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Abstract: Using modelling approaches to predict stream flow from ungauged basins requires new
model calibration strategies and evaluation methods that are different from the existing ones. Soil
moisture information plays an important role in hydrological applications in basins. Increased avail-
ability of remote sensing data presents a significant opportunity to obtain the predictive performance
of hydrological models (especially in ungauged basins), but there is still a limit to applying remote
sensing soil moisture data directly to models. The Soil Moisture Active Passive (SMAP) satellite
mission provides global soil moisture data estimated by assimilating remotely sensed brightness
temperature to a land surface model. This study investigates the potential of a hydrological model
calibrated using only global root zone soil moisture based on satellite observation when attempting
to predict stream flow in ungauged basins. This approach’s advantage is that it is particularly
useful for stream flow prediction in ungauged basins since it does not require observed stream flow
data to calibrate a model. The modelling experiments were carried out on upstream watersheds of
two dams in South Korea with high-quality stream flow data. The resulting model outputs when
calibrated using soil moisture data without observed stream flow data are particularly impressive
when simulating monthly stream flows upstream of the dams, and daily stream flows also showed a
satisfactory level of predictive performance. In particular, the model calibrated using soil moisture
data for dry years showed better predictive performance than for wet years. The performance of the
model calibrated using soil moisture data was significantly improved under low flow conditions
compared to the traditional regionalization approach. Additionally, the overall stream flow was also
predicted better. In addition, the uncertainty of the model calibrated using soil moisture was not
much different from that of the model calibrated using observed stream flow data, and showed more
robust outputs when compared to the traditional regionalization approach. These results prove that
the application of the global soil moisture product for predicting stream flows in ungauged basins
is promising.

Keywords: hydrological model calibration; soil moisture active passive satellite mission; soil mois-
ture; uncertainty; ungauged basins

1. Introduction

Prediction of stream flows is an essential part of surface hydrology and is often
carried out, but is undoubtedly quite difficult. This task is of particular importance in
upstream watersheds. Accurate stream flow prediction is essential to manage water and
design related infrastructures for human life, agriculture, industry, and the environment as
well as ecosystems. Hydrologists around the world have made considerable efforts into
developing approaches to predict stream flows in watersheds accurately.

Hydrological modeling approaches have been widely used to estimate stream flow
series in watersheds [1]. It is necessary to accurately estimate the parameters of a hydro-
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logical model using observed hydrological data to improve the predictive performance
of the model for stream flows [2–5]. Generally, hydrological models have been calibrated
using observed stream flow data [2,6–12]. Although stream flow data are almost the only
observation traditionally used to calibrate hydrological models, numerous studies have
shown that this approach has limitations when the models are verified at internal points in
a watershed, not at an observation point [13–18]. This is because stream flows represent an
integrated watershed response, providing only limited insight into the overall behavior of
the watershed [19–24]. Wi et al. [25] and Motavita et al. [26] also noted that special care
should be taken in using a calibration approach that uses only stream flow observed at the
outlet of the watershed for stream flow predictions under future climate conditions.

Moreover, many of the world’s watersheds remain ungauged, making it difficult to
obtain sufficient stream flow data for calibration [27]. The observational data’s limited
availability and poor quality degrade the reliability of simulated outputs from hydrological
models [28,29]. Therefore, developing new schemes to improve the predictive performance
of hydrological models in ungauged basins is a challenge facing the hydrology community
preparing for routine hydrological cycle monitoring [30,31]. Stream flow prediction in an
ungauged basin has no choice but to use the hydrological modeling approach and it has
also been used widely in practice. However, due to the lack of observational information,
the calibration for an ungauged basin generally uses information from a basin that is closest
to or has the most similar physical and climate characteristics [32]. This approach has
been successfully applied to predicting stream flows in data-rich regions [33], but it is
hard to predict reliable stream flows in data-sparse regions, where there are few stream
flow observations.

Remote sensing data are effectively strengthening existing observations. Since remote
sensing data have a surpassing advantage of being available in regions where observational
data are scarce [34], the recent increase in the availability of remote sensing data provides a
significant opportunity to improve the predictive performance of hydrological models in
ungauged basins [35,36]. Over the last few decades, advances in satellites’ remote sensing
technology have enabled the use of hydrological data such as precipitation [37,38], soil
moisture [39,40], terrestrial water storage [41], evapotranspiration [42,43], etc. Attempts to ap-
ply various satellite data to hydrological models have been found in many studies [44–52]. In
hydrologic modelling, remote sensing data have generally been used in three ways: (1) forc-
ing data for hydrologic models [53–58], (2) prior information on specific parameters [21,59],
and (3) data for model calibration or data assimilation [45,60–68].

Soil moisture is one of the critical state variables in understanding hydrological pro-
cesses in a watershed [69,70]. Most hydrologic models include soil moisture storage
equations for dividing input precipitation into surface runoff and wetting (i.e., soil mois-
ture) and re-dividing the wetting into actual evapotranspiration and percolation [60,71].
Soil moisture is used as a watershed wetting index, an essential initial condition when
hydrological models are driven [72,73]. However, there are some limits to using remotely
sensed soil moisture data immediately. The observation of soil moisture through satellites
is highly sensitive to effects of land cover, vegetation, and topography, and in some parts of
North America, Europe, and East Asia, the radio frequency interferences also appear [39].
Noise caused by various external influences amplifies errors in remote sensing soil moisture
data, so many studies have been conducted to correct satellite data [74–76]. These studies
have confirmed that satellite soil moisture data can be improved through field observations.
However, the availability of soil moisture monitoring sites on the ground is extremely
limited (especially in ungauged basins).

Nevertheless, remote sensing techniques have received much attention from the hy-
drological community since they provide an opportunity to obtain spatially distributed soil
moisture information close to a surface [77]. As recent, remotely sensed observations have
been extensively integrated into land surface models to improve the simulation perfor-
mance of soil moisture in surface or rootzone, the hydrological community is also actively
introducing soil moisture information to predict stream flow [36]. One unique feature of
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the soil moisture product provided by the National Aeronautics and Space Administra-
tion’s (NASA) Soil Moisture Active Passive (SMAP) satellite mission is that the observed
brightness temperatures are assimilated into a land surface model to provide improved soil
moisture product (L4_SM). The L4_SM simulated with a land surface model incorporating
SMAP brightness temperatures and information such as land cover, vegetation, topography
could provide reduced noise over pure satellite observations. The L4_SM product has
already been successfully evaluated for a number of field soil moisture observations [78].
These advantages increase the applicability of satellite data in ungauged basins, which are
difficult to calibrate and validate due to the lack of field observation data.

