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Abstract: Although hyperspectral anomaly detection is commonly conducted in the visible, near-
infrared, and shortwave infrared spectral regions, there has been less research on hyperspectral
anomaly detection in the longwave infrared (LWIR) hyperspectral region. The radiance of thermal
infrared hyperspectral imagery is determined by the temperature and emissivity. To avoid the
detection uncertainty caused by the single factor of temperature, emissivity can be introduced to
detect anomalies. However, in the emissivity domain, the spectral contrast and signal-to-noise
ratio (SNR) are low, which makes it difficult to separate the anomalies from the background. In
this paper, an anomaly detection method combining emissivity and a segmented low-rank prior
(EaSLRP) is proposed for use with thermal infrared hyperspectral imagery. The EaSLRP method is
divided into three parts—(1) temperature/emissivity retrieval, (2) extraction of the thermal infrared
hyperspectral background information, and (3) Mahalanobis distance detection. A homogeneous
region generation method is also proposed to solve the problem of the complex global background
leading to inaccurate background estimation. The GoDec method is used for matrix decomposition
and background information extraction and to remove some of the noise. The proposed Mahalanobis
distance detector then uses the background component and original image for anomaly detection,
while highlighting the spectral difference between the anomalies and background. This method can
also suppress the influence of noise, to some extent. The experimental results obtained with airborne
Fourier transform thermal infrared spectrometer hyperspectral images demonstrate that the EaSLRP
method is effective when compared with the Reed–Xiaoli detector (RXD), the segmented RX detector
(SegRX), the low-rank and sparse representation-based detector (LRASR), the low-rank and sparse
matrix decomposition (LRaSMD)-based Mahalanobis distance method (LSMAD), and the locally
enhanced low-rank prior method (LELRP-AD).

Keywords: hyperspectral longwave infrared (LWIR) imagery; low-rank prior; imagery segmentation;
anomaly detection

1. Introduction

Hyperspectral remote sensing target detection has developed rapidly in recent years
and has become an effective means to remotely detect targets of interest [1–3]. Hyperspec-
tral remote sensing imagery contains rich spectral information, and the high-dimensional
features can effectively support the identification of different targets. Hyperspectral
anomaly detection has broad prospects for civil and military applications, such as mineral
exploration, border monitoring, search and rescue, military reconnaissance, etc. Many
hyperspectral target detection methods have been proposed for use in the visible and
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shortwave infrared regions [4]. However, there has been less research on hyperspectral
target detection in the longwave infrared (LWIR) hyperspectral region. In recent years,
the scientific community has begun to pay attention to the application of the LWIR hy-
perspectral region and the problems of target detection, such as military reconnaissance
at night. Differing from the visible and shortwave infrared regions, the radiance in the
LWIR spectral region, as measured by the sensor, mainly comes from the material itself and
the atmosphere. According to the radiative transfer equation, the radiance is determined
by the temperature and emissivity. The thermal infrared systems allow day and night
operation and can provide us with the surface temperature information of objects [5]. Both
the temperature and emissivity information can be used to assist with target detection.

Hyperspectral target detection can be divided into hyperspectral anomaly detection
and target-signature-based target detection [6]. In the LWIR region, the research has been
more focused on signature-based target detection. The first step in target detection is an
atmospheric correction. Moderate resolution atmospheric transmission (MODTRAN) [7]
or the in-scene atmospheric correction (ISAC) algorithm [8] is applied to the original
radiance imagery to estimate the upward radiance and spectral transmittance, and then
a temperature-emissivity separation (TES) algorithm such as ASTER’s TES algorithm [9]
or the maximum smoothness TES algorithm [10] is applied to remove the downward
radiance and estimate the surface temperature and spectral emissivity. The next step is
to use a statistical algorithm to detect the target of interest in the emissivity domain or
radiance domain according to the signature of the target. Statistical algorithms such as the
spectral matched filter (SMF) [11], spectral angle mapper (SAM) [12], generalized likelihood
ratio test (GLRT) [13], and adaptive coherence estimator (ACE) [14] have been used for
detection in the LWIR region. However, previous studies have shown that the spectral
emissivity change in the LWIR region is usually less than the corresponding spectral
reflectance change in the reflectance region [15]. Therefore, some researchers have added
a material identification algorithm to the target detection algorithm to achieve hybrid
spectral analysis [16]. Although these signature-based target detection methods have
achieved good results in LWIR region target detection, there are still some problems to be
addressed. On the one hand, due to the particularity of the LWIR region, the measurement
equipment is particularly sensitive to the surrounding environment, which can result in
large measurement errors. On the other hand, LWIR region target detection is limited by
the accuracy of the atmospheric compensation (AC) algorithm and TES algorithm, and
the obtained temperature and emissivity may not be accurate, which makes it difficult
for signature-based target detection and identification algorithms to match the measured
spectrum with the image spectrum.

