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Abstract: Many aerial images with similar appearances have different but correlated scene labels,
which causes the label ambiguity. Label distribution learning (LDL) can express label ambiguity by
giving each sample a label distribution. Thus, a sample contributes to the learning of its ground-truth
label as well as correlated labels, which improve data utilization. LDL has gained success in many
fields, such as age estimation, in which label ambiguity can be easily modeled on the basis of the
prior knowledge about local sample similarity and global label correlations. However, LDL has
never been applied to scene classification, because there is no knowledge about the local similarity
and label correlations and thus it is hard to model label ambiguity. In this paper, we uncover the
sample neighbors that cause label ambiguity by jointly capturing the local similarity and label
correlations and propose neighbor-based LDL (N-LDL) for aerial scene classification. We define a
subspace learning problem, which formulates the neighboring relations as a coefficient matrix that
is regularized by a sparse constraint and label correlations. The sparse constraint provides a few
nearest neighbors, which captures local similarity. The label correlations are predefined according to
the confusion matrices on validation sets. During subspace learning, the neighboring relations are
encouraged to agree with the label correlations, which ensures that the uncovered neighbors have
correlated labels. Finally, the label propagation among the neighbors forms the label distributions,
which leads to label smoothing in terms of label ambiguity. The label distributions are used to
train convolutional neural networks (CNNs). Experiments on the aerial image dataset (AID) and
NWPU_RESISC45 (NR) datasets demonstrate that using the label distributions clearly improves the
classification performance by assisting feature learning and mitigating over-fitting problems, and our
method achieves state-of-the-art performance.

Keywords: scene classification; label ambiguity; label distribution learning; sample neighbors;
subspace learning

1. Introduction

Aerial scene classification aims at classifying each aerial image into a scene label,
which is typically cast as a single label learning (SLL) problem. Convolutional neural
networks (CNNs) have been acknowledged as the most powerful approach for aerial
scene classification [1,2]. The fact that some aerial scenes share similar appearance or
objects causes the label ambiguity of aerial image. Some References [3–5] handle the
label ambiguity through multi-label learning (MLL). Both SLL and MLL aim to answer
the question ‘which label can describe the sample?’. Different from SLL or MLL, label
distribution learning (LDL) [6,7] handles the more ambiguous question ‘how much does
each label describe the sample?’. For a sample, its label distribution represents the degree
to which each label describes the sample. In this way, samples are associated with multiple
labels, and a sample can contribute to not only the learning of the ground truth, but also the
learning of correlated labels. Thus, each label is supplied with more training data. Using
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label distributions to express label ambiguity can boost CNN learning by improving data
utilization [7–11].

1.1. Difficulties in Modeling Label Ambiguity

However, the label distribution of each sample is unavailable in original training sets
and needs to be constructed by modeling label ambiguity. It is generally known that label
ambiguity is caused by those similar samples that have different but correlated labels [7].
Existing LDL methods are invalid for scene classification due to the following reasons:

1. The widely used label distribution is Gaussian smoothing from the sample ground
truth to close labels [7–11], as shown in Figure 1. For the age images, local sample
similarity is known, i.e., similar images have close ages; also, global label correlations
are available, i.e., the age difference reflects label correlations. The Gaussian distribu-
tion properly models the label ambiguity because both the local similarity and label
correlations are captured.

2. For scene classification or generic SLL problems, neither local similarity nor label
correlations are known, and thus it is hard to model label ambiguity. As mentioned
in Gao et al. [7], modeling label ambiguity is challenging due to the diversity of
label space.

Remote Sens. 2021, 13, x FOR PEER REVIEW 2 of 25 
 

 

label distributions to express label ambiguity can boost CNN learning by improving data 

utilization [7–11]. 

1.1. Difficulties in Modeling Label Ambiguity 

However, the label distribution of each sample is unavailable in original training sets 

and needs to be constructed by modeling label ambiguity. It is generally known that label 

ambiguity is caused by those similar samples that have different but correlated labels [7]. 

Existing LDL methods are invalid for scene classification due to the following reasons: 

1. The widely used label distribution is Gaussian smoothing from the sample ground 

truth to close labels [7–11], as shown in Figure 1. For the age images, local sample 

similarity is known, i.e., similar images have close ages; also, global label correlations 

are available, i.e., the age difference reflects label correlations. The Gaussian distri-

bution properly models the label ambiguity because both the local similarity and la-

bel correlations are captured. 

2. For scene classification or generic SLL problems, neither local similarity nor label 

correlations are known, and thus it is hard to model label ambiguity. As mentioned 

in Gao et al. [7], modeling label ambiguity is challenging due to the diversity of label 

space. 

Ground truth: 23 years old

 

Figure 1. Gaussian-based label distribution of an age image. The face image comes from the da-

taset of Chalearn 2015 [7]. 

1.2. Motivation and Fundamental Ideal 

Our goal is to construct label distributions for CNN training, which needs to model 

the label ambiguity regarding aerial images. Our motivation is as follows: 

1. We assume that the label ambiguity is caused by sample neighbors having different 

but correlated labels. As shown in Figure 2, the images of scenes Center, Square, and 

Stadium share similar visual features; hence, labels Square and Stadium cause the 

label ambiguity of the Center sample annotated by the red box. As label ambiguity 

originates from label correlations, we desire to uncover the local sample neighbors 

that satisfy global label correlations. 

2. Subspace learning [12–14] has the potential to uncover sample neighbors that satisfy 

a certain property. To find neighbors having discrimination ability, subspace learn-

ing is adopted for semi-supervised learning (SSL) or clustering problems [15–17]. In 

subspace learning, the neighboring relations are formulated as the representation co-

efficient matrix that takes samples as the dictionary and reconstructs each sample as 

a linear combination of others, i.e., the self-expressiveness assumption [12]. The sam-

ple affinity graph is determined by the coefficient matrix. Discriminative neighbors 

desire the matrix to be block-diagonal, i.e., neighboring relations occur only between 

samples of the same label. Many constraints are proposed to purchase the block-di-

agonal matrix, such as the block-wise [18], low-rank [19], and group-sparse [20] con-

straints. 

3. The subspace learning methods developed for SSL or clustering problems are subop-

timal for modeling label ambiguity. The desired discriminative neighbors are used 

for capturing reliable unlabeled samples in SSL or producing accurate clustering 

Figure 1. Gaussian-based label distribution of an age image. The face image comes from the dataset
of Chalearn 2015 [7].

1.2. Motivation and Fundamental Ideal

Our goal is to construct label distributions for CNN training, which needs to model
the label ambiguity regarding aerial images. Our motivation is as follows:

1. We assume that the label ambiguity is caused by sample neighbors having different
but correlated labels. As shown in Figure 2, the images of scenes Center, Square, and
Stadium share similar visual features; hence, labels Square and Stadium cause the
label ambiguity of the Center sample annotated by the red box. As label ambiguity
originates from label correlations, we desire to uncover the local sample neighbors
that satisfy global label correlations.

