emissions was represented by
the type and density of the road network.

The data about the meteorological hysteresis effect were considered as important
variables of the model and improved the performance of the model by ~0.02 in terms
of cv-R2 and test-R2. Meteorological conditions affected the residual layer, which stored
some NO2 and released it later. Therefore, this study used meteorological lagged data to
represent the contribution of the residual layer. In the Zhao et al. study, meteorological lag
conditions were incorporated into the model construction to estimate PM2.5 [34].

We found that the topography was also important, which may be due to the complex
and variable topography in the Beijing–Tianjin–Hebei region. This model used variables to
characterize emissions from human and natural sources, such as population, GDP, land-use
types, and road types [43–46]. Among them, population and GDP had relatively important
contributions to the model, but land-use variables and road variables were not as important
as we might expect, mainly because the road data did not provide a good portrayal of the
daily variation in traffic flow.

The contribution of OMI-NO2 to the model was 0.015; however, in the Qin et al.
study [19] and Zhan et al. study [18], the OMI-NO2 contribution ranked first by much more
than other variables. In the Di et al. study [17], the contribution of OMI-NO2 was lower
than 0.001. Therefore, coarse OMI-NO2 (0.25◦ × 0.25◦) improved the model performance
under a spatial resolution of 0.01◦ × 0.01◦, but provided limited promotion. The emission
inventories associated with NO2 were included as predictor variables in the Qin et al.
and Zhan et al. studies [18,19], but their contributions to the model were not significant.
Furthermore, the original spatiotemporal resolution of the data was 0.25◦ × 0.25◦ and
monthly; thus, the emission inventories were not included in this study. This study did not
include year, season, region, latitude, and longitude as predictor variables in the model,
and all predictor variables except satellite data were considered as causes affecting pollu-
tants, which were beneficial to model interpretation. We did not exclude variables of low
importance, mainly because of the potential contribution of low-importance variables in
predicting long-term historical data. In addition, retaining all variables did not significantly
increase the difficulty and speed of model training.

4.3. Spatial and Temporal Distribution

The NO2 maps showed significant seasonal and regional differences. The NO2 esti-
mation was significantly higher in autumn and winter than in spring and summer. The
favorable meteorological conditions mainly resulted in low NO2 concentrations in sum-
mer. The prevailing southwest winds brought abundant rainfall in summer, which was
conducive to the wet deposition of NO2 pollutants. At the same time, high temperature
and prevailing winds significantly accelerated the chemical reaction of NO2 and increased
the diffusion of pollutants. However, the static and stable weather conditions in winter
weakened the atmospheric diffusion, and the low temperature led to fewer chemical re-
actions. In addition, the enhanced coal consumption and motor vehicle exhaust also led
to the serious NO2 pollution in winter. The area of the ultra-high NO2 pollution zone
(>55 µg/m3) also shrank from spring to summer, then expanded in autumn, and reached
its peak in winter.
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Regionally, the southeast region’s NO2 estimations were higher than the northwest
region’s NO2 estimations, and the difference was more obvious in winter. The reason is
that the southeast is plain with flat topography, dense population, and high transportation
emissions and industrial emissions, while the northwest is mountainous, with high to-
pography, low population, and an underdeveloped industrial and transportation network.
Combining the seasons and regions, in the northwest, the NO2 concentrations were slightly
higher in autumn than in winter, while those in the southeast were opposite, which may
be due to the different emission intensity of the pollution sources. Straw burning was an
important factor for the high NO2 concentrations in autumn. In the Zhang et al. study [46],
they used TEMIS (Tropospheric Emission Monitoring Internet Service) satellite retrieval
data to describe annual NO2 maps from 2010 to 2016, and two heavily polluted central
zones were mentioned: one was Shijiazhuang, Xingtai, and Handan; the other was Beijing,
Tianjin, and Tangshan. In our study, the two pollution zones were often connected in
winter; however, in the annual simulation results, Tianjin and Tangshan were not reflected.
From the NO2 measurements in the northwest, we found that differences in autumn and
winter were narrow for 2013–2016 and NO2 concentrations in winter were higher than
those in autumn in 2016, which might be due to the implementation of the prohibition of
straw burning, the development of the industry, and the increase in the number of cars.
Although we did not consider the variables related to inland and sea differences, such
as coastal distance, as impact factors of the model, the model showed some differences.
From the annual maps, the NO2 concentrations in the coastal areas, especially around
Qinhuangdao and Tangshan, showed high values, similar to the monitoring stations.