Hyperspectral anomaly detection does not require prior knowledge of the target and
background, and only considers the difference of the spectral characteristics between pixels.
Many anomaly detection algorithms have been proposed for use in the visible and near-
infrared (VNIR) to shortwave infrared (SWIR) region, and these algorithms can also be used
in the LWIR region. Statistical methods such as the Reed–Xiaoli detector (RXD) [11] assume
that the image background is a multi-dimensional Gaussian random process with fast
spatial mean change and slow variance change, which is a suitable assumption for anomaly
target detection when the background distribution is relatively simple. However, since the
background statistical variables are calculated based on the whole image, they are inevitably
affected by the anomaly targets. Inspired by the RXD method, many improved methods
have now been proposed. For example, to solve the problem of anomaly contamination
caused by global computing, the segmented RX detector (SegRX) [17] first divides the
image into blocks and then applies the RX detector in these blocks. However, the statistical
methods have a common problem in that the statistical distribution cannot accurately
describe the real background [18].

To avoid the inaccurate statistical distribution of the background, representation-based
methods have been proposed, including hyperspectral anomaly methods based on collabo-
rative representation (CR) [19] and sparse representation (SR) [20]. These representation-
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based methods have achieved good results. However, the background calculation involves
the anomaly pixels, which still affect the detection effect to a certain extent. More re-
cently, researchers have begun to apply the low-rank prior to hyperspectral anomaly
detection [21–24]. This approach can extract the background knowledge and anomalous
knowledge from the hyperspectral imagery at the same time. The low-rank-based methods
assume that the background pixel vector can be approximately represented as a linear
combination of several groups of basis vectors in the low-dimensional subspace, while the
anomalous pixel vector cannot, hence the background has low-rank characteristics. Com-
pared with the background pixels, the proportion occupied by anomalies in hyperspectral
imagery is very small.

In LWIR hyperspectral imagery, the spectral contrast and SNR are low [15]. Weak
features are easily disturbed by noise, which makes it difficult to separate the target from
the background. If the detection algorithm is directly applied to the global image, the
background information estimation will be inaccurate due to the interference of abnormal
pixels and image noise. As a result, the spectral contrast between the background and
anomalies will be further reduced, which makes the anomalies and background harder
to separate.

In this paper, in order to better distinguish the anomalies and background in airborne
Fourier transform thermal infrared spectrometer hyperspectral images, an anomaly detec-
tion method combining emissivity and a segmented low-rank prior (EaSLRP) is proposed.
We propose an anomaly detection method for the emissivity domain of LWIR hyperspectral
imagery and address the problems of the low spectral contrast and SNR. Furthermore, we
describe how we used an advanced airborne LWIR hyperspectral instrument to provide
the experimental data used to verify the proposed method.

The main contributions of this paper can be summarized as follows:

(1) The proposed low-rank-based method is divided into three parts, which are (1) tem-
perature/emissivity retrieval, (2) extraction of the thermal infrared hyperspectral
background information, and (3) Mahalanobis distance detection. The proposed
method can better represent the complex background of thermal infrared hyperspec-
tral imagery than the methods based on statistical distribution assumptions, and it
solves the problems of the low spectral contrast and SNR;

(2) In the process of extracting the thermal infrared hyperspectral background infor-
mation, the Potts method [25] is introduced to segment the radiation image, and
the temperature information is combined to further determine the boundary of the
segmentation area. The segmentation boundary is adopted for the emissivity image
to achieve regional segmentation, and then the local emissivity data is decomposed
by the GoDec method [26] to remove some noise and obtain more accurate back-
ground information;

(3) In the part of Mahalanobis distance detection, the background component and the
original data are utilized by the Mahalanobis distance detector to detect the anomalies
in the LWIR hyperspectral imagery. The proposed EaSLRP method can thus highlight
the spectral differences between the anomalies and background.

The rest of this paper is organized as follows. In Section 2 the low-rank and sparse
model for the LWIR region is presented, the theory of LWIR hyperspectral anomaly de-
tection and the proposed method are described. In Section 3 the experimental data are
introduced and the experimental results are analyzed. In Section 4 the data and parameters
are analyzed. Finally, our conclusions are summarized in Section 5.

2. Method
2.1. Low-Rank Model

In thermal infrared hyperspectral imagery, the background occupies most of the image
area and is both continuous and smooth. In contrast to the background, the anomalies
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occupy a very small proportion of the hyperspectral imagery, and possibly only a few
pixels. For a pixel xi in the kth band, it can be modeled as

xi = bi + si (1)

where bi represents the background and si represents the anomaly. If xi is an anomaly, then
the background component bi equals zero; otherwise, the anomaly component si equals
zero. In the kth band of the image, most of the area is the background, and the anomalies
are sparse. The kth band of the image is also composed of anomalies and background.

For thermal infrared hyperspectral imagery, the spectral vector Xi = [x1
i , . . . , xn

i ]
consists of the x in each band, where n is the number of bands. Xi then represents the
composition of the background and anomaly part of each band. This can be shown as

Xi = Bi + Si (2)

where Bi = [b1
i , . . . , bn

i ] and Si = [s1
i , . . . , sn

i ]. Si represents the anomaly feature of the pixel
vector Xi. However, the elements in Si might be zero.