2. Subspace learning [12–14] has the potential to uncover sample neighbors that satisfy
a certain property. To find neighbors having discrimination ability, subspace learning
is adopted for semi-supervised learning (SSL) or clustering problems [15–17]. In
subspace learning, the neighboring relations are formulated as the representation co-
efficient matrix that takes samples as the dictionary and reconstructs each sample as a
linear combination of others, i.e., the self-expressiveness assumption [12]. The sample
affinity graph is determined by the coefficient matrix. Discriminative neighbors desire
the matrix to be block-diagonal, i.e., neighboring relations occur only between sam-
ples of the same label. Many constraints are proposed to purchase the block-diagonal
matrix, such as the block-wise [18], low-rank [19], and group-sparse [20] constraints.

3. The subspace learning methods developed for SSL or clustering problems are subop-
timal for modeling label ambiguity. The desired discriminative neighbors are used
for capturing reliable unlabeled samples in SSL or producing accurate clustering
membership. The block-diagonal matrix requires sample neighbors have the same
label, which is inappropriate for uncovering the neighbors with different labels.
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In this paper, we define a subspace learning problem to model label ambiguity, and
the fundamental idea of this paper is shown in Figure 2. First, we predefine the global
label correlations, which reflect that Center is similar to Stadium and Square but differs
substantially from Rail S. In subspace learning, the objective function penalizes the coef-
ficient matrix using the `1 norm and the label correlations. The `1 norm provides sparse
neighbors, such as the Square image and Stadium image, which captures local similarity.
According to the label correlations, the neighboring relation between the training sample
and the Rail S image is severely penalized, even though the two images are similar. Label
propagation among the neighbors leads to the label distribution that can express the label
ambiguity of the training sample. The label noise of Rail S is eliminated by using the label
correlations. Similarly, the label ambiguity of the M Res sample is caused by the D Res
images and S Res images, but not by the Church image, even though the Church image is
visually similar to the M Res sample.

1.3. Contributions

In this paper, we uncover the sample neighbors that cause the label ambiguity of
aerial images and propose neighbor-based LDL for aerial scene classification, as shown in
Figure 3. To be specific, a subspace learning problem is defined to uncover neighboring
relations among samples, which includes a `1 norm to capture local sample similarity and a
constraint based on global label correlations. During subspace learning, sample neighbors
are enforced to share correlated labels. Our method differs substantially from existing
methods in two aspects:

1. Different from most subspace learning methods, our method is developed for model-
ing label ambiguity. Most subspace learning methods emphasize the discrimination
ability of neighboring relations, and the learned affinity graph is encouraged to be
block-diagonal. Conversely, we aim to uncover neighboring relations among different
but correlated labels. Figure 3 shows that our affinity graph is consistent with the
global label correlations and is not block-diagonal.

2. Most LDL methods are invalid for generic SLL problems, and we model label ambigu-
ity by jointly capturing local sample similarity and global label correlations. Although
the data-dependent LDL (D2LDL) proposed by He et al. [21] has the potential to
handle generic SLL problems, it only uses a `1 norm to uncover sample neighbors but
overlooks label correlations. In contrast, we introduce label correlations to uncover
sample neighbors, which can reduce label noise, as explained in Figure 2.
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The main contributions of this paper are two-fold:

1. We define a subspace learning problem, which jointly captures local sample similarity
and global label correlations. The neighbor-based label distribution can robustly
express label ambiguity.

2. To our knowledge, this is the first LDL work that can manage generic SLL problems.
Experiment results demonstrate that using the label distributions can prevent CNNs
from over-fitting and assist feature learning.

The remainder of this paper is organized as follows: Section 2 reviews related works,
Section 3 formulates the proposed method in detail, Section 4 reports the experimental
results, Section 5 presents the discussion, and Section 6 concludes this paper.

2. Related Works
2.1. Deep Learning

Currently, deep learning has been acknowledged as the most successful and widely
used approach for aerial scene classification. CNNs are able to produce task-specific
deep features that are automatically learned from training sets [1,2], which requires little
feature engineering by hand. Thus, the deep features enjoy better representation ability
than the low-level features (e.g., local binary patterns) or mid-level features (e.g., bag of
features). How to further improve the deep features remains a hot research topic [22–25].
Recently, the attention mechanism has been introduced into network structures to learn
more discriminative features, such as the spatial attention [24] for capturing class-specific
regions, or the channel attention [25] for selection of important features. As the deep
features are usually redundant, some methods adopt meta-heuristic algorithms [26] to
select the most effective features among the high-dimensional features [27,28], which leads
to compact and robust features.

Overall, many studies related to deep learning focus on network structures or feature
selection; however, there are limited works concerning label representations. In this paper,
we build a label representation based on label distributions, which is used to guide the
feature learning during network training.

2.2. Label Distribution Learning (LDL)

As an extension of MLL [3–5], LDL [6,7] is a paradigm for handling label ambiguity.
Studies on LDL include two aspects: the former is to learn accurate classifiers [29–31], and
the latter is to build label distributions that can express label ambiguity. The goal of this
paper is to construct label distributions for aerial images. The strategies for constructing
the distributions can be summarized as three types:
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The first type is the Gaussian-based label distribution [7], as shown in Figure 1. The
Gaussian distribution has established its effectiveness in the fields of age estimation [8],
pose estimation [10], and crowd counting [11]. The problem of age estimation can be
cast as a classification problem by viewing each age as a label. The classification perfor-
mance can be improved by using the Gaussian distribution for CNN training. Similarly,
using the Gaussian distribution yields satisfactory performance for pose estimation and
crowd counting.

The second type is incomplete label distribution learning (IncomLDL) [32], which
aims to recover missing labels from partially labeled samples provided by humans. In-
comLDL methods [32–35] usually regularize the label distribution matrix of all samples by
a manifold constraint and a low-rank constraint. The former captures local similarity [33].
The latter models the label correlations that exist in the partially labeled samples (e.g.,
label co-occurrence), which force the completed matrix to agree with the existed label
correlations [32]. However, IncomLDL methods are invalid for generic SLL problems due
to the lack of label correlations that can guide the construction of label distributions.

The third type is the adaptive label distribution [21,36–38] which aims to enhance the
adaption to data variations. Among the methods for adaptive label distributions, the data-
dependent LDL (D2LDL) [21] has the potential to be transformed into scene classification
problems, which models label ambiguity regarding human age though sample neighbors
and the label distributions are computed as label propagation. D2LDL adopts subspace
learning to compute the sample affinity graph and the coefficient matrix is constrained by
the `1 norm to obtain sparse neighbors. Compared to the Gaussian distribution, D2LDL is
more flexible for data variations. However, D2LDL only captures local similarity through
the `1 norm but overlooks label correlations, which may cause neighbors conflicting with
label correlations and thus produce label noise, as explained in Figure 2.