4.4. Advantages and Limitations

This study had several advantages. Firstly, all data for the research are publicly
available. All data are free to download except for NO2 monitoring site data. GDP,
population, elevation, and road network data covered the entire Chinese region, making it
convenient for research to be transferred to other Chinese cities. OMI-NO2 and land-use
cover data are globally available and easy to use for research in other regions and countries
outside of China. Secondly, the random forest machine learning method used in this study
has many advantages: (1) the principle is not complicated and easy to understand; (2) the
sklearn library provides the relevant packages for random forest; (3) the random forest
model only needs to adjust two important parameters, n_estimators and max_depth, to
achieve excellent performance; (4) the random forest model requires a small amount of
computation. Lastly, the ensemble model achieved two things: (1) a 0.01◦ × 0.01◦ grid
resolution; (2) estimation of the historical data for the years 2010–2013.

On the other hand, this study also had some limitations. Firstly, one of the inherent
drawbacks of the model is underestimation at high values and overestimation at low
values. These results are shown in Table S8 (Supplementary Materials). The problem of
overestimation in this study is more serious than that seen in PM2.5 studies. Compared
with PM2.5 studies [34], NO2 changes faster due to its short life, and the overall range of
change is not as large as for PM2.5. In addition, especially when NO2 is at a low level,
photochemical reactions have a great impact on NO2. NO2 simulations are more difficult
due to these reasons. Secondly, the simulation of the model in coastal areas was not accurate
due to the differences in meteorological conditions and emission sources between inland
and coastal areas. Thirdly, seasonally, the NO2 estimations in spring and summer were
higher than those in autumn and winter, in contrast the monitored values, which may
be related to the differences in meteorological conditions and emission sources between
inland and coastal areas.

The model performed best in the winter and Beijing. However, the model performed
worst in the summer and Hebei. The model performed well in Beijing, Tianjin, Tangshan,
Baoding, Shijiazhuang, Hengshui, and Xingtai. However, the model performed poorly in
Qinhuangdao and Cangzhou. These differences were due to the difference in the number
of training samples in different areas. The monitoring sites are sparse and unevenly



Remote Sens. 2021, 13, 758 14 of 16

distributed, thus influencing the model’s performance in different areas. The model
performed worst in summer because the number of training samples with low NO2
monitoring values was lower.

5. Conclusions

In the study, OMI-NO2 data, meteorological data, elevation data, national popu-
lation, GDP data, land-use variables, and road network data were used to establish a
well-performing ensemble learning model in the Beijing–Tianjin–Hebei region between
2010 and 2016. The ensemble learning model was then applied to estimate daily NO2 con-
centrations with the spatial resolution of 0.01◦ × 0.01◦. The long-term NO2 concentrations
with high spatial and temporal resolution provide fundamental data for environmental
epidemiological studies. In the future, it is necessary to expand the study area from regional
to national for NO2 simulation studies. At the same time, it is important to include more
predictive variables related to NO2 and adopt predictive variables with higher spatial
and temporal resolution, such as meteorological data and satellite data. Since July 2018,
the Copernicus Sentinel-5P product onboard the Tropospheric Monitoring Instrument
(TROPOMI) has been available with a spatial resolution of 3.5 km × 7 km, thus improving
satellite data. ERA-5 provides hourly meteorological reanalysis data with a spatial resolu-
tion of 0.1◦ × 0.1◦. Anthropogenic activities and meteorological conditions in coastal areas
are not consistent with those in inland areas, which require further study. With the rise
of distributed computing, ensemble learning methods will be further applied at a larger
spatial scale with high spatial and temporal resolution.
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2/13/4/758/s1: Figure S1. The distribution of some parameter data in the Beijing–Tianjin–Hebei
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2013–2016; Figure S3. Study region seasonal mean concentrations of ground-level measured NO2
(µg/m3) for 2013 to 2016; Table S1. The descriptive statistical analysis of ground NO2 monitoring
stations in the study area; Table S2. Average annual performance and the performance of the model
from 2010 to 2016; Table S3. Model variable classification, spatial resolution, temporal resolution,
time frame, and source; Table S4. Descriptive statistics of modeling data for all independent variables
for 2013–2016 (N = 160,371); Table S5. The feature importance determined by the model for the
features in the study area; Table S6. Descriptive statistics of daily NO2 concentration estimations
in the Beijing–Tianjin–Hebei region in 2010–2016; Table S7. Descriptive statistical analysis of the
seasonal mean and standard deviation of the spatial NO2 measurements and NO2 estimations in the
southeastern (Beijing, Tangshan, Baoding, Langfang, Tianjin, Cangzhou, Shijiazhuang, Hengshui,
Xingtai, Handan, and Qinhuangdao) and northwestern (Zhangjiakou and Chengde) parts of Beijing,
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