For real thermal infrared hyperspectral imagery, the image data X = [XI , . . . , XN ]
T ∈

RN×M can be represented as the combination of the background component B = [BI , . . . , BN ]
T

and anomaly component S = [SI , . . . , SN ]
T , as shown in (3),

X = B + S (3)

where N and M are the numbers of pixels and bands of the image, respectively. The
background component B contains the background information of the LWIR hyperspectral
imagery, and the anomaly component S contains the anomaly information. However, real
hyperspectral data are inevitably affected by noise N. Real data can thus be denoted as

X = B + S + N (4)

Previous research has shown that hyperspectral data have low intrinsic dimensional-
ity [27]. In other words, most of the pixel vectors in hyperspectral images can be represented
by several basis vectors, and only a few of the pixel vectors cannot be represented in this
way. The pixel vectors that cannot be represented by several basis vectors are mainly
affected by gross sparse errors or outliers. In a homogeneous region, the spectra of the
background pixels are highly similar, so that a background pixel can be approximately rep-
resented by the surrounding pixels. Therefore, the background has low-rank characteristics.
As the proportion of anomaly pixels is small, they are sparse in this homogeneous region.
According to the above hypothesis, the real hyperspectral data X can be represented as

X = L + S + N (5)

where L is the low-rank background part, S is the sparse anomaly part, and N is the noise
part. The low-rank background part L represents the global background information, and
the sparse anomaly part represents the global anomaly information.

2.2. LWIR Hyperspectral Anomaly Detection

Although the low-rank model can describe the background distribution of the ther-
mal infrared hyperspectral imagery, the following problems still exist when processing
the global image with the target detection algorithm. Firstly, the complex background
makes the description of the background inaccurate, which affects the detection accuracy.
However, detection in the local area after blocking leads to an increase in the proportion
of anomaly pixels and a decrease in the proportion of background pixels, which affects
the accuracy of low-rank and sparse decomposition. Meanwhile, due to the low spectral
contrast and SNR of thermal infrared imagery, the effect of an anomaly detection method
based on the sparse components is not stable, and it cannot distinguish anomalies and
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background well. Therefore, a local low-rank prior anomaly detection is proposed in this
paper to address these problems.

To overcome the problems caused by the complex background of the global image,
the original image is divided into several homogeneous regions. Because there is no prior
knowledge of the background and anomalies, the Potts-based method is introduced as
the region segmentation method. Generating multiple homogeneous regions can reduce
the background complexity of each region. A background component that is calculated
in homogeneous regions is simpler. As the number of pixels in the homogeneous region
decreases and the anomaly pixels in the homogeneous region does not change, the pro-
portion of anomaly pixels increases. Hence, the sparsity of the abnormal pixels decreases,
which affects the subsequent detection results.

It is therefore necessary to enhance the sparsity of the anomalies in homogeneous
regions. In the proposed approach, a new matrix is built to replace the original local data
matrix for low-rank background information extraction.

The low-rank background part is selected to estimate the background covariance
matrix. The Mahalanobis distance is then introduced to detect the anomalies in the original
local image.

The flowchart of the proposed EaSLRP method is shown in Figure 1.
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Figure 1. Flowchart of the proposed emissivity and a segmented low-rank prior (EaSLRP) method.

2.2.1. Thermal Infrared Hyperspectral Radiance Signal Model and
Temperature/Emissivity Retrieval

The spectral emissivity can be used to characterize different materials, and the spectral
feature can be used to detect anomalies.

According to the radiative transfer model (RTM), the radiation received by an LWIR
hyperspectral sensor can be represented a

Lsen = [ε(λ)B(λ, T) + (1− ε(λ))Ld(λ)]τ(λ) + Lu(λ) (6)

where Lsen is the radiance measured by the sensor; ε(λ) is the emissivity; B(λ, T) is the
radiance of a black body at temperature T, which is obtained from the Planck function;
Ld(λ) is the downwelling atmospheric radiance; τ(λ) is the atmospheric transmission; and
Lu(λ) is the atmospheric upwelling radiance.

Due to the particularity of the LWIR region, thermal infrared hyperspectral equipment
is easily disturbed by the atmosphere and other factors. In order to accurately separate the
background and anomalies, atmospheric correction must be carried out for the radiance to
remove the influence of the atmosphere. MODTRAN is used to estimate the atmospheric
upwelling radiance and atmospheric transmission. The TES algorithm is then used to
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remove the downwelling atmospheric radiance, and the temperature and surface emissivity
are then obtained. The temperature image is a single band image, and the emissivity image
has the same number of bands as the original radiance image. In this study, the fast line-of-
sight atmospheric analysis of spectral hypercubes–infrared (FLAASH–IR) algorithm [28]
was chosen to retrieve the temperature and the emissivity.

The following algorithms are applied in the emissivity domain.

2.2.2. Extraction of Thermal Infrared Hyperspectral Background Information

For thermal infrared hyperspectral imagery, the background of a homogeneous region
is more unitary than the original global image. To simplify the background of the imagery
and estimate the anomalies accurately from the homogeneous background information,
the thermal infrared hyperspectral imagery is segmented based on the Potts-based method.