2.3. Subspace Learning

Subspace learning [12,13] has gained success in semi-supervised learning and cluster-
ing problems [15–19]. The affinity graph produced by subspace learning can provide the
graph Laplacian matrix for semi-supervised learning [17], and also can be used for spectral
clustering [15]. The self-expressiveness assumption [12] states that each sample can be
represented as a linear combination of other samples. Thus, samples are embedded into
many local subspaces expressed by the representation coefficient matrix. Samples that lie
in the same subspace are neighboring. Formally, denote the sample features and coefficient
matrix as X and Z respectively, where X ∈ RD×N , Z ∈ RN×N , and D, N represent the
feature dimension and sample number, respectively. Sparse subspace clustering (SSC) [12]
is a typical subspace learning approach, which is formulated as:

min
Z,E
‖Z‖1 + λe‖E‖1 s.t. X = XZ + E, diag(Z) = 0 (1)

where the `1 norm ‖·‖1 guarantees sparsity [39], and λe is a trade-off parameter. The
representation error E is incorporated to resist outliers, where E ∈ RD×N . The operator
diag(·) indicates constructing diagonal matrices. The constraint diag(Z) = 0 prevents Z
from being an identity matrix. A non-zero coefficient Z(m, n) indicates that samples m
and n lie in the same subspace and the two samples are neighboring. To ensure that the
neighboring relations are non-negative and symmetric, the affinity graph A is defined as:

A =
1
2

(
|Z|+

∣∣∣ZT
∣∣∣) (2)

SSC can uncover adaptive and sparse neighbors and is robust to outliers. Thus,
SSC and its variants [40–43] have realized impressive clustering performance. In SSL or
clustering problems, the desirable neighbor assignment is that the affinity graph has exact C
connected components (i.e., block-diagonal structure), where C is the class number. Various
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constraints have been imposed on the coefficient matrix to encourage the block-diagonal
structure [15–19,40–43].

Compared to D2LDL, our method jointly considers sparsity and label correlations.
Different from the subspace learning for SLL or clustering problems, we aim at modeling
label ambiguity and do not purchase the block-diagonal structure.

3. Proposed Method

We define a subspace learning problem to model the label ambiguity of aerial images.
As shown in Figure 3, the constructed label distributions are used for CNN training. At the
testing stage, predictions are determined by the fully connected (FC) layer that is connected
to the single truth label.

Notations: The matrices in this paper are denoted in boldface. For a matrix M, its
entry (i, j) and the jth column are denoted as M(i, j) and M(·, j), respectively. The `1 norm
and Frobenius norm are denoted as ‖·‖1 and ‖·‖F, respectively. 0, 1, and I represent a
vector of 0s, a vector of 1s, and an identity matrix, respectively. The symbol descriptions
are listed in Table 1.

Table 1. Symbol descriptions.

Symbol Description

N The number of training samples
C The number of labels
D The dimension of the sample features
yn The ground truth of the nth sample

Y ∈ RC×N The binary matrix of sample truth labels
X ∈ RD×N The set of sample features
G ∈ RC×C The matrix of global label correlations
Z ∈ RN×N The matrix of representation coefficients
A ∈ RN×N The sample affinity graph
P ∈ RC×N The set of label distributions
Pr ∈ RC×N The set of rectified label distributions

3.1. Modeling Label Ambiguity

Label ambiguity originates from the visually similar samples that have different but
correlated labels. As shown in Figure 2, the label ambiguity of the training sample is
caused by the similar images of Square and Stadium. In Figure 2, although the Rail S
image is similar to the training sample, it is unreasonable to assume label ambiguity
between the training sample and the Rail S image because scenes Center and Rail S are
substantially different in terms of the global label correlations. According to the definition
of LDL [6,7], label ambiguity should agree with label correlations. As shown in Figure 1,
the Gaussian distribution only includes the labels that are near the sample ground truth. In
the methods of IncomLDL [32], the label distribution matrix is regularized by a low-rank
constraint to capture label correlations, which force the completed matrix to accord with
the label correlations.

Our goal is to uncover the sample neighbors that cause label ambiguity. As explained
by SSC [12], a non-zero coefficient Z(m, n) indicates that samples m and n are neighboring.
To model label ambiguity, ideal neighboring relations should meet the following properties:

1. The agreement with local sample similarity. If samples m and n have similar features,
samples m and n are neighboring, i.e., Z(m, n) 6= 0.

2. The consistence with global label correlations. If samples m and n have substantially
different labels, samples m and n are not neighboring, i.e., Z(m, n) = 0.

3.1.1. Uncovering Sample Neighbors

We define a subspace learning problem to uncover the ideal neighboring relations.
Firstly, a global label correlation matrix G is predefined to formulate label differences, where
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G ∈ RC×C
+ . Element G(i, j) is specified as a large value if labels i and j are importantly

different, and G(i, j) is small if labels i and j are correlated. By introducing G into objective
Function (1), the subspace learning problem is formulated as follows:

min
Z,E
‖Z‖1 + αz ∑

m,n
G(ym, yn)|Z(m, n)|+ λe‖E‖1 s.t. X = XZ + E, diag(Z) = 0 (3)

where αz is a trade-off parameter and we set it as 1.0. On the one hand, if sample features
X(·, m) and X(·, n) are similar, Z(m, n) is large because each sample tends to select similar
samples to reconstruct itself. On the other hand, if samples m and n have substantially
different labels, the large element G(ym, yn) enforces Z(m, n) = 0 and thus the neighboring
relation between samples m and n is prohibited. Hence, the objective Function (3) can un-
cover ideal neighboring relations that jointly capture local similarity and label correlations.
Note that D2LDL [21] adopts standard SSC (i.e., the objective Function (1)) to compute
neighboring relations, which overlooks label correlations.

3.1.2. Predefining Label Correlations

The global label correlations G should be properly predefined. A simple yet effective
approach for evaluating label correlations is to utilize additional knowledge from confusion
matrices [44,45]. Following this approach, we use the Library for support vector machines
(LIBSVM) [46] to train classifiers on training sets, and compute confusion matrices on
validation sets. We use pretrained CNNs as feature extractors, in which the activations of
the penultimate FC layer serve as image features.

Denote the confusion matrix as H ∈ RC×C, where element H(i, j) denotes the rate at
which samples of label i are classified as label j. According to Wang et al. [44], the symmetric
similarity matrix S ∈ RC×C is computed as S = 1/2(H + HT). A large S(i, j) implies a
similar label pair (i, j). In this paper, label pairs (i, j) that are in the top 20% in terms
of similarity are regarded as correlated labels. Specifically, we sort all the non-diagonal
elements {S(i, j)}i 6=j of S as a descending sequence and delete the repeated values from
the sequence. This leads to a sequence (s1, s2, . . . , sN0), in which s1 implies the most similar
label pair. Labels i and j are thought of as correlated if S(i, j) ≥ sb0.2N0c, where the function
b·c denotes the rounding down operator. Denote the maximal and minimal values in
the classification accuracies {S(i, i)}i=1∼C as smax and smin, respectively. Since the role of
G is to express label differences, G(i, j) should be inversely proportional to S(i, j). Soft
mappings are defined to compute G, as illustrated in Figure 4. Elements of G are computed
as follows:

G(i, j) =


1 if S(i, j) < sb0.2N0c and i 6= j

s1−S(i,j)
s1−sb0.2N0c

(amax − amin) + amin if S(i, j) ≥ sb0.2N0c and i 6= j

smax−S(i,i)
smax−smin

(bmax − bmin) + bmin if i = j

(4)

where the hyper-parameters amin, amax, bmin, and bmax are set to 0.1, 0.3, 0.01, and 0.09,
respectively. On the one hand, label differences for correlated label pairs range from amin
to amax, and a high S(i, j) leads to a small G(i, j). On the other hand, a low classification
accuracy S(i, i) causes a relatively large G(i, j), as the samples of label i tend to be scattered.