Stream flow prediction studies using soil moisture have put more effort into im-
proving the forecasting performance of river flow by using data assimilation using soil
moisture [79–83]. However, relatively few studies utilize remotely sensed soil moisture
data for model calibration [29,84–90]. In particular, there are not many studies that have
performed calibrations of hydrological models using only soil moisture data to predict
stream flow in ungauged basins. According to our literature investigation, there were case
studies that used satellite-sensed surface temperature data [91], NDVI data [92], water level
data [93], and actual evapotranspiration data [32] to calibrate a model for ungauged basins.
A number of studies have investigated the degree of improvement in the performance
of stream flow prediction by calibrating hydrological models using soil moisture with
observed stream flow data [88,94,95] or with other types of remotely sensed data [87,89,90].
It should be noted that the studies mentioned above all shared the same conclusion that
including remote sensing data in model calibration and validation improves the overall
performance of the model. In other words, soil moisture data based on satellite observa-
tions is highly likely to advance the stream flow predictive performance of hydrological
models [96,97].

In summary, a global soil moisture product based on remotely sensed data can provide
spatially distributed soil moisture information. However, using only soil moisture data for
model calibration in specific internal locations of a basin, or in ungauged basins has not been
fully investigated. This is the main question examined in this study. Our assumption is that
the accuracy of hydrological models for simulating soil moisture is the key to simulating
stream flow and actual evapotranspiration within the hydrological cycle. Therefore, we
start from a hypothesis that it is possible to satisfactorily simulate stream flows via model
calibration against soil moisture. To this end, this study attempts to use the SMAP L4_SM
data to calibrate a hydrological model, and then simulates the stream flow time series
using the optimized parameters. We investigate how reliably daily and monthly stream
flow series can be simulated by calibrating a hydrological model using soil moisture data
solely. To test a new benefit of using the global root zone soil moisture (GRZSM) data
to simulate stream flow in ungauged basins, various calibration schemes using remotely
sensed soil moisture and empirically obtained data are applied to a lumped parsimonious
hydrological partitioning model and compared with the traditional calibration scheme
using only stream flow and regionalization scheme.

2. Model
2.1. Lumped Parsimonious Hydrological Partitioning Model

In this study, a lumped hydrological model based on soil moisture simulations pro-
posed by Lee et al. [31] and Choi et al. [98], the Lumped Parsimonious Hydrological Parti-
tioning Model (L-PHPM), was used. The L-PHPM focuses on vertical, one-dimensional
soil moisture balance processes in which precipitation falling on a surface of a natural wa-
tershed is divided into forms of wetting, surface flow, evapotranspiration, and percolation
through hydrological processes. Borrowing the concept of the Tank model proposed by
Sugawara [99], a watershed consists of the surface layer, soil layer, and aquifer layer (see
Figure S1 in Supplementary Material). Watershed characteristics for model driving are
spatially averaged Curve Number (CN), impermeable area ratio, and saturated hydraulic
conductivity. All of these characteristics can be estimated from soil maps and land cover
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maps. Various hydrologic elements such as daily stream flow, actual evapotranspiration,
and soil moisture are simulated using spatially averaged daily precipitation and reference
evapotranspiration data.

The surface layer is divided into impervious and pervious areas, based on the surface
layer composition of the Environmental Protection Agency’s Storm Water Management
Model (EPA-SWMM). Surface storage depths that should be filled before surface flows
occur are applied to each area. In the surface layer of the impervious area, the evapotranspi-
ration process (Vi in Figure S1) is carried out to satisfy the reference crop evapotranspiration,
Eo, and the surface flow (Qi in Figure S1) occurs when the precipitation exceeding the
surface storage depth, ds,i, enters. In the surface layer of the pervious area, the evapo-
transpiration process is carried out (Vp in Figure S1), and the precipitation exceeding the
surface storage depth, ds,p, is sent into the soil layer (Pg in Figure S1).

Similar to the EPA-SWMM, a process in which precipitation exceeding the surface
storage depth is divided into surface flow and wetting in the soil layer is implemented
as follows:

Qp,t =
P2

g,t

Pg,t + (1− st)× Smax
(1)

Wt = Pg,t −Qp,t (2)

where s is the normalized soil moisture with a value from 0 to 1, and Smax is the maximum
effective soil depth (mm). If a concept of the Natural Resources Conservation Service runoff
curve number (NRCS-CN) method [100] is applied, Smax can be estimated from CN where
the Antecedent soil Moisture Condition (AMC) is the driest (i.e., AMC-I).

The evapotranspiration in the soil layer, Vs, is implemented as follows:

Vs,t = Vmax,t for s∗ < st ≤ 1 = Vmax,t
st

s∗
for 0 ≤ st ≤ s∗ (3)

where Vmax is Eo minus Vp. The s∗ is a parameter that controls the evapotranspiration.
The percolation from the soil layer to the aquifer layer is calculated as follows:

Kt = Ks(st)
β (4)

where Ks is the saturated hydraulic conductivity (mm/day), and β is a parameter that
controls the percolation.

Similar to the subsurface flow process of the SWAT model, the ground water table, h
(mm), and subsurface flow, G (mm/day), in the aquifer layer are simulated as follows [101,102]:

ht =
2− αg

2 + αg
× ht−1 +

Kt + Kt−1

800µ
(
2 + αg

) (5)

Gt = 800µαght (6)

where αg is a parameter that controls the subsurface flow. The µ is the specific yield of the
aquifer (m/m) and is assumed to be 0.003, the default value presented in SWAT [103,104].
The stream flow generated at a watershed consists of Qi from the impervious area, Qp from
the pervious area, and G.

The L-PHPM requires calibration for seven parameters (ds,i, ds,p, CN, Ks, s∗, β, and
αg) (see Table 1). Here, CN and Ks are calibrated by applying correction factors ( fCN

and fKs) based on spatially averaged values (CNg and Kg
s ) extracted from the geographic

information system (GIS) data as follows:

CN = CNg + fCN(100− CNg) (7)

Ks = fKs × Kg
s (8)
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Table 1. Calibration parameters in hydrological model.

Layer Parameter Description

Surface layer ds,p Depth of depression storage on pervious area (mm)
ds,i Depth of depression storage on impervious area (mm)

Soil layer
fCN Correction factor of curve number, CN (dimensionless)
s∗ Optimum point of soil moisture (dimensionless)
β Shape exponent of percolation (dimensionless)

fKs Correction factor of saturated hydraulic conductivity, Ks (dimensionless)

Aquifer layer αg Subsurface flow recession constant (days)

2.2. Study Watersheds

To compare outputs of the model calibrated by various calibration schemes including
the exclusive use of the GRZSM, two watersheds with available observed stream flow
data were assumed to be ungauged basins. As shown in Figure 1, the Hapcheon Dam
(hereafter, HCD) watershed and Namgang Dam (hereafter, NGD) watershed, which belong
to the Nakdong River watershed located in the southeastern part of the Korean Peninsula,
have multi-purpose dams located at the ends of the basin. The daily dam inflow time
series observed in each dam was regarded as the stream flow data observed in each
watershed. In addition, various meteorological data, including precipitation, were collected
from meteorological observation sites (circles in Figure 1). The spatially averaged daily
meteorological input data (precipitation and Eo) were then obtained using the Thiessen
method from the collected meteorological data. Eo was estimated using the Penman–
Monteith method. Table 2 shows the basic hydrological characteristics in the HCD and
NGD watersheds.
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Figure 1. Study watershed and location of meteorological observation sites. The red circular symbols
and black trapezoid symbol indicate the location of meteorological observation sites and dam for
each watershed, respectively.
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Table 2. Information of study watersheds.