In the radiance domain of the thermal infrared imagery, the gray value of the image
changes very sharply in the boundary regions. For the temperature domain image in
particular, although the temperature will be similar in a homogeneous region, the tem-
perature can be significantly different in the boundary areas because of the change of
the cover types. We can therefore use this feature to segment the region. However, this
change is not obvious in the emissivity domain. Therefore, the radiance domain of the
thermal infrared hyperspectral imagery is selected for the region segmentation, and the
temperature image is used to enhance the boundary difference. The Potts-based method’s
minimization problem can be expressed as

u∗ = argmin
u

γ · ‖∇u‖0 + ‖u− fPCA‖2
2 (7)

Because the region segmentation boundaries are compatible with the support of the
gradient ∇u, ‖∇u‖0 represents the boundary length of the segmented region and is called
the boundary term. fPCA ∈ R3×N is the superposition of the first two bands obtained
by principal component analysis of the original radiance image, and one band is the
temperature domain image. Figure 2 shows the superimposed images.

Remote Sens. 2021, 13, 754 6 of 21 
 

 

is the downwelling atmospheric radiance; τ(λ)  is the atmospheric transmission; and uL (λ)

is the atmospheric upwelling radiance. 

Due to the particularity of the LWIR region, thermal infrared hyperspectral equip-

ment is easily disturbed by the atmosphere and other factors. In order to accurately sepa-

rate the background and anomalies, atmospheric correction must be carried out for the 

radiance to remove the influence of the atmosphere. MODTRAN is used to estimate the 

atmospheric upwelling radiance and atmospheric transmission. The TES algorithm is then 

used to remove the downwelling atmospheric radiance, and the temperature and surface 

emissivity are then obtained. The temperature image is a single band image, and the emis-

sivity image has the same number of bands as the original radiance image. In this study, 

the fast line-of-sight atmospheric analysis of spectral hypercubes–infrared (FLAASH–IR) 

algorithm [28] was chosen to retrieve the temperature and the emissivity. 

The following algorithms are applied in the emissivity domain. 

2.2.2. Extraction of Thermal Infrared Hyperspectral Background Information 

For thermal infrared hyperspectral imagery, the background of a homogeneous re-

gion is more unitary than the original global image. To simplify the background of the 

imagery and estimate the anomalies accurately from the homogeneous background infor-

mation, the thermal infrared hyperspectral imagery is segmented based on the Potts-

based method. 

In the radiance domain of the thermal infrared imagery, the gray value of the image 

changes very sharply in the boundary regions. For the temperature domain image in par-

ticular, although the temperature will be similar in a homogeneous region, the tempera-

ture can be significantly different in the boundary areas because of the change of the cover 

types. We can therefore use this feature to segment the region. However, this change is 

not obvious in the emissivity domain. Therefore, the radiance domain of the thermal in-

frared hyperspectral imagery is selected for the region segmentation, and the temperature 

image is used to enhance the boundary difference. The Potts-based method’s minimiza-

tion problem can be expressed as 

2

PCA0 2
arg min

u

u u u f       (7) 

Because the region segmentation boundaries are compatible with the support of the 

gradient u , 
0

u  represents the boundary length of the segmented region and is 

called the boundary term. 3

PCA

 Nf is the superposition of the first two bands obtained 

by principal component analysis of the original radiance image, and one band is the tem-

perature domain image. Figure 2 shows the superimposed images. 

 

Figure 2. Superimposed images. 

u is the piecewise constant function, whose dimension is the same as PCAf .  is the 

empirical model parameter. Figure 3 shows the infrared hyperspectral image and the seg-

mentation results. Note that, if the temperature information is not used, the radiance im-

age can still complete the region segmentation, but some regions may not be segmented. 

The temperature information can strengthen the boundary information of different re-

gions. The image is then divided into k homogeneous regions. 

Figure 2. Superimposed images.

u is the piecewise constant function, whose dimension is the same as fPCA. γ is the
empirical model parameter. Figure 3 shows the infrared hyperspectral image and the
segmentation results. Note that, if the temperature information is not used, the radiance
image can still complete the region segmentation, but some regions may not be segmented.
The temperature information can strengthen the boundary information of different regions.
The image is then divided into k homogeneous regions.
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Figure 3. The infrared hyperspectral image and the segmentation results. (a) Longwave infrared
(LWIR) hyperspectral image; (b) temperature image; (c) segmentation without temperature; and (d)
segmentation with temperature.

The radiance domain signatures of thermal infrared hyperspectral images are deter-
mined by the material temperature and emissivity. To remove the influence of inaccurate
temperature estimation and better separate the background and anomalies, the emissivity
domain image is selected to carry out the subsequent operations.

After the completion of homogeneous region segmentation, the proportion of anomaly
pixels in the local region increases, which affects the results of the low-rank background
information extraction. Therefore, it is necessary to enhance the sparsity of the anomaly
pixels in the local region to improve the decomposition result. In the proposed approach, a
new matrix is constructed to replace the original local emissivity data matrix for sparse
decomposition and address the problem of the local data matrix. The new matrix is
composed of the local emissivity data matrix and the background endmember matrix of
the corresponding region. The background endmember matrix is composed of the spectral
vectors of the background endmembers, and the background endmember spectral vectors
are obtained by endmember extraction in the local region. Each column of the background
endmember matrix is a column vector composed of the background endmember spectra of
the corresponding region. Therefore, the rank of the background endmember matrix is one,
which keeps the low-rank principle of the designed matrix. Because only the background
endmember spectra are utilized, the additional matrix is independent of the anomalies,
which makes the decomposition more accurate.