Remote Sens. 2021, 13, 755 8 of 24

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 25 
 

 

pairs range from mina
 to maxa , and a high ( , )i jS  leads to a small ( , )i jG . On the other 

hand, a low classification accuracy ( , )i iS  causes a relatively large ( , )i jG , as the sam-

ples of label i tend to be scattered. 

00.2N
s

1s

(
,

)
i

j
G

( , ),i j i jS

1.0

maxsmins

max 0.09b

min 0.01b

max 0.3a

min 0.1a

( , )i iS

(
,

)
i

j
G

Soft mapping for Nondiagonal elements Soft mapping for diagonal elements

 

Figure 4. Soft mappings from label similarities S to label differences G. 

3.1.3. Optimization 

We optimize the objective function (3) by resorting to the alternating direction 

method of multipliers (ADMM) [47]. First, we replace G with another correlation matrix 
N NR Θ , the elements of which are ( , ) ( , )m nm n y y=Θ G . ( , )m nΘ

 is large when samples 

m and n have substantially different labels. In addition, an auxiliary matrix 
N NR J  is 

introduced. Considering Θ  and J, objective (3) equals: 

1 1 1
, ,

1 1
, ,

min || || || || || ||

min ||| ( ) || || || s. t . , diag( )

z e

T

z e=

 

 

+ +

+ + = + = −

Z J E

Z J E

Z Θ Z E

11 Θ Z E X XJ E J Z Z
 (5) 

where operator  is the elementwise product. Using ADMM, the augmented La-

grange function of objective (5) is  

1 2

1 1 1 2

2 2

( , , , , )

|| ( ) || || || tr[ ( )] tr[ ( diag( ))]

(|| || || diag( ) || )
2

T T T

z e

F F

 



= + + + − − + − +

+ − − + − +

Z J E Y Y

11 Θ Z E B X XJ E B J Z Z

X XJ E J Z Z

 
(6) 

where 1B  and 2B  are Lagrange multipliers and   is a penalty parameter. Since 

( )  is separable, we can alternatively update Z, J, E, 1B , and 2B , while fixing others. 

Update of Z: 

We update Z by solving the following problem: 

2

1 1

1 1
arg min || ( ) || || diag( ) ||

2

T

t z t F

t




+ = + + + −
Z

Z 11 Θ Z Z Z U

 
 

where t denotes the tth iteration and 
2,1t t t t= +U J B . The closed-form solution of Z is  

𝒁𝑡+1 = 𝒁̃𝑡+1 − 𝑑𝑖𝑎𝑔( 𝒁̃𝑡+1) (7) 

The elements of Z  can be obtained by applying the soft-thresholding operator [47]: 

( )1

1 ( , )
( , ) sgn ( , ) max | ( , ) | ,0z

t t t

t

m n
m n m n m n




+

 +
= − 

 

Θ
Z U U  (8) 

Figure 4. Soft mappings from label similarities S to label differences G.

3.1.3. Optimization

We optimize the objective Function (3) by resorting to the alternating direction method
of multipliers (ADMM) [47]. First, we replace G with another correlation matrix Θ ∈ RN×N ,
the elements of which are Θ(m, n) = G(ym, yn). Θ(m, n) is large when samples m and n
have substantially different labels. In addition, an auxiliary matrix J ∈ RN×N is introduced.
Considering Θ and J, objective (3) equals:

min
Z,J,E
‖Z‖1 + αz‖Θ� Z‖1 + λe‖E‖1

= min
Z,J,E
‖(11T + αzΘ)� Z‖1 + λe‖E‖1 s.t. X = XJ + E, J = Z− diag(Z)

(5)

where operator � is the elementwise product. Using ADMM, the augmented Lagrange
function of objective (5) is

L(Z, J, E, Y1, Y2)
= ‖(11T + αzΘ)� Z‖1 + λe‖E‖1 + tr[BT

1 (X− XJ− E)] + tr[BT
2 (J− Z + diag(Z))]

+ µ
2 (‖X− XJ− E‖2

F + ‖J− Z + diag(Z)‖2
F)

(6)

where B1 and B2 are Lagrange multipliers and µ is a penalty parameter. Since L(·) is
separable, we can alternatively update Z, J, E, B1, and B2, while fixing others.

Update of Z:
We update Z by solving the following problem:

Zt+1 = argmin
Z

1
µt
‖(11T + αzΘ)� Z‖1 +

1
2
‖Z + diag(Z)−Ut‖2

F

where t denotes the tth iteration and Ut = Jt + 1/µtB2,t. The closed-form solution of Z is

Zt+1 = Z̃t+1 − diag(Z̃t+1) (7)

The elements of
~
Z can be obtained by applying the soft-thresholding operator [47]:

~
Zt+1(m, n) = sgn(Ut(m, n))max

(
|Ut(m, n)|−1 + αzΘ(m, n)

µt
, 0
)

(8)

Solution (8) shows that a large Θ(m, n) encourages
~
Zt+1(m, n) = 0, which eliminates

the neighboring relations between two substantially different labels ym and yn. Thus, the
uncovered neighboring relations are consistent with label correlations.

Update of J:
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Fixing other variables, the problem for J becomes:

Jt+1 = argmin
J

tr[BT
1 (X− XJ− E)] + tr[BT

2 (J− Z + diag(Z))]

+ µ
2 (‖X− XJ− E‖2

F + ‖J− Z + diag(Z)‖2
F)

Let the derivative with respect to J be zero, then the solution is expressed as

Jt+1 = (XTX + I)
−1

[XT(X− Et +
1
µt

B1,t) + Zt − diag(Zt)−
1
µt

B2,t] (9)

Update of E:
While other variables are fixed, we update E as follows:

Et+1 = argmin
E

λe

µt
‖E‖1 +

1
2
‖E−Vt‖2

F

where Vt = X− XJt+1 + 1/µtB1,t. E can be obtained by applying the soft-thresholding
operator [47]:

Et+1(m, n) = sgn(Vt(m, n))max
(
|Vt(m, n)| − λe

µt
, 0
)

(10)

Update of B1 and B2:
The Lagrange multipliers can be updated by using the gradient ascent procedure:

B1,t+1 = B1,t + µt(X− XJt+1 − Et+1)
B2,t+1 = B2,t + µt(Jt+1 − Zt+1 + diag(Zt+1))

(11)

For clarity, the ADMM algorithm for solving objective (3) is outlined in Algorithm 1.

Algorithm 1: Solving the objective Function (3) through ADMM

Input: X, Θ, αz, λe, µ0
Initialize: Z = J = 0, B1 = 0, B2 = 0, t = 0, tmax = 30, µmax = 1010, ρ = 1.1, ε = 10−4

Compute the constant term (XTX + I)
−1

in Equation (9)
While the convergence conditions are not satisfied:

1: update Zt+1 according to Equations (7) and (8)
2: update Jt+1 according to Equation (9)
3: update Et+1 according to Equation (10)
4: update B1,t+1 and B2,t+1 according to Equation (11)
5: update µt by µt+1 = min(µmax, ρµt)
6: check the convergence conditions:

‖X− XJt+1 − Et+1‖∞ < ε and ‖Jt+1 − Zt+1 + diag(Zt+1)‖∞ < ε

7: t = t + 1
8: if t > tmax, break

End while
Output: Zt+1

3.2. Constructing Label Distributions
3.2.1. Label Propagation

Label ambiguity can be modeled through the affinity graph A and we construct label
distributions through label propagation. Denote the matrix of sample ground truth as Y,
where Y ∈ RC×N with Y(i, n) = 1 if i = yn, and Y(i, n) = 0 otherwise. Denote the label
distributions of all samples as P, where P ∈ RC×N . Y(·, n) and P(·, n) represent the ground
truth and label distribution of the nth sample, respectively. According to Equation (2), the
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affinity graph can be determined by the coefficient matrix, i.e., A = 1/2(
∣∣Z∣∣+∣∣ZT∣∣) . The

label distribution P(·, n) can be computed as the following label propagation:

P(·, n) = 1
dn
(Y(·, 1)A(1, n) + . . . Y(·, m)A(m, n) + . . . Y(·, N)A(N, n))

= Y
(

A(·,n)
dn

)
, dn =

N
∑

m=1
A(m, n)

(12)

where dn is the degree [15] of sample n and the term A(·, n)/dn represents the transition

probabilities [48].dn acts as the normalization term to ensure that
C
∑

i=1
P(i, n) = 1.