Watershed Area
(km2)

Annual
Precipitation

(mm)

Annual
Inflow
(mm)

Curve Number, CN
(Dimensionless)

Hydraulic
Conductivity,
Ks mm/day

Impervious Area Ratio,
Ri Dimensionless

HCD 925.0 1244.8 615.7 59.45 191.81 0.0628
NGD 2285.0 1490.9 944.9 65.18 156.43 0.0582

The spatially averaged CN, saturated hydraulic conductivity (Ks), and impervious
surface ratio (Ri) of each watershed were obtained from GIS information (see Table 2). The
average values of CN were extracted from the soil and land-use maps provided by the Korea
Rural Development Administration [105] and the Korea Ministry of Environment [106],
respectively. The average Ks value of each watershed suitable for the NRCS hydrological
soil group was estimated from the soil map, and the average Ri value of each watershed
was calculated using the land-use-specific impervious surface ratio presented by NIER [107]
and U.S.EPA [108] based on the land-use map (Tables S1 and S2 in Supplementary material).

3. Calibration Data Sets
3.1. Daily Normalized Soil Moisture Time Series

NASA launched the SMAP satellite in 2015 and has since provided soil moisture
products. Among the satellite’s products, the SMAP Level 4 Global 3-hour 9-km EASE-Grid
Surface and Root zone Soil Moisture product (L4_SM) [109] contains global soil moisture
data simulated by assimilating SMAP L-band brightness temperature observations in the
NASA Catchment land surface model. One of the advantages of the L4_SM product is
the fact that it provides normalized soil moisture of not only the surface layer (to 50 mm)
but also in the root zone layer (to 1000 mm). Since the L-PHPM simulates soil moisture
changes in the soil layer below the surface layer, the root zone data (i.e., the GRZSM data),
which provides a relatively deep range of soil moisture, was used. However, since the
maximum effective soil depth, Smax, calculated from CN is used as the soil layer’s depth of
the L-PHPM, there is a physical difference in the depths of the soil layer of the model and
the root zone layer of the L4_SM product. Thus, it should be noted that the analysis results
include errors due to these physical differences.

In addition to the errors arising from the difference in the depth of the soil layers, there
are inherent errors in the data, so a bias-correction is required in advance to use the GRZSM
data to calibrate a hydrological model. The bias-correction of the GRZSM data is ideally
performed using soil moisture data observed on the ground, but soil moisture observed at
a particular site cannot be considered to represent the spatially averaged characteristics of
a basin, and the number of observation sites has also been limited.

Furthermore, since this study assumes that the study watersheds are ungauged, the
bias of the GRZSM data was corrected based on the ideas of regionalization approach,
commonly used to predict stream flow in an ungauged basin, that uses information from a
gauged watershed (i.e., donor watershed). In general, the donor watershed is selected from
among the watersheds that are closest to or have the most similar physical and climate
characteristics [32]. This is why the geographically adjacent HCD and NGD watersheds,
were chosen as the study watersheds in this study. Therefore, when performing the bias
correction of GRZSM data for the HCD watershed, the NGD watershed is assumed to be
the donor watershed, and the bias correction for the GRZSM for the NGD watershed is
the opposite.

That is, to correct the bias of the spatially averaged GRZSM time series (SMHC
G ) for

the HCD watershed (assumed as the ungauged basin), the parameters of the L-PHPM in
the NGD watershed were first calibrated using stream flow data observed at the outlet of
NGD watershed (selected as the nearby donor watershed). The parameters were fitted for
the observed stream flow data by the Markov Chain Monte Carlo (MCMC) method using
the Metropolis–Hastings algorithm. The relationship between soil moisture time series
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simulated using the optimized parameters (SMNG
M ) and the spatially averaged GRZSM

time series in the NGD watershed (SMNG
G ) could be expressed stochastically using the

quantile-mapping technique. The probabilistic relationship between the two data can be
applied for the bias-correction of the SMHC

G as follows:

SM∗HC
G = F−1

M

[
FG

(
SMHC

G

)]
(9)

where FG is the cumulative probability distribution of SMNG
G , and F−1

M is the inverse
cumulative probability distribution of SMNG

M . The SM∗HC
G is the bias-corrected GRZSM

data of the HCD watershed.
Conversely, the GRZSM time series for the NGD watershed (i.e., SMNG

G ) can be bias-
corrected using the GRZSM time series simulated in the HCD watershed in the same way.
Figure S2a shows the raw GRZSM data for the HCD and NGD watersheds and the soil
moisture data simulated from the hydrological model calibrated using observed stream
flow data in the NGD watershed. Since there are clear scale differences between the GRZSM
data extracted from SMAP L4_SM and soil moisture data simulated by the model, it is not
appropriate to use the raw GRZSM data directly for calibration of hydrological models
without bias correction. Figure S2b shows the cumulative probability distributions of the
raw GRZSM data and the GRZSM data bias-corrected by quantile-mapping. It can be
recognized that a series of bias-correction processes are essential for the GRZSM data to be
used to calibrate a hydrological model.

3.2. Monthly Surface Flow Time Series

In the case of a watershed where topographic information can be obtained, the NRCS-
CN method can directly estimate surface flow depths (to be exact, excess rainfall depth)
from precipitation data using the following formula:

Q =
(P− Ia)

2

P + S− Ia
, P ≥ Ia (10)

where Q is the surface flow depth (mm), and S is the potential maximum retention (mm),
estimated by CN, which is calculated from soil and land-use maps. The Ia is the initial
abstraction (mm) and is generally considered 0.2 S. Since the surface flow varies depending
on AMC even if the same precipitation occurs, the NRCS-CN method allows CN to change
based on the 5-day antecedent precipitation (see Table S3 in Supplementary Material).

In this study, all precipitation events were extracted from observed daily precipitation
time series (here, if dry days continue for more than 1-day, it is considered a separate
precipitation event). Then, the surface flow depth was calculated for each precipitation
event by applying the 5-day antecedent precipitation divided into the growing season
(June to September) and the dormant season. The monthly surface flow time series was
accumulated from the surface flow depth calculated based on the event. Figure S3 in
Supplementary Material shows the monthly stream flows observed in the HCD and NGD
watersheds and the monthly surface flow estimated by the NRCS-CN method. Although
the estimated surface flows cannot be accurately evaluated since there is no observed
surface flow data, the correlations between the observed stream flows and the estimated
surface flows are relatively high. Additionally, when the stream flow is high (i.e., wet
season), the surface flow is also estimated to be high, and when the stream flow is low
(i.e., dry season), the surface flow is estimated to be close to zero. Hence, the surface flows
using the NRCS-CN method were applied to this study as the simplest available calibration
data in ungauged basins, even though at the monthly scale.