Because the background information extraction strategy is the same in each homoge-
neous region, the kth homogeneous region is taken as an example for a better explanation.
According to our idea, the newly designed matrix can be expressed as

Xk =

(
Vk
Gk

)
∈ R((r+1)×B)×Nk (8)

where Xk is the designed matrix of the kth homogeneous region. Vk is a background
endmember matrix of rank 1, which is obtained by an endmember extraction method, e.g.,
vertex component analysis (VCA). Xk is as shown in Figure 4.

For the newly designed matrix, only the number of low-rank background elements
is increased, and the number of anomaly elements is unchanged. Therefore, compared
with the original local region, the new matrix can better highlight the sparsity of the
anomaly pixels, which makes the subsequent low-rank background information extraction
more accurate.
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Figure 4. Illustration of low-rank and sparse decomposition.

After the construction matrix is designed, the construction matrix is used to decom-
pose the low-rank background part. In order to separate the low-rank components, sparse
components, and noise, the GoDec algorithm is adopted for the decomposition. The
GoDec algorithm utilizes faster bilateral random projections (BRPs) in randomized approx-
imate matrix decomposition (RAMD). The process of low-rank background information
extraction is shown in Figure 5.
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Since the image has been segmented into multiple homogeneous regions with a sim-
pler background, and the sparsity of the anomalies of the data matrix of each homogeneous
region has been enhanced, the image background information is obtained accurately after
low-rank and sparse decomposition. Meanwhile, the noise is removed from the enhanced
matrix, and the low-rank background information will be less affected by noise.

2.2.3. Mahalanobis Distance Detection

After the low-rank background information extraction, the background component
and sparse component are obtained.

Lk =

(
LVk

LGk

)
∈ R((r+1)×B)×Nk (9)

where Lk is the low-rank background matrix, which consists of two parts Vk and Gk.
To avoid the interference of redundant information, the Gk ∈ RB×Nk part is selected to
estimate the background covariance matrix of the local homogeneous region. Therefore,
the anomaly detector based on the Mahalanobis distance can be written as

D(x) = (xk − µk)
TΓ−1

k (xk − µk) (10)

where xk is the pixel vector of the original emissivity image, µk is the mean emissivity
vector of the background data, and Γk is the covariance matrix of the background data. The
background component LGk = [LGk

1 , LGk
2 , . . . , LGk

N ], and N is the number of pixels in the
homogeneous region. µk and Γk can then be written as

µk =
1
N
(LGk

1 + LGk
2 + · · ·+ LGk

N ) (11)

Γk =
1
N
(LGk − µk)

T
(LGk − µk) (12)
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Many anomaly detection methods have verified the validity of the Mahalanobis
distance detector, including the RXD method. In the proposed method, the Mahalanobis
distance detector is adopted, which extracts the background information of the thermal
infrared imagery. The purer background information can thus enhance the difference
between the anomalies and background.

3. Results
3.1. Experimental Measurements

The experimental area is in Shangjie, Zhengzhou, Henan Province, China, and is
about 14 km2 in area. The data were collected from 2.5 km above the ground using the
state-of-the-art thermal infrared imaging spectrometer called the Hyper-Cam-LW, which is
made by Telops. The data were collected on 30 March 2019. The Telops Hyper-Cam-LW
was installed on a stable platform. The GPS and inertial measurement unit (IMU) were also
installed on the platform and used for geographic referencing and tracking when flying.
During the data acquisition, the image motion compensation mirror used the GPS/IMU
data to effectively compensate for the aircraft motion.

The ground-based Hyper-Cam-LW is a Fourier transform imaging spectrometer. Its
spectral resolution can reach 0.25 cm−1, and its average noise equivalent spectral radiance
at 10 µm is 24.2 nW/cm2 · sr · cm−1. It uses a 320 × 256 long-wavelength infrared mercury
cadmium telluride (MCT) photovoltaic (PV) focal plane array detector, which can be
windowed and formatted to fit the required size and reduce the acquisition time. The LWIR
spectral range of the obtained imagery is 8–12.5 µm, and the imagery has 81 bands. The
spatial resolution of the thermal infrared imagery was 0.95 m. All the image scene sizes
were 227 × 125 pixels. In order to reduce the atmospheric interference as much as possible,
we eliminated some bands with serious atmospheric interference and selected 78 bands for
the research.

To verify the effectiveness of the EaSLRP algorithm in detecting anomalies, three sets
of LWIR hyperspectral data were selected from the Shangjie data sets. The Ground-truth
maps are based on field investigation and labeled with recorded longitude and latitude
information combined with the aerial flight images.

3.2. Experimental Methods and Parameter Settings

Both classical algorithms and newly developed algorithms were chosen as the compar-
ison algorithms. The statistical anomaly detection methods were the RXD method [11] and
the SegRX method [17]. The anomaly detection methods based on the low-rank principle
were the LELRP-AD(LSMAD) [21] and the locally enhanced low-rank prior (LELRP-AD)
method [24]. The low-rank and sparse representation (LRASR) method [23] was selected
as a method based on low-rank representation.