Equation (12) shows that if sample m is the neighbor of sample n, a positive A(m, n)
incorporates the label of sample m into the label distribution of sample n; if two samples
are not neighboring, A(m, n) = 0, and the label of sample m has no influence on P(·, n).
Thus, sample n is associated with its neighbor labels and thus P(·, n) describes the label
ambiguity regarding sample n.

3.2.2. Rectifying Label Distributions

We use the label distribution for CNN training and thus the sample ground truth
should account for the highest intensity in the distribution. Since the images of the same
class usually share similar features, the majority of sample neighbors have the same label
to the sample ground truth. In most label distributions, the ground truth has the highest
intensity. However, the adaptively uncovered neighbors cannot ensure that the ground
truth always occupies the highest intensity in all label distributions. Referring to D2LDL
that use the ground truth to rectify label distributions [21], we compute the rectified
distributions Pr as follows:

Pr = 0.5P + 0.5Y (13)

where term 0.5Y ensures that yn has the highest intensity in Pr(·, n). We use Pr for
CNN learning.

3.3. CNN Learning Framework

The label distributions are used as label-level regularization in network learning.
The network jointly learns the task of scene classification and the task of learning label
distributions Pr. The multitask loss is defined as

L = Lcls(I , Y) + λl Lldl(I , Pr) (14)

where I represents the set of training images and λl is a trade-off parameter. We set λl to
0.5. Term Lcls(·) adopts the common softmax loss and term Lldl(·) uses Kullback–Leibler
(KL) loss, respectively. The KL divergence is defined as:

KL(Pr(·, n),
^
P(·, n)) =

C

∑
i=1

Pr(i, n)
ln Pr(i, n)

^
P(i, n)

∝
C

∑
i=1
−Pr(i, n) ln

^
P(i, n)

where
^
P(·, n) is the network output generated by a softmax function. Hence, Lldl(·) is

computed as follows:

Lldl(I , Pr) = −
1
N

N

∑
n=1

C

∑
i=1

Pr(i, n) ln
^
P(i, n) (15)

The learning framework is supervised not only by sample ground truth but also the
side information about the label ambiguity of samples. Compared to the ground truth,
the label distributions are more informative since it incorporates correlated labels. As
mentioned in previous studies [7,9,10,49], informative label representations enable CNNs
to learn robust features. Additionally, the label distribution is label smoothing in terms of
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label ambiguity. As explained in References [49–52], label smoothing can prevent networks
from over-fitting.

4. Experiments and Results

To examine the role of modeling label ambiguity, the proposed method is applied to
two CNN backbones, namely VGGNet (VGG) and ResNet, and we conduct experiments
on two aerial scene datasets: the aerial image dataset (AID) [1] and NWPU_RESISC45
(NR) [2]. As shown in Figure 5, the two datasets are challenging due to the large intraclass
variations and small interclass distinctions.
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4.1. Implementation Details
4.1.1. Datasets and Protocols

The AID dataset [1] is comprised of 10,000 600 × 600 images, which cover 30 scene
classes. Following previous studies in which AID was used [1,53–56], we adopt the data
division strategy of AID-0.2, where the training/validation/testing ratio is 0.2/0.2/0.6.
The NR dataset [2] includes 45 scene classes, each with 700 256 × 256 images. Simi-
lar to previous studies [2,22,23,55–59], data division strategy NR-0.1 is used: the train-
ing/validation/testing ratio is 0.1/0.1/0.8. Note that the relatively low training ratios (i.e.,
the 0.2 on AID and 0.1 on NR) are adopted to study the effect of label distributions in
improving data utilization. Moreover, we apply no data augmentation strategy, except that
there is extra specification.

Following the common evaluation protocol of aerial scene classification [1,2], we train
networks under the designated training ratios, and report the overall accuracy (OA) on
testing sets. To obtain stable results, we report the average accuracies over 5 trials. For
preprocessing, we resize all images to 224× 224, subtract the mean from the resized images,
and divide them by the standard deviation for each color channel.

4.1.2. Network Backbones

The popular VGGNet and ResNet have demonstrated promising performance for
aerial scene classification. We separately utilize VGG-16bn [60] and ResNet50 [61] as the
backbones of our networks. The networks are initialized as the weights that were pretrained
on ImageNet, and the weights are optimized using stochastic gradient descent. The learning
rate, momentum, and weight decay are set to 0.001, 0.9, and 0.0005, respectively. Each
network is trained for 50 epochs using minibatches of 16. During training, the learning rate
is reduced to one tenth when the loss values stop decreasing.

4.1.3. Parameters for Subspace Learning

In the objective Function (3), the feature matrix X is extracted from the penultimate FC
layer of pretrained networks (VGG or ResNet) and we reduce the feature dimension, D, to
100 through principal component analysis (PCA). As recommended by Elhamifar et al. [12],
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λe is calculated as β/min
n

max
m 6=n
‖X(·, m)‖1, where β is set to 20, as in Reference [15]. The

parameter µ0 in the ADMM algorithm is set to β. For a fair comparison,λe and the ADMM
parameters are kept the same for both D2LDL and our method.

All the algorithms are developed in Python under the PyTorch framework. The
experiments are implemented on a workstation with an I7-8700K CPU and a Titan XP GPU.

4.2. Analysis of Label Distributions

To explore the uncovered sample neighbors and the constructed label distributions,
we implement experiments on the AID-0.2 dataset using VGG pretrained features. To
intuitively illustrate the results of label propagation, we display the label distributions P
but not the rectified distributions Pr.

4.2.1. Agreement with Local Similarity

The images of the same scene may exhibit different label distribution patterns due to
the large intraclass variations. Within the same class, similar images should share close
distribution patterns. To observe the distribution patterns, we group the label distributions
of the same class into 3 clusters by K-means, as shown in Figure 6.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 25 
 

 

4.1.2. Network Backbones 

The popular VGGNet and ResNet have demonstrated promising performance for 

aerial scene classification. We separately utilize VGG-16bn [60] and ResNet50 [61] as the 

backbones of our networks. The networks are initialized as the weights that were pre-

trained on ImageNet, and the weights are optimized using stochastic gradient descent. 

The learning rate, momentum, and weight decay are set to 0.001, 0.9, and 0.0005, respec-

tively. Each network is trained for 50 epochs using minibatches of 16. During training, the 

learning rate is reduced to one tenth when the loss values stop decreasing. 