3.3. Monthly Actual Evapotranspiration Time Series

Szilagyi et al. [110] developed the Generalized Complementary Relationship (GCR)
by generalizing the complementary relationship between the potential and actual evapo-
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transpiration proposed by Bouchet [111]. If a watershed has meteorological data, such as
daily maximum temperature, minimum temperature, relative humidity, wind speed, and
solar radiation, for calculation of Eo by the Penman–Monteith method available, the daily
actual evapotranspiration can be estimated using GCR [112].

The most important parameter in estimating actual evapotranspiration (hereafter
AET) by the GCR is the Priestley–Taylor (PT) coefficient [113]. Many studies have applied
the GCR after calibrating the PT coefficient to be better in accordance with the observed
AET [114]. Therefore, in this study, the PT coefficient in a gauged watershed (e.g., NGD
watershed) has been calibrated to match estimated annual mean AET and observed annual
mean AET (i.e., observed annual mean precipitation minus the observed mean streamflow)
as well as possible. After that, the PT coefficients estimated in the gauged basin were
applied to estimate the AET in the ungauged basin (e.g., HCD watershed). For reference,
the PT coefficients in the HCD and NGD watersheds were calibrated at 1.1493 and 1.1169,
respectively.

Although the GCR has generally been used to investigate the hydrological cycle at the
annual scale, it has recently been reported to be applicable at the monthly scale [115]. In
this study, the monthly AET time series was estimated by summing up the daily AET time
series. Figure S4 shows the monthly AET calculated from the precipitation and stream flow
data and those estimated using the GCR for the HCD and NGD watersheds. The seasonal
patterns and annual totals of both the series are similar, but the quantitative differences
between both the series widen greatly in some months. These differences are due to the
carry-over effect of the AET estimates calculated from precipitation and streamflow. In
other words, it is not appropriate to consider the amount of precipitation minus streamflow
as AET since soil moisture in the antecedent time affects the streamflow in the subsequent
time. However, this comparison was performed for the purpose of visually confirming
the appropriateness of the actual evapotranspiration estimated by GCR on the monthly
scale. The monthly AET estimated by the GCR was applied to this study as the simplest
calibration data available in an ungauged watershed from which the meteorological data
can be obtained.

4. Methods
4.1. Calibration andVvalidation Strategy

In this study, we used three datasets in calibration schemes: (1) the daily GRZSM soil
moisture time series based on satellite observation (S in Table 3), (2) the monthly surface
flow time series estimated using the NRCS-CN method based on only topographical
information (Q in Table 3), and (3) the monthly actual evapotranspiration time series
estimated using the GCR based on only meteorological data (E in Table 3). The hydrological
model’s parameters were estimated by organizing the calibration schemes based on the
three types of calibration data, as shown in Table 3. Additionally, scheme F, the best
calibration scheme, uses the observed daily stream flow time series (F in Table 3). Finally,
comparisons with the general regionalization approach (R in Table 3) are also required,
as observed stream flow information of a nearby gauged watershed is used to correct for
bias in soil moisture data. The scheme R is a regionalization approach traditionally used in
an ungauged basin, and uses a parameter set estimated in a donor watershed to predict
stream flow. At this time, the parameter set obtained using Scheme F in the HCD (or NGD)
watershed, a donor watershed, is applied to the NGD (or HCD) watershed that is set as an
ungauged watershed. The outputs of Schemes R and F were used to evaluate those of the
other schemes.

Considering that the available period of the SMAP L4_SM data is from 2016 to 2019,
the period of data for calibration and validation was classified as period A (1 January 2016
to 31 December 2017) and period B (1 January 2018 to 31 December 2019). That is, we
investigated the outputs calibrated for period A and validated for period B, and those
calibrated for period B and validated for period A. The years 2015 and 2017 were used
as warm-up periods for each period when driving the model. Scenarios calibrated using
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period A data for HCD and NGD watersheds were named HCDA and NGDA, respectively,
and scenarios using period B data were also named HCDB and NGDB, respectively.

Table 3. Description of calibration schemes.

Scheme Description

Scheme E Calibration using monthly actual evapotranspiration time series estimated
using the GCR

Scheme Q Calibration using monthly surface flow time series estimated using the
NRCS-CN method

Scheme S Calibration using daily GRZSM time series based on satellite observation

Scheme R Regionalization approach based on a parameter set estimated by scheme F
in a donor watershed

Scheme F Calibration daily stream flow time series observed at outlet of watershed

In summary, a total of five calibration schemes are applied for each watershed. For
each calibration scheme, calibration and validation are performed by crossing over the two
periods. Figure 2 shows the flow chart of this study.
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4.2. Performance and Uncertainty Metrics

Nash-Sutcliffe model efficiency coefficient (NSE) and Kling–Gupta efficiency (KGE)
were used to analyze the accuracy of simulated stream flow [116,117]. The closer both NSE
and KGE are to 1, the more accurate the model is. NSE and KGE are calculated as follows,
respectively:

NSE = 1− ∑N
i=1
(

Fs
i − Fo

i
)2

∑N
i=1
(

Fi
i − Fo

)2 (11)

KGE = 1−
√
(γ′ − 1)2 + (α′ − 1)2 + (β′ − 1)2 (12)

where n is the total number of daily streamflow data, Fs
i represents the simulated stream

flow (mm), Fo
i represents the observed stream flow (mm), and Fo is the average of the

observed stream flow (mm). The r′ is the linear correlation coefficient between observed
and simulated data, α′ is the ratio of the standard deviation of observed and simulated
data, and β′ represents the ratio of the averages of observed and simulated data. The NSE
threshold, which indicated satisfactory model performance, is between 0.5 and 0.65 [118].
According to [119], KGE of 0.6 or higher can be considered satisfactory simulation results.
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Uncertainty was analyzed from two points of view. The first is the uncertainty of
estimated parameters. The uncertainty of parameters was quantified as the standard
deviations of each parameter’s ensemble, which is sampled by MCMC. The second is the
uncertainty of simulated stream flows. The uncertainty of simulated stream flow can be
numerically assessed with the mean coefficient of variation (MCV) and r-factor. To reflect the
degree of separation of stream flow ensembles simulated by MCMC, MCV is calculated as:

MCV =
1
n

n

∑
i=1

(
σe,i

F̂i

)
(13)

where, σe, i is the standard deviation of the ensembles corresponding to the i-th observa-
tions, and F̂i is the model estimate (i.e., the ensemble average) corresponding to the i-th
observations. The r-factor is the average width of the 95 percent prediction uncertainty
(PPU) band of ensembles divided by the standard deviation of observation, and its value
varies from 0 to 1 [120,121].