The RXD method does not require us to set any parameters. In order to make the
results more convincing, SegRX used the same segmentation regions as EaSLRP.

For LSMAD, we set the cardinality k for all three data sets to 0.004. In the method
description of LSMAD, the value of rank r is generally between 1 and 2. Considering the
complexity of the background, we set the value of r to 2 for all three data sets. For LELRP-
AD, it used the same segmentation regions as EaSLRP, and according to the complexity
of the background distribution, the number of background endmembers r was set to 2, 3,
and 5 for the metal plates data set, the buoy data set, and the car data set, respectively. The
cardinality c was set to 0.02 for all three data sets.

For LRASR, the number of clusters K was set to 15. The selected pixels P were set to
20. We set the regularization parameters β and λ as equal to 0.1 for all three data sets.

For the EaSLRP method, the scale parameter γ was set as 0.5, 0.6, and 0.5 for the
metal plates data set, the buoys data set, and the car data set, respectively, as shown in
Figures 6 and 7. The background endmembers and the cardinality were the same as for the
LELRP-AD method.
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3.3. Metal Plate Data Set and Detection Results

The LWIR hyperspectral image was collected near the runway of Zhengzhou Shangjie
Airport and is shown in Figure 6. Four metal plates of man-made materials were defined
as anomalies. The overall background distribution of the image was relatively simple.

MODTRAN was used to estimate the atmospheric upwelling radiance and atmo-
spheric transmission of the radiance image obtained by the airborne sensor, and then the
surface temperature and emissivity were retrieved by the FLAASH-IR TES method. The
effectiveness of the emissivity image was verified by randomly selecting several points in
the emissivity image and comparing their pixel vector with the corresponding material
spectrum in the emissivity library. The radiance image and temperature image were used
to generate homogeneous regions. The results are shown in Figure 7.

The results of the method testing are shown in Figure 8.
For the metal plates data set, it can be seen in Figure 8 that all the anomaly detection

methods can detect the anomalies. The detection results illustrate that the background
is suppressed well by the proposed EaSLRP method, and the effect of the anomaly and
background separation is good. In the other results shown in Figure 8a–e, there is an
obvious rectangular region that shows a strong response in the middle of the image. This
region is a mixture of bare soil and grass, and it has a high emissivity and high spectral
contrast with the surrounding environment. This is the reason why the other detectors
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have difficulty in detecting this region as background. Compared to Figure 8a–e, it is clear
from the result of the proposed method in Figure 8f that the proposed method can better
suppress the complex background in the middle of the image.
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3.4. Buoys Data Set and Detection Results

The LWIR hyperspectral image was collected around Dongguo Lake in Shangjie,
Zhengzhou, Henan Province, China, and is shown in Figure 9. Two buoys on the lake are
defined as anomalies. The background distribution of the image scene is more complex
than the metal plates data set.

Remote Sens. 2021, 13, 754 11 of 21 
 

 

The results of the method testing are shown in Figure 8. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 8. The target detection results of the different methods on the metal plates data set. (a) 

Reed-–Xiaoli detector (RXD); (b) the segmented RX detector (SegRX); (c) the low-rank and sparse 

representation-based detector (LRASR); (d) the low-rank and sparse matrix decomposition 

(LRaSMD)-based Mahalanobis distance method (LSMAD); (e) the locally enhanced low-rank prior 

method (LELRP-AD); and (f) anomaly detection method combining emissivity and a segmented 

low-rank prior (EaSLRP). 

For the metal plates data set, it can be seen in Figure 8 that all the anomaly detection 

methods can detect the anomalies. The detection results illustrate that the background is 

suppressed well by the proposed EaSLRP method, and the effect of the anomaly and back-

ground separation is good. In the other results shown in Figure 8a–e, there is an obvious 

rectangular region that shows a strong response in the middle of the image. This region is 

a mixture of bare soil and grass, and it has a high emissivity and high spectral contrast 

with the surrounding environment. This is the reason why the other detectors have diffi-

culty in detecting this region as background. Compared to Figure 8a–e, it is clear from the 

result of the proposed method in Figure 8f that the proposed method can better suppress 

the complex background in the middle of the image. 

3.4. Buoys Data Set and Detection Results 

The LWIR hyperspectral image was collected around Dongguo Lake in Shangjie, 

Zhengzhou, Henan Province, China, and is shown in Figure 9. Two buoys on the lake are 

defined as anomalies. The background distribution of the image scene is more complex 

than the metal plates data set. 

   

(a) (b) (c) 

Remote Sens. 2021, 13, 754 12 of 21 
 

 

  

 

(d) (e) (f) 

Figure 9. Buoys data set. (a) Radiance domain. (b) Temperature image; (c) emissivity RGB pseudo-color image synthesized by band 

8, 11, 25; (d) ground-truth map; (e) RGB image; and (f) emissivity spectral signatures of anomalies and background. 

After AC and TES, the radiance image and temperature image were used to generate 

homogeneous regions. Figure 10 shows the segmentation map. 

  

(a) (b) 

Figure 10. Buoys data set. (a) Radiance domain image and (b) segmentation map. 