4.1.3. Parameters for Subspace Learning 

In the objective function (3), the feature matrix X is extracted from the penultimate 

FC layer of pretrained networks (VGG or ResNet) and we reduce the feature dimension, 

D, to 100 through principal component analysis (PCA). As recommended by Elhamifar et 

al. [12], e  is calculated as 1/ min max || ( , ) ||
n m n

m


X , where   is set to 20, as in Reference 

[15]. The parameter 0  in the ADMM algorithm is set to  . For a fair comparison, e  

and the ADMM parameters are kept the same for both D2LDL and our method. 

All the algorithms are developed in Python under the PyTorch framework. The ex-

periments are implemented on a workstation with an I7-8700K CPU and a Titan XP GPU. 

4.2. Analysis of Label Distributions 

To explore the uncovered sample neighbors and the constructed label distributions, 

we implement experiments on the AID-0.2 dataset using VGG pretrained features. To in-

tuitively illustrate the results of label propagation, we display the label distributions P but 

not the rectified distributions rP . 

4.2.1. Agreement with Local Similarity 

The images of the same scene may exhibit different label distribution patterns due to 

the large intraclass variations. Within the same class, similar images should share close 

distribution patterns. To observe the distribution patterns, we group the label distribu-

tions of the same class into 3 clusters by K-means, as shown in Figure 6. 

Cluster 1

Cluster 3

Images of Rail S in cluster 1:

Images of Rail S in cluster 3:

Images of Industrial (Indus):

Label distributions of Railway station (Rail S) samples

Cluster 2

 

Figure 6. Grouped label distributions of Rail S samples. At the left, each row represents the label distribution of a sample. 

At the right, we present the images of which the label distributions near the corresponding cluster centers. 

The local similarity among the cluster 3 images reflects that these images share simi-

lar building appearance with the Indus images. Accordingly, the label distributions in 

cluster 3 specify relatively high intensities on the Indus label, which agrees with the local 

similarity. The explanation is that the sample tends to select similar neighbors to recon-

struct itself during subspace learning, and thus the images in cluster 3 have many Indus 

neighbors. Analogously, the local similarity among the cluster 1 shows that the images 

contain obvious railway station buildings, and thus the distributions in cluster 1 are dom-

inated by the Rail S label.  

Figure 6. Grouped label distributions of Rail S samples. At the left, each row represents the label distribution of a sample.
At the right, we present the images of which the label distributions near the corresponding cluster centers.

The local similarity among the cluster 3 images reflects that these images share similar
building appearance with the Indus images. Accordingly, the label distributions in cluster 3
specify relatively high intensities on the Indus label, which agrees with the local similarity.
The explanation is that the sample tends to select similar neighbors to reconstruct itself
during subspace learning, and thus the images in cluster 3 have many Indus neighbors.
Analogously, the local similarity among the cluster 1 shows that the images contain obvious
railway station buildings, and thus the distributions in cluster 1 are dominated by the Rail
S label.

Therefore, the label distributions agree with local similarity, and can adapt to the
intraclass variations. Additionally, our distributions also support the conclusions of recent
studies [21,36–38,62,63]: label distributions should vary with data variations.

4.2.2. Consistence with Label Correlations

Neighboring relations that cause label ambiguity should be consistent with label
correlations. Figure 7 shows the global label correlations G evaluated on the confusion
matrices, and the affinity graph A determined by the coefficient matrix Z. We have the
following 3 observations.
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comprised of 2000 training samples that cover 30 scene classes, A is a 2000 × 2000 matrix and G is a 30 × 30 matrix. The
dark and light colors stand for low and high values, respectively. The dark elements in G indicate low label differences, and
the light elements in A represents strong neighboring relations.

1. The dark elements in G indicate the correlated label pairs. For example, the green
boxes show that scenes Rail S and Indus are correlated. The explanation is that lots of
Rail S images and Indus images are confused with each other in validation sets.

2. The light elements in A are globally consistent with the dark elements in G. For
example, the red boxes suggest that many Rail S samples have Indus neighbors.
The explanation is that Z is penalized by G in objective Function (3) and thus the
neighboring relations are consistent with label correlations.

3. A is not block-diagonal, in which there are neighboring relations among samples of dif-
ferent labels. In contrast, the affinity graph for SSL or clustering problems [15–19,40–43]
are encouraged to be block-diagonal so as to yield discriminative neighbors.

4.2.3. Comparisons with D2LDL

D2LDL [21] exploits the `1 norm to uncover sample neighbors but overlooks label
correlations, which may cause label noise. The label noise reflects unreasonable neighbors,
such as the Rail S image in Figure 2. Serious noise may cause the distorted distributions, in
which the sample ground truth fails to account for the highest intensity. We refer to the
distribution P(·, n) as a distorted distribution if P(yn, n) ≤ P(i 6= yn, n). Figure 8 shows the
label distributions produced by D2LDL and our method, and Nd is the number of distorted
distributions which can be thought of as the measurement of noise level. We have the
following 3 observations:

1. D2LDL can construct adaptive label distributions but results in many distorted distri-
butions, which imply gross label noise. For example, the yellow rectangle shows that
many Rail S samples are associated with label Indus, which reflects the correlation
between Rail S and Indus.

2. Our method produces much less distorted distributions compared to D2LDL (138
vs. 411), which suggests the reduction of noise. Compared to the yellow rectangular
region, the red rectangular region is ‘cleaner’, which indicates that fewer samples are
contaminated by noisy labels. Therefore, label noise can be reduced by introducing
label correlations to regularize the discovery of neighbors.

3. The distorted distributions of our method originate from severely confused image
contents. As shown in Figure 9, the image semantics are confused with the ambiguous
labels even by humans.
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4.3. Analysis of the Network Performance

In this section, we explore the proposed method from the perspective of classification
performance and learned features.

4.3.1. Classification Accuracy

The label distributions are used as label representations for CNN training and we
adopt five methods to construct label representations, as described in Table 2.

Table 2. Methods for constructing label representations of training samples.

Method Description

Original CNNs Sample ground truth is used to train original VGG and ResNet.
Label smoothing
regularization (LSR) [50,52]

LSR is the standard label smoothing method, which handles label ambiguity by uniform label
smoothing. The smoothing parameter to 0.1.

Confusion weighted loss
(CWL) [44,45]

CWL [44,45] encodes label ambiguity on the basis of the confusion matrices on validation sets.
Label pairs with high confusion proportions are posited to be correlated, and the label intensity is
smoothed from sample ground truth to the correlated labels. The label representations are
class-specific. We set the confusion thresholds [45] for AID and NR as 0.02 and 0.03 respectively,
due to the lower accuracy achieved on NR.

D2LDL D2LDL constructs neighbor-based label distributions but overlooks label correlations. The label
distributions are rectified by Equation (13).

N-LDL N-LDL jointly captures local similarity and label correlations. The label distributions are rectified
by Equation (13).
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Across experiments, our label distributions are replaced by the label representations
that are produced by the competing approaches, and other parts of the CNN learning
framework remain unchanged. The classification accuracies of the testing sets on AID-0.2
and NR-0.1 are listed in Table 3.

Table 3. OA (%) comparisons using various label representations.