5. Results
5.1. Estimated Parameters

The four calibration schemes, excluding the regionalization approach (scheme R), were
applied in each scenario using the MCMC method. From this, we can acquire posterior
distributions of the model parameters. Figure 3 shows the prior distributions (blue bars)
and the posterior distributions (orange bars) of seven model parameters for calibration
scenario HCDA using period A’s data for the HCD watershed. The scheme R was excluded
from Figure 3 since it applies the posterior distributions of parameters sampled from the
nearby gauged watershed. The ensemble averages of parameters sampled from posterior
distributions were considered as optimized parameters, and stream flows for calibration
and validation period were calculated using these parameters. In addition, the standard
deviations of parameter ensembles were calculated from the posterior distribution of each
parameter to quantify the uncertainty of parameters.

5.2. Goodness of Fit and Uncertainty

Figures 4 and 5 summarize the performance and uncertainty of five calibration
schemes in simulating daily and monthly stream flow for the four scenarios. The monthly
stream flow simulated by each scheme is calculated from the simulated daily stream flow.
The annual stream flow has not been analyzed because of the relatively short data records.

5.2.1. Calibration Schemes E, Q, and S

At the daily scale, the scheme Q produced a value that exceeded the threshold of either
NSE of KGE in some applications (in this study, the considered thresholds of NSE and KGE
are 0.5 and 0.6 respectively), but most applications revealed lower model performance. In
contrast, except for some applications, schemes E and S mostly showed higher performance
(see Figure 4). At the daily scale, the mean NSE of schemes E and S for the calibration
period were 0.5272 and 0.5342, respectively, and the mean KGE of schemes E and S were
calculated as 0.7215 and 0.7652, respectively. Furthermore, calibration schemes E and S for
the validation period represented the mean NSE of 0.5407 and 0.5727, and the mean KGE
of 0.7262 and 0.7647, respectively. These results show the applicability of GCR-based AET
or GRZSM data for ungauged watersheds. Similar patterns are found at the monthly scale
(see Figure 5).

The uncertainties of parameters estimated by the calibration schemes are propagated to
the outputs of the model (i.e., simulated stream flow). Figure S5 in Supplementary Material
shows the standard deviations of the parameters estimated by each scheme. Regardless of
the type of parameter, the uncertainty of parameters estimated by scheme Q is found to be
greater than that estimated by other calibration schemes. It is revealed that the parameters
estimated by scheme E also have significant uncertainty. In contrast, it is found that the
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parameters estimated by scheme S have relatively better reliability. The uncertainties
of simulated stream flows can be seen from MCV and r-factor in Figures 4 and 5. The
parameter uncertainties identified in Figure S5 are reflected in the stream flows, so the
uncertainty of the stream flow simulated by scheme S is significantly lower than those of
schemes E and Q. It is inferred that the relatively low temporal resolution of monthly actual
evapotranspiration or monthly surface flow used for calibration caused high uncertainty
in the simulated daily stream flow. Conversely, the use of GRZSM data, which could be
obtained as daily scale data, would be a useful way to ensure the reliability of the model’s
output. In summary, of the three calibration schemes analyzed in this section, schemes E
and S have exceeded the specified thresholds of performance metrics at daily or monthly
scales. However, given the total uncertainty, it can be said that scheme S, which represents
relatively low uncertainty, is one of the best calibration strategies to predict stream flows in
ungauged watersheds.
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5.2.2. Calibration Scheme S versus Traditional Schemes

In this section, scheme S, which showed the best performance and uncertainty above,
is compared with the traditional regionalization scheme R. It is also compared to Scheme
F, which provides the best calibration results. Table 4 shows the mean values and the
differences between maximum and minimum values of the metrics for applications based
on schemes S, R, and F.
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Table 4. Performance and uncertainty of simulated daily and monthly stream flow by each calibration
scheme for calibration and validation periods.

Period Calibration Period Validation Period

Scheme S R F S R F

Daily stream flow

NSE
mean 0.5729 0.6504 0.7064 0.5727 0.6380 0.6895

max minus min 0.1717 0.2303 0.1624 0.2745 0.2364 0.1670

KGE
mean 0.7652 0.7697 0.8295 0.7647 0.7543 0.8066

max minus min 0.1104 0.2092 0.1317 0.1626 0.2546 0.2222

MCV
mean 0.1859 0.1408 0.1325 0.1802 0.1525 0.1393

max minus min 0.0692 0.1320 0.0378 0.0303 0.1471 0.0622

r-factor
mean 0.1358 0.1368 0.1298 0.1328 0.1467 0.1392

max minus min 0.0510 0.1301 0.0699 0.0738 0.1793 0.1092

Monthly stream flow

NSE
mean 0.7399 0.7470 0.8163 0.7469 0.7280 0.7962

max minus min 0.1942 0.3875 0.2534 0.3492 0.4566 0.3038

KGE
mean 0.7760 0.7087 0.7488 0.7994 0.6830 0.7223

max minus min 0.1104 0.2092 0.1317 0.1626 0.2546 0.2222

MCV
mean 0.0858 0.0781 0.0746 0.0849 0.0831 0.0774

max minus min 0.0137 0.0623 0.0223 0.0229 0.0877 0.0371

r-factor
mean 0.3491 0.3450 0.3291 0.3380 0.3636 0.3477

max minus min 0.0491 0.2158 0.0616 0.0914 0.2928 0.1432

The mean NSE of daily stream flow simulated by scheme S is smaller than the mean
NSE of scheme R, but the mean KGEs are similar to each other (see Figure 4). On the other
hand, in simulation at the monthly scale, the mean NSE of scheme S is similar to that of
scheme R, and the mean KGE of scheme S is greater than that of scheme R (see Figure 5).
Based on the indicators, the mean monthly KGE of scheme S is better than that of Scheme F.
KGE focuses on overall model performance, and NSE focuses on relatively high flows [122].
That is, from the point of view of daily stream flow prediction, scheme S has relatively poor
simulated performance for high flows as compared to Scheme R, but the overall simulated
performance is similar between both the schemes. From this result, it is possible to infer
that scheme S’s simulation performance for low flows would be better. This inference can
also be reaffirmed by the result that scheme S performs better than scheme R in monthly
stream flow prediction.