The results of the method testing are shown in Figure 11. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 11. The target detection results of the different methods on the buoys data set. (a) RXD; (b) 

SegRX; (c) LRASR; (d) LSMAD; (e) LELRP-AD; and (f) EaSLRP. 

For the buoys data set, it can be deduced in Figure 11 that SegRX, LSMAD, and 

LRASR fail to detect the anomalies, and a lot of background information is detected. The 

background of this image is complex, and if the whole image was used to calculate the 

background, many artificial targets that can be considered as noise would be detected. 

Therefore, it was necessary to divide the image into multiple homogeneous regions to 

estimate the background of each part accurately. Compared with the above methods, the 
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After AC and TES, the radiance image and temperature image were used to generate
homogeneous regions. Figure 10 shows the segmentation map.
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For the buoys data set, it can be deduced in Figure 11 that SegRX, LSMAD, and
LRASR fail to detect the anomalies, and a lot of background information is detected. The
background of this image is complex, and if the whole image was used to calculate the
background, many artificial targets that can be considered as noise would be detected.
Therefore, it was necessary to divide the image into multiple homogeneous regions to
estimate the background of each part accurately. Compared with the above methods, the
proposed EaSLRP method can suppress the background well, even though the background
distribution of the upper part of the emissivity image is very complex.

3.5. Car Data Set and Detection Results

The LWIR hyperspectral image was collected in an area next to a warehouse at
Zhengzhou Shangjie Airport and is shown in Figure 12. The car on the grass is defined as
an anomaly.

As in the previous experimental process, homogeneous regions were obtained ac-
cording to the radiance image and temperature image. Figure 13 shows the result of the
segmentation, where 12 parts are segmented.

For the car data set, the car has a high emissivity and low spectral contrast with the
surrounding grass. Therefore, if the background estimation was not available, it would
be difficult to distinguish the car from its surrounding environment. Therefore, it was
necessary to segment the image to simplify the background and make the background
information more accurate. The segmentation results increase the difference between the
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target and the background, which is more conducive to detecting the target. According
to the results shown in Figure 14, the SegRX method fails to detect the anomaly, and the
contrast between the anomaly and background for the other methods is also low. Compared
to these methods, the proposed EaSLRP method is better able to separate the background
and anomaly.
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3.6. Quantitative Evaluation

In order to assess the results quantitatively, receiver operating characteristic (ROC) [29]
curves and the area under the ROC curve (AUC) [30] are employed. Figure 15 shows the
ROC curves for these three experiments. The AUC values for the three data sets are listed
in Table 1, where the bold numbers are the best results. Line charts of the AUC values are
provided in Figure 16 for the different methods on all three data sets.
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Table 1. Area under the receiver operating characteristic curve (AUC) scores for the different methods on the three data sets.

Data Sets RXD 1 SegRX 2 LRASR 3 LSMAD 4 LELRP-AD 5 Proposed

Metal plates 0.8581 0.9240 0.9652 0.7879 0.9255 0.9896
Buoys 0.9493 0.6004 0.6634 0.5481 0.9200 0.9602

Car 0.7661 0.6934 0.7483 0.6786 0.7860 0.8457
1 Reed–Xiaoli detector; 2 segmented RX detector; 3 sparse representation-based detector; 4 LRaSMD-based Mahalanobis distance method;
5 locally enhanced low-rank prior method.

For the metal plates scene, the ROC curve of the proposed method is always higher
than that of the other methods. When the detection probability reaches 100%, EaSLRP’s
false alarm rate is 0.17, and EaSLRP’s AUC value is 0.9896. Overall, the proposed method
shows a competitive performance.

For the buoys data set, the proposed method’s ROC curve is always higher than that of
SegRX, LSMAD, LELRP-AD, and LRASR. Compared with the RXD method, the ROC curve
of the RXD method is only higher when the false alarm rate is in the range of 0.06–0.14.
When the detection probability reaches 100%, the RXD method’s false alarm rate is 0.28,
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and that of the proposed method is 0.20. The AUC value of the proposed method is 0.9602.
In other words, the EaSLRP method presents the best detection effect.
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For the car data set, the ROC curve of the proposed method is always above that of
SegRX, LSMAD, LRASR, and LELRP-AD. Compared with the RXD method, EaSLRP’s
ROC curve is lower than that of the RXD method when the false alarm rate is between 0.52
and 0.85. When the detection probability reaches 100%, the false alarm rate of the RXD
method is 0.72, and the false alarm rate of the proposed method is 0.85. The AUC scores
of the RXD method and the proposed method are 0.7661 and 0.8457, respectively. That
is to say, similar to previous experiments, the proposed method shows the best anomaly
detection performance, followed by LELRP-AD.

Figure 15 shows the line charts of the AUC scores for the different detection methods.
For all three data sets, the AUC score of EaSLRP is always the highest. The experimental
results illustrate that the proposed EaSLRP method shows superior performance for thermal
infrared hyperspectral image anomaly detection, especially for images with low spectral
contrast or a complex background distribution. The results obtained for the car data set
and the metal plate data set also demonstrate that the more complex the background
distribution is, the more advantageous the proposed method is for anomaly detection.