Method AID-0.2 NR-0.1

VGG 91.21 ± 0.28 85.90 ± 0.22
LSR-v 91.93 ± 0.21 86.66 ± 0.16

CWL-v 92.79 ± 0.35 87.32 ± 0.28
D2LDL-v 92.61 ± 0.26 87.29 ± 0.17

N-LDL-v (ours) 93.66 ± 0.23 88.58 ± 0.20
ResNet 92.61 ± 0.26 88.09 ± 0.23
LSR-r 93.10 ± 0.22 88.41 ± 0.17

CWL-r 93.68 ± 0.31 88.95 ± 0.27
D2LDL-r 93.51 ± 0.25 89.01 ± 0.18

N-LDL-r (ours) 94.11 ± 0.22 89.80 ± 0.19
‘-v’ and ‘-r’ indicate backbones of VGG and ResNet, respectively. The bold font denotes the best performance
conditioned on the same backbones.

The comparisons demonstrate the advantages of our method over the competing
approaches, regardless of the dataset or network backbone. We observe the following:

1. LSR, CWL, and D2LDL all realize higher accuracies than using sample ground truth;
hence, the efforts to address label ambiguity are beneficial for aerial scene classification.

2. CWL methods yield competitive performance over D2LDL, which demonstrates the
role of incorporating label correlations into label representations.

3. Our methods clearly outperform CWL. The reason is that the label representations of
CWL are class-specific and thus are inflexible to adapt to the large intraclass variation
of scene images. In contrast, our neighbor-based label distributions capture local
sample similarity and can express different patterns of label distributions.

4. Our methods substantially outperform D2LDL, which highlights the effectiveness of
considering label correlations. Figure 10 presents the comparisons in terms of confu-
sion matrices. There are large accuracy gaps in the scenes of Center (0.81 vs. 0.78),
Rail S (0.91 vs. 0.84), and School (0.74 vs. 0.69). These scenes are usually comprised of
complicated visual contents and are prone to the involvement of diverse scene labels.
Accordingly, these scenes are susceptible to label noise. Facilitated by label correla-
tions, our methods reduce the label noise and can robustly encode label ambiguity.
Therefore, our label distribution is effective in representing complex scenes.

4.3.2. Feature Robustness

The label distributions are more informative compared to sample ground truth and
can enhance feature robustness. We select the outputs of the fc7 layer in the VGG backbone
as image features, and the corresponding two-dimensional representations generated by
the t-Distributed Stochastic Neighbor Embedding (t-SNE) [64] are plotted in Figure 11. We
observe that features produced by N-LDL-v are more compact than those produced by orig-
inal VGG, such as the features of scenes Airport (Airpo), Park, and Port. This compactness
suggests that feature robustness is improved by using the informative label distributions.
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4.4. Comparisons with State-of-the-Art Methods

Our method is compared with previous methods for aerial scene classification, which
are listed in Table 4 and have been validated on AID-0.2 and NR-0.1 in the original litera-
tures. We have following observations:

1. Although we only use common network structures (i.e., ResNet), our method achieves
comparable performance compared to recent deep learning methods which devise
complicated network structures, such as Attention-GAN [22] and CapsNet [56]. The
explanation is that the label distributions substantially improve data utilization by
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associating samples with multiple labels. Thus, our method is a simple yet effective
approach for aerial scene classification.

2. SF-CNN [57] slightly surpasses our method on NR-0.1 (89.89 vs. 89.80). The SF-
CNN, namely scale-free CNN, enlarges sample number by 4 times through resizing
each image to 4 scales from 224×224 to 400 × 400. In contrast, our computational
complexity is much lower because we do not apply data augmentation.

Table 4. OA (%) comparisons with state-of-the-art methods.

Methods Year AID-0.2 NR-0.1

MSCP [53] 2018 91.52 ± 0.21 85.33 ± 0.17
D-CNN [54] 2018 90.82 ± 0.16 89.22 ± 0.50

TEX-TS-Net [55] 2018 93.31 ± 0.11 84.77 ± 0.24
CapsNet [56] 2019 93.79 ± 0.13 89.03 ± 0.21
SF-CNN [57] 2019 93.60 ± 0.12 89.89 ± 0.16
SCCov [58] 2020 93.12 ± 0.25 89.30 ± 0.35

Attention-GAN [22] 2020 93.97 ± 0.23 88.06 ± 0.19
MIDC-Net [23] 2020 88.51 ± 0.41 86.12 ± 0.29
TFADNN [59] 2020 93.21 ± 0.32 87.78 ± 0.11

N-LDL-r (ours) 94.11 ± 0.22 89.80 ± 0.19
The bold font denotes the method achieving the best performance. Explanations of Acronyms: multilayer
stacked covariance pooling (MSCP) [53], discriminative CNN (D-CNN) [54], texture coded two-stream net-
work (TEX-TS-Net) [55], capsule network (CapsNet) [56], scale-free (SF-CNN) [57], skip-connected covariance
network (SCCOV) [58], attention generative adversarial network (Attention-GAN) [22], multiple-instance densely-
connected network (MIDC-Net) [23], Two-stream feature aggregation deep neural network (TFADNN) [59].

4.5. Experiments Using Different Sizes of Datasets

Our method achieves satisfying performance on small datasets (i.e., AID-0.2 and
NR-0.1), and we further study our method on relatively large datasets by using data
augmentation and relatively large training ratios. For data augmentation, training images
are randomly cropped at 50% of the original image coverage. The cropped and original
images are flipped horizontally or vertically. Thus, the sizes of training sets are enlarged
by 4 times. Label distributions of the augmented images are also constructed through
subspace learning. The augmented training sets for AID-0.2 and NR-0.1 are denoted as Aug
AID-0.2 and Aug NR-0.1, respectively. On the other hand, we increase the training ratios
for datasets AID and NR to 0.5 and 0.2, forming the data divisions of AID-0.5 and NR-0.2,
respectively. The validation ratios remain unchanged, and the rest of the images serve as
testing sets. Both the AID-0.5 and NR-0.2 are also commonly used data divisions [53–57].
Original VGG is selected as the baseline. Using different sizes of training sets, Figure 12
plots the learning curves and Figure 13 presents the classification results. We have the
following observations:
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(1) Our method can mitigate over-fitting problems.
Using different sizes of training sets, Figure 12 shows that the original VGG always

yields saturated training accuracy, nearly 100%, which indicates over-fitting problems.
However, N-LDL produces lower training accuracy but higher validation accuracy, and the
gap between training accuracy and validation accuracy becomes smaller, which suggests
less over-fitting and better generalization.

As mentioned by Szegedyet al. [50] and Pereyra et al. [51], despite using large datasets,
networks are still prone to over-fitting due to networks learning to assign full probability to
sample ground truth and thus outputting too-confident predictions. Some studies [50,51,62]
demonstrate that label smoothing can alleviate over-fitting by maintaining reasonable ratios
between the logits of the correct and incorrect classes. The label distributions are label
smoothing in terms of label ambiguity. N-LDL enables networks to assign probability to
correlated labels, which helps to improve generalization.