The mean MCV of the daily or monthly stream flow simulated by scheme S represents
a higher value than the corresponding ones of scheme R. On the other hand, the mean r-
factor shows the opposite result. In other words, the evaluation of which of the two schemes
has less uncertainty depends on which metric is used. However, the difference between
these two schemes is evident in the difference between the maximum and maximum metrics
values. The scheme S has a small difference between the maximum metric value and the
minimum metric value, while the corresponding one for Scheme R is relatively large. In
other words, the uncertainty of stream flow simulated by the traditional regionalization
approach is likely to expose a large deviation in some cases. On the contrary, if the GRZSM
data are used to calibrate, it can be expected that relatively more robust results are achieved.

In summary, the most important point to note in this section is that the traditional
calibration strategy, scheme R, is still a useful calibration method, and scheme S can achieve
similar results. However, while scheme S shows more robust uncertainty independent of
applications, scheme R has the potential to represent considerable uncertainties in some
applications. This means that the regionalization approach, which applies optimized
parameters for a neighboring gauged watershed as they are, is more likely to encounter
the equifinality problem (‘right for the wrong reasons’). When the GRZSM data are used
for calibration, we can expect a relatively more robust predictive reliability. Indeed, since
it is difficult to directly quantify the uncertainty of the output in an ungauged basin, this
instability of the regionalization approach makes it difficult to trust the model output
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derived from it. Therefore, these results indicate why an approach using the GRZSM
data should be applied instead of a traditional regionalization approach to calibrating an
ungauged watershed.

6. Discussion
6.1. Selection of Calibration Period Depending on Hydroclimatic Conditions

Observed data play the most important role for calibration of hydrological models
or for evaluating uncertainty. Key factors in observed data are the length of the data
and the hydrological climatic conditions to which it belongs [26]. In particular, since the
conceptual hydrological model concisely expresses the hydrological process, structural
defects in the model are bound to exist, which may be evident under certain hydrocli-
matic conditions [123]. Parameter estimations may partially complement these defects
through calibration, but the estimated parameter values are expected to depend on hydro-
meteorological conditions in calibration periods. Many hydrologists have been evaluating
the performance of various hydrologic models and the applicability of parameters under
changing hydro-meteorological conditions [124–128].

In this section, we additionally investigated the effect of the hydro-climatic conditions
of the calibration period on the performance and uncertainty of the model from the results
derived in Section 5. To this end, schemes S and F were considered. Table 5 shows the
mean dryness index (MDI) calculated from the used meteorological data (precipitation
and reference evapotranspiration). Higher MDI implies that the period is under drier
hydroclimatic conditions. Both the HCD and NGD watersheds indicated that period A
(2016–2017) was under relatively drier hydroclimatic conditions than period B (2018–2019).

Table 5. Hydroclimatic conditions for calibration periods.

Watershed Period Year Precipitation, P
(mm/year)

Reference Crop ET,
Eo (mm/year) ∗MDI ( ∑Eo, year

∑Pyear
)

Hydro-
Meteorological

Condition

HCD
A

2016 1258.8 1037.0
1.0468 Drier2017 785.2 1102.8

B
2018 1248.0 1061.1

0.8411 Wetter2019 1260.6 1048.9

NGD
A

2016 1510.2 1090.3
0.9517 Drier2017 818.8 1126.2

B
2018 1545.9 1076.5

0.6932 Wetter2019 1552.3 1071.3

* MDI is the mean dryness index.

Figure 6 shows the performance evaluation metrics of schemes S and F, rearranged for
the hydroclimatic conditions. For example, HCDA in Figure 6 represents the values of NSE
and KGE for daily stream flow that ware calibrated for the HCD watershed using data
for period A (2016–2017; relatively dry hydroclimatic condition) and validated for period
B (2018–2019; relatively wet hydroclimatic condition). In both schemes S and F, it can be
found that performing calibration under relatively wet hydroclimatic conditions is advan-
tageous for obtaining better goodness-of-fit performance metrics. However, goodness-of-fit
performance metrics obtained at the validation phase indicate that this fact cannot be
agreed upon. It is revealed that the models calibrated under wet hydroclimatic conditions
(HCDB and NGDB) have difficulty in predicting stream flow under dry hydroclimatic
conditions. Conversely, the models set under dry conditions (HCDA and NGDA) pro-
vide a good prediction of stream flows under wet conditions. In other words, the model
maintained good validation performance under those hydroclimatic conditions, which
was relatively wetter than the hydroclimatic condition under which the calibration was
performed, but the model outputs simulated under the drier period than the calibration
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period could not exhibit the performance expected in the calibration. These results make
it possible to infer that the calibration performed under wet hydroclimatic conditions
is insufficient to tune the evapotranspiration process. In particular, the dependence of
goodness-of-fit performance on hydroclimatic conditions in the calibration periods was
more apparent in NSE than in KGE. This is in line with a comment of [122] that NSE
gives relatively greater weight to high flows’ fitness. The high NSE found under wet
hydroclimatic conditions is because the quality of fit for low stream flow is relatively less
important, resulting in increased uncertainty about the predictive performance of stream
flow under dry hydroclimatic conditions.
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Meanwhile, it is worth paying attention to the fact that the validation scores of the
models (HCDA and NGDA) calibrated using the data of dry years by scheme S are higher
than the calibration scores of the models (HCDB and NGDB) calibrated using the data
of wet years. On the one hand, the calibration of HCDB and NGDB may be regarded as
incorrectly performed, but we would like to interpret this fact from a slightly different
perspective. The watersheds covered in this study are characterized by very strong season-
ality. This can be confirmed indirectly through Figure S4 in the Supplementary Material.
Precipitation is concentrated in the summer (July–October), and the evapotranspiration
process plays an important role in the hydrological cycle in the seasons other than the
summer, even in wet years. Soil moisture information alone has limitations in correctly
estimating the parameters that implement the summer runoff process, where the direct
runoff occurring on the surface is dominated. This may be one of the biggest reasons why
scheme S performance is inevitably lower than scheme F performance. The parameters
governing the evapotranspiration process can be better estimated in dry periods where
evapotranspiration is primarily involved in the hydrological cycle [129]. In other words, it
is possible that soil moisture information in the wet period may interfere with the correct
estimation of parameters related to the evapotranspiration process. On the other hand,
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the parameters estimated using data from dry years can appropriately implement the
evapotranspiration process in the period excluding the summer season in wet years. Hence,
it is possible that the fitness of the calibration using soil moisture data for wet years would
be lower than the generally expected value. However, Figure 6 is not only the result of
calibration and validation using two-year data, but also the distinction between dry and
wet years is not clear. When estimating the parameters of ungauged basins using GRZSM,
the issue of hydroclimatic conditions needs to be further investigated using longer-term
data and a wider variety of watershed.

Figure 7 shows the effect of hydroclimatic conditions in calibration periods on the
prediction uncertainty of stream flow. Uncertainty performance is better for models cali-
brated under wet conditions than those calibrated under dry conditions except for MCV
in scheme S. However, these results are due to the structure of the equations in the per-
formance metrics. The denominator of MCV is the average of the stream flow ensembles
simulated on a particular day, and the denominator of r-factor is the standard deviation
of the observed stream flow. The denominators of both performance metrics have higher
values for high flow. Uncertainty performance metrics in wet hydroclimatic conditions are
bound to be more likely to have smaller values than their counterparts in dry hydroclimatic
conditions. Therefore, in order to evaluate which hydroclimatic conditions help to obtain
better uncertainty performance, we compared the results for the same period. It is found
that the uncertainty performance of models calibrated under dry conditions is better in all
comparison groups except the r-factor in the HCD watershed. In fact, the r-factor of the
HCD watershed also shows little difference in performance metrics for the two periods.
These results indicate that the stream flow predicted by a model calibrated under dry
conditions is more reliable.

1 

 

 Figure 7. MCV and r-factor between observed daily stream flow and simulated daily stream flow
by calibration schemes S and F for 2016–2017 and 2018–2019. The solid line bars indicate results for
calibration periods, and the dotted line bars indicate ones for validation periods.
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The above analysis suggests that the existing claim that the calibration period’s
hydroclimatic conditions play an important role in the calibration using stream flow
data [26,129–133] is equally applicable to the calibration based on the GRZSM data. When
calibrating the hydrological model for the watersheds applied in this study using the
GRZSM data, selecting the period corresponding to the dry hydroclimatic conditions, if
possible, would be the way to obtain relatively better model outputs.

However, this study’s application is limited since data for a sufficiently long period
are not available for calibration. Since the length of the data is an essential factor in
calibration [134,135], it should be noted that the data from insufficiently long periods
influenced the results of this study. Therefore, securing soil moisture data for a sufficiently
long period would be the first prerequisite for verification of this study. As global remote
sensing continues, the period of the GRZSM data would be gradually secured, and it is
expected that further in-depth analysis of hydroclimatic conditions can be carried out in
the future.

6.2. Extension of Calibration Data Period

The period of data used to calibrate models is a key factor in estimating parameters
that reflect the various watershed characteristics and reducing uncertainty. Therefore,
it is necessary to investigate whether the extension of the GRZSM data will improve
model performance. In this section, further calibrations (scenario C) were carried out
using all available soil moisture records (2016–2019; period C). The scenario C calibrated
using the HCD and NGD watersheds’ data for period C were named HCDC and NGDC,
respectively. The scenario C is compared for each watershed with scenario A (HCDA and
NGDA) calibrated for period A (2016–2017) and scenario B (HCDB and NGDB) calibrated
for period B (2018–2019). The goodness-of-fit and uncertainty performance metrics of
stream flow simulated using the parameter set estimated for each scenario were calculated
for the same validation period (2012–2015) (see Figure 8).

Scenario C’s goodness-of-fit performance metrics for the validation period show
approximately 3–11% improvement compared to scenario B. However, the metrics in
scenario C are about 2–5% lower than those in scenario A except for KGE in HCDC. In
fact, KGE of HCDC has almost the same value as KGE of HCDA. These results indicate
that the calibration period’s hydroclimatic conditions are more important in terms of the
model’s goodness-of-fit performance than the data periods applied for calibration. The
scenario C consists of mixed hydroclimatic conditions, with both soil moisture data in dry
and wet years. Compared to scenario A, scenario C increased the data period used for
calibration to 4 years, but scenario C did not show better fitting performance than scenario
A based on 2 years of data (dry hydroclimatic conditions). This fact suggests that the reason
scenario C exhibits better fitting performance than scenario B is not simply because the
data period applied to the calibration has increased. A more appropriate inference should
be sought from the fact that as the data period increased, drier hydroclimatic conditions
were included in the calibration period.

On the other hand, it can be found that as the data period increases, the uncertainty of
the model output improves. Compared to scenarios A and B, MCV and r-factor in scenario
C show the smallest values. Scenario C represents an improvement of MCV by about
14–26% and an improvement of r-factor by about 6–36% over other scenarios. These results
mean that if soil moisture data are available for a sufficient period, it is more likely to
improve the model output’s reliability.

The effects of the data period for calibration on the calibration and validation of
hydrological models have been studied by numerous hydrologists but have not been
converged with generalized results [8,10,135,136]. However, it is reported that the increase
in the calibration data period does not necessarily lead to better model performance [137].
On the other hand, Zeng et al. [138] confirmed that an increase in the calibration data
period could lead to less uncertainty in model outputs. Motavita et al. [26] suggested that
hydroclimatic conditions tend to affect the model’s fitness more than the data period used
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for calibration. In addition, they pointed out that the use of calibration data for a relatively
long period reduced the variance of the predicted values, resulting in low uncertainty,
but could also result in biased errors. The results in this section show that calibrations
based on the GRZSM data have a similar tendency to previous studies. However, since
this study only used soil moisture data for a maximum of 4 years for two watersheds, it is
also true that there is a limit to the degree to which these results can be generalized. It is
necessary that various applications on watersheds with more diverse scales, hydroclimatic
conditions, and characteristics are carried out using longer soil moisture data, to derive a
generalized conclusion about calibration based on soil moisture data.
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6.3. Flow Duration Curves

The flow duration curve (FDC) is one of the important indicators of the functioning
of hydrological cycle processes in a watershed. Therefore, we strengthened our analysis by
FDC. Figure 9 shows FDCs derived from daily stream flow simulated by schemes S, R, and F.

Although the FDCs simulated by schemes are different from the observed FDC, the
comparison between the FDC for each scheme pointed out the superiority of scheme S.
The high flow part of FDC by Scheme F for the calibration period is relatively close to the
observed FDC, but the low flow part is not. These differences are more pronounced in the
FDCs for the validation period. The primary cause of discrepancies in the low flow part
is that scheme F gives greater weight to high flows’ goodness-of-fit, but the fundamental
limitations of the relatively simple lumped model are also one of the important causes. The
scheme R uses the parameters estimated by scheme F in the nearby gauged watershed,
so it shows FDCs similar to the characteristics of scheme F. The good reproducibility of
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the FDC in the HCD watershed does not appear in the NGD watershed. It means that the
robustness of the traditional regionalization approach is not excellent. The advantage of
scheme S is that it performs better in low flows rather than in high flows. The FDC for the
validation period using scheme S also shows relatively better results in the low flow part
compared to other schemes.
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These results explain why KGE of scheme S is the best at the monthly scale where
errors in low flow parts are accumulated, although the daily NSE of scheme S is relatively
low (see Figures 4 and 5). The low flow predictive performance of hydrological models
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is critical for establishing water resource plans to maintain a healthy ecosystem of water-
sheds [139]. In general, hydrological models can reasonably well simulate middle and high
flows, but accurate prediction of low flow remains a significant challenge [140]. Our results
show the relative advantages of the calibration scheme using the GRZSM data, and say
that there is great potential as a method for improving the low flow predictive performance
of the model.