(2) Our method is effective especially for small datasets.
Figure 13 demonstrates that the accuracy improvements brought about by our method

on the small datasets (e.g., AID-0.2) are more significant than that on the relatively large
datasets (e.g., Aug AID-0.2 and AID-0.5). When the original VGG is trained with the small
datasets, over-fitting problems seriously degrade the generation ability of learned features.
By alleviating over-fitting, N-LDL-v significantly improves classification performance
on the small datasets. Although there are over-fitting symptoms on the large datasets,
networks learn to fit more training samples, which enable learned features to be adaptive
and reduce the damage caused by over-fitting. As a result, the improvements brought by
N-LDL on the large datasets are degraded.

Our label distributions are used for regularizing output distributions of networks,
which can improve generalization. As explained by some studies [65,66] that also work to
regularize the output distributions, the attempts to improve generalization are effective
especially in the case that the amount of training data is limited. Therefore, the benefit of
our method is more significant for small datasets.

4.6. Influence of Parameters and Time Efficiency

In this subsection, we discuss the influence of parameters and the time efficiency of
the proposed method. The experiments are conducted using VGG pretrained features.

4.6.1. Influence of αz

αz controls the importance of the global label correlations in the objective Function (3).
Figure 14 presents the resulting label distributions of different αz on the AID-0.2 dataset.
Similar to Figure 8, we display 10 label distributions for each class on AID-0.2 since the
training samples are too numerous to be fully presented. A too small αz (e.g., 0.1) causes
substantial noise as the effect of label correlations is weak. Conversely, setting αz too large
(e.g., 10) severely reduces the intensities of the correlated labels, which degrades the ability
to express label ambiguity. Therefore, we fixed αz as 1.0 in our method.
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Figure 14. Label distributions that are produced by our method using different αz. (a) when αz = 0.1, Nd= 318; (b) when
αz = 0. 5, Nd= 162; (c) when αz= 2, Nd= 76; (d) when αz= 10, Nd= 5. Nd denotes the number of distorted distributions in
all training samples.

4.6.2. Influence of D

We use pretrained CNN features for subspace learning. To accelerate subspace learn-
ing, we reduce feature dimensions, D, via PCA. Figure 15 plots the influence of different
feature dimensions, D. On the one hand, the low feature dimensions substantially reduce
the time consumption for optimizing Equation (3). On the other hand, when D ≥ 50,
the decrease of D has little influence on classification accuracies. The explanation is that
original CNN features are high-dimensional and redundant, and reducing the feature
dimensions via PCA still preserves the most image information. Thus, features trans-
formed by PCA can also deliver major image contents and are valid for uncovering sample
neighbors. However, using too small D (e.g., 10) is insufficient to fully represent image
semantics, which is harmful for constructing proper label distributions and thus degrades
the classification performance. To balance the time consumption and representation ability,
we set D to 100.
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4.6.3. Influence of λl

λl controls the importance of the label distributions in the loss Function (14). For
various values of λl , the accuracies on testing sets are reported in Figure 16a. Our methods
are insensitive to λl within the interval [0.1, 1].
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4.6.4. Time Efficiency

Table 5 summarizes the time consumptions of different steps for constructing our label
distributions. Predefining label correlations consumes the most time because it includes
the process of extracting sample features. It is fast to optimize the objective Function (3),
and Figure 16b plots the convergence curves. The total time is relatively short and thus it is
feasible to construct our label distributions for network training.

Table 5. Time consumption (s) for constructing the label distributions of all the training samples.

Dataset Step 1 Step 2 Step 3 Total Time

AID-0.2 55.2 6.5 0.6 62.3
NR-0.1 49.6 22.0 0.8 72.4

Step 1: predefining label correlations, Step 2: optimizing the objective Function (3), Step 3: label propagation
and rectification.

5. Discussion
5.1. Summary of the Experiment Results

According to the experiment results, the proposed N-LDL has the following advantages:

1. Our label distributions can robustly model label ambiguity for aerial images. Com-
pared to D2LDL, our method substantially reduced label noise by incorporating label
correlations, as shown in Figure 8.

2. Using our label distributions for network training yielded competitive classification
performance. Compared to the label representations of LSR, CWL, or D2LDL, our
label distributions led to higher accuracies, as presented in Table 3.

3. Our method can improve the generation ability of networks and is useful, especially
for small datasets. Regularizing output distributions by our label distributions helps
to mitigate over-fitting problems, as illustrated in Figure 13.

4. It is convenient and time-efficient to apply our method to common network structures.
We only introduced label distributions to regularize network learning, and the time
for constructing label distributions was short, as listed in Table 5.

5.2. Why Does N-LDL Work Well?

The label representations produced by N-LDL possess low trace values and can cap-
ture intrinsic label correlations. Literatures related to IncomLDL [32,33] and MLL [67,68]
have proven that label representations considering label correlations contribute to improv-
ing classification performance. On the basis of low-rank assumption, a trace norm can
be imposed on label representations to capture intrinsic label correlations [67]. Thus, the
optimized label representations possess low trace values and can improve classification
performance. Loosely speaking, label representations with low trace values enjoy strong
ability to express label correlations. Figure 17 and Table 6 present the trace values of
different label representations. From Table 5, the sample truth labels (i.e., Y) had the largest
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trace values due to the ignorance of label correlations. In contrast, N-LDL achieved the
lowest trace values and thus can express label correlations sufficiently, which leads to the
high OA, as listed in Table 3.
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Table 6. Trace values of different label representations.

Sample
Truth Labels D2LDL-v N-LDL-v D2LDL-r N-LDL-r

AID-0.2 244.03 166.74 142.27 162.30 110.54
NR-0.1 376.12 183.51 155.15 179.28 124.67

5.3. Are There Better Label Distributions?

The limitation of N-LDL is that the label distribution is fixed during network training,
and we hope that the label distributions can be dynamically updated to further improve
training processes. Equation (3) uses fixed global label correlations G to uncover sample
neighbors and the constructed label distributions are fixed during CNN training. It is
preferable to jointly learn label correlations, label distributions, and feature representa-
tions in a unified framework, which may be characterized by a trace norm and graph
convolutional networks (GCNs) [69,70]:

1. As label distributions are expected to have low trace values, a trace norm can be
imposed on network outputs (i.e., predicted label distributions) in loss functions,
which enables the framework to be end-to-end trainable.

2. GCNs learned to map the initial label graph (such as the S or G in this paper) into
inter-dependent label embeddings that can implicitly model label correlations. The
label embeddings project sample features into network outputs, which enable the
predicted label distributions to be consistent with label correlations.

In this paper, we fixed label distributions for network training, and it is convenient
to apply N-LDL to various network structures. Experiment results demonstrated the
effectiveness of the label distributions. In the future, we plan to build the unified framework
that can alternatively update label distributions to further improve network training.

6. Conclusions

In this paper, we proposed neighbor-based label distribution learning (N-LDL) for
aerial scene classification, in which subspace learning was adopted to uncover sample
neighbors that cause label ambiguity. In subspace learning, the neighboring relations are
regularized by a sparse constraint and the predefined label correlations, which jointly
captures local similarity and label correlations. As a result, the uncovered neighbors shared
correlated labels and the neighbor-based label distribution expressed the label ambiguity
of samples. The experiment results demonstrated that using the label distributions for
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network training can mitigate over-fitting and assist feature learning, and our method
yielded competitive classification performance. Additionally, the proposed method has the
potential to model label ambiguity for generic single label learning (SLL) problems.
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