6.4. Limitations and Further Research Directions

We investigated the simulation performance of stream flow in ungauged basins
using the calibration scheme using the reproduced global soil moisture data based on
observations by satellite. In this study, the watersheds’ spatially averaged parameters were
applied since a lumped model was used. The application of a lumped model cannot utilize
information on spatial heterogeneity held by pixel-based global soil moisture data (L4_SM).
A watershed has a wide variety of characteristics spatially. Thus, the advantages of L4_SM
data could be more clearly investigated in applying a distribution model.

Furthermore, the bias-correction of satellite data is still a challenge. In this study,
the bias of SMAP L4_SM data for the ungauged watershed was corrected using the soil
moisture information derived from the model calibrated by the observed stream flow
in the nearby gauged watershed. Comparisons between schemes S and R showed the
relative advantages of soil moisture data; however, the bias-correction will inevitably
include many errors if a gauged watershed adjacent to a study basin does not exist or
the gauged basin’s hydrological characteristics are significantly different. That is, it can
be said that the regionalization of soil moisture data (i.e., scheme S via bias correction)
has the same limitations as the traditional parameter regionalization based on scheme
F. Since this study investigates only the two adjacent watersheds with the most similar
physical and climatic characteristics, there is a need to extend the application to more
diverse watersheds. Additionally, in order to solve the limitations of the bias correction
method, it is necessary to devise additional bias correction methods through connection
with other hydrometeorological data that can be used in ungauged basins.

The SMAP L4_SM product provides not only the root zone soil moisture data used
in this study, but also surface layer soil moisture data. In addition, one can obtain soil
moisture data sets observed (or calculated) for various soil depths from various satellites.
Therefore, it will be a good research topic to analyze the sensitivity to the type of soil
moisture product group or the depth of soil at which soil moisture is observed using a
model suitable for the use of these data in the future.

As mentioned in Section 6.1, in watersheds where evapotranspiration process domi-
nates, the correct estimation of evapotranspiration-related parameters greatly influences
the performance of models. Soil moisture is a hydrological component closely related to
the evapotranspiration process, and its usefulness was confirmed in this study. This means
that direct use of information on actual evapotranspiration can be useful for calibration
of hydrological models. Although the calibration scheme E using the actual evapotran-
spiration data estimated by GCR from meteorological data exposed high uncertainty, the
fitness performance for the monthly scale stream flow was not so bad (see Figure 6). The
relatively low temporal resolution of the actual evapotranspiration time series used for
calibration made high uncertainty in the predicted stream flow, but it is encouraging that it
still showed relatively good predictive performance. These results suggest that the acquisi-
tion and application of actual evapotranspiration data with more detailed temporal and
spatial resolution will lead to significant improvement in the calibration of hydrological
models at ungauged basins. This is also the reason why the use of actual evapotran-
spiration data remotely sensed by satellites is strongly recommended for calibration of
hydrological models. Recently, Zhang et al. [32] and Huang et al. [122] have confirmed the
possibility of calibrating hydrological models solely using satellite-based evapotranspira-
tion data. In addition, several studies have confirmed that hydrologic model calibration
using various types of satellite-based data helps improve the performance of hydrologic



Remote Sens. 2021, 13, 756 22 of 28

models [36,81,89,94,141,142]. Hence, the technique of calibrating a hydrological model in a
watershed where stream flow is not measured by using various hydrological variables in-
cluding the actual evapotranspiration based on satellites will be a very promising research
topic in the future.

7. Conclusions

In this study, the goodness-of-fit and uncertainty of model outputs, calibrated by
applying various schemes, were assessed to confirm the applicability of the global root
zone soil moisture data based on satellite observation as calibrating a hydrologic model
in ungauged basins. The goodness-of-fit and uncertainty performance of stream flow
simulated by the calibration scheme using soil moisture data was much better than those
by the calibration schemes using surface flow data or actual evapotranspiration data, which
could be obtained indirectly from the ungauged basins. In addition, when compared to the
traditional regionalization scheme using a parameter set of adjacent gauged watersheds,
the calibration scheme using soil moisture, conservatively speaking, could achieve similar
performance. The calibration scheme using soil moisture was significantly superior in
predicting low flows. From the fact that the reliability of stream flows simulated from the
model calibrated using soil moisture is higher than that of the model simulated by the tra-
ditional regionalization approach, it could be recognized that the calibration scheme using
soil moisture data has great potential. These results will be direct evidence showing that
the use of global soil moisture data to predict stream flow in ungauged basins is promising.

Furthermore, the calibration scheme using soil moisture was more sensitive to the
hydroclimatic conditions of the data used for calibration than to the period of data used
for calibration. The results of this study showed that it was more desirable to perform
the calibration of the hydrological model using soil moisture data in the years with dry
hydroclimatic conditions. However, considering the fact that the available period of the
soil moisture data used in this study are not sufficient, various complementary studies will
be needed to argue the certainty of these results.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-42
92/13/4/756/s1, Figure S1: Schematic diagram of lumped hydrological model. P is precipitation;
Eo is reference evapotranspiration; Vi is evaporation at impervious area; Vp is evapotranspiration
at pervious area; Vs is evapotranspiration in soil layer; Qi and Qp is surface flow at impervious
area and at pervious area respectively; W is wetting (or infiltration) from surface layer to soil layer;
K is percolation from soil layer to aquifer layer; and G is subsurface flow, Figure S2: Results of
bias-correction for global root zone soil moisture (GRZSM) based on remotely sensed data. In
Figure S2a, SMNG

G and SMHC
G is spatially averaged GRZSM time series for Hapcheon dam and

Namgang dam watersheds, respectively, and SMNG
M is soil moisture time series simulated by the

model calibrated using observed stream flow data. In Figure S2b, F
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cumulative probability distribution of GRZSM time series in Hapcheon dam and Namgang dam
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is the cumulative probability distribution of soil moisture
time series simulated by the model using observed stream flow data. Figure S2c shows the probability
distribution of raw GRZSM data (f
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) and the probability distribution of bias-corrected GRZSM

data (f
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) for Hapcheon dam watershed, Figure S3: Monthly surface flow estimated by using

NRCS-CN method and observed monthly stream flow at Hapchen Dam watershed (red color) and at
Namgang Dam watershed (blue color), Figure S4: Monthly and annual actual evapotranspiration
estimated by using GCR (blue color) and observed (black color) at Hapchen Dam watershed and at
Namgang Dam watershed, Figure S5: Standard deviations of parameter ensemble for calibration
schemes at the application of (a) HCDA, (b) HCDB, (c) NGDA, and (d) NGDB, Table S1: Percent of
impervious area for land use, Table S2: Saturated hydraulic conductivity (KS) for hydrologic soil
group by NRCS, Table S3: 5-day antecedent rainfall depth for antecedent soil moisture condition
(AMC) adjustment.
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