The EaSLRP method also shows a superior background suppression effect in the
scenario of a complex background. It simplifies the background by image segmentation
and uses the low-rank prior method to remove some of the noise, which improves the purity
of the final background estimation. The estimation background can increase the difference
between the target and the background and makes the target more easily detected.

4. Discussion
4.1. Parameter Analysis for the Proposed Method

To verify the stability of the algorithm, it was necessary to analyze the main parameters
of the algorithm, and the influence of the parameter change on the detection effect was
observed. The main parameters of the EaSLRP method are the scale parameter γ of the
Potts-based method and the number of background endmembers r in the local area. The
metal plates and car data sets were selected for the sensitivity analysis. The AUC score is
taken as the evaluation index.

The first analysis is of the scale parameter γ. According to experience, to cover the
range from over-segmentation to under-segmentation, the value of γ was set over the
ranges of {0.02, 0.05, 0.1, 0.2} and {0.2, 0.3, 0.4, 0.5} for the metal plates data set and the car
data set, respectively. Therefore, the emissivity images were divided into {19, 7, 5, 2} and
{21, 15,13,10} local homogenous regions. As shown in Figure 17, when the background
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endmembers r is constant, as long as the number of segmented homogeneous regions is
kept in a normal range, the value of the scale parameter γ hardly affects the experimental
results. With the change of the scale parameter γ, the AUC score changes very little.
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For the number of background endmembers r, its value is generally not very large. This
is because, after the original image is segmented into multiple homogeneous regions, the
background composition of each local homogeneous region is relatively simple. According
to experience, the value of r was varied over the range of [1,5]. Therefore, in the analysis, we
increased the value of r from 1 to 5 in the process of anomaly detection for the metal plates
and car data sets, and we observed the change of the AUC score, as shown in Figure 18.
In Figure 18, it can be seen that, for the metal plates data set, when r is greater than 2,
the AUC score does not change dramatically with the change of r. However, for the car
data set, with the change of r, the AUC score changes greatly. In images with a simple
background distribution, such as the metal plates data set, the number of background
endmembers in homogeneous regions is less, so the AUC score changes only slightly with
the increase of r. For an image with a complex background distribution, such as the car
data set, the number of background endmembers in the different homogeneous regions
can vary greatly, and the AUC score fluctuates greatly with the change of r. The value of r
can greatly affect the experimental result, so it is necessary to try different values of r to
find the most appropriate setting.
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To sum up, the number of background endmembers r has the greatest impact on the
detection effect of the EaSLRP method, while the number of homogeneous regions in the
region segmentation has only a limited impact on the detection effect.
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4.2. Radiation Domain and Emissivity Domain Analysis for the Proposed Method

To analyze the impact of data differences in the different domains on the detection
results further, the radiance domain image and emissivity domain image were separately
used to compare the detection results. The radiance domain image is the original image
obtained by the sensor, and the emissivity domain image is the original image obtained
after AC and TES. The spectral values of emissivity domain images are mostly in the range
of 0.8–1.0, and the spectral contrast is generally lower than the pixel spectral values of
radiance domain images. In order to analyze which image the proposed method can obtain
a better anomaly detection result with, we analyzed and compared the performance with
two groups of data from different images.

For the metal plates data set, as shown in Figures 19 and 20, the detection results in the
emissivity domain are better in terms of the visual effect than those in the radiance domain.
The ROC curve in the emissivity domain is always higher than that in the radiance domain.
The AUC of the emissivity domain is 0.9896, and that of the radiance domain is 0.6380.
This indicates that the detection effect of the emissivity domain is better than that of the
radiance domain.
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For the car data set, as shown in Figures 21 and 22, when the false alarm rate is
between 0.05 and 0.1, the ROC curve in the radiance domain is higher than that in the
emissivity domain. The AUC value of the emissivity domain is higher than that of the
radiance domain, and from the visual effect of the detection results, the emissivity domain
detection image shows a better suppression effect on the central complex background area.
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In conclusion, it is more stable and effective to detect anomalies in the emissivity
domain. The reason for this is that emissivity is the essential property of matter and is
not affected by other factors. However, the radiance image is determined by the surface
emissivity and surface temperature. The influence of temperature can lead to the same
material having different spectra, while different materials may have similar spectra, which
has a great impact on the anomaly detection results.

5. Conclusions

In this paper, based on the characteristics of LWIR hyperspectral images, we have pre-
sented a new LWIR hyperspectral anomaly detection method named EaSLRP. The EaSLRP
method focuses on the separation of anomalies and background in LWIR hyperspectral
images with low spectral contrast and SNR. It makes full use of the original data and
background information to separate the anomalies from the background. The proposed
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method uses the LWIR hyperspectral radiance image and temperature image to segment
the emissivity image into multiple local regions and applies the range of homogeneous re-
gions to the image of the emissivity domain, which is equivalent to dividing the emissivity
image into several homogeneous regions. The background endmembers are then extracted
from the local homogeneous regions of the emissivity domain image to construct an en-
hanced matrix, which is used to enhance the anomaly sparsity of the local homogeneous
regions. The GoDec method is introduced to decompose the local enhancement matrix
and obtain low-rank background information, and the Mahalanobis distance detector uses
the background component and the original data to detect anomalies. In this study, three
groups of LWIR hyperspectral images were used to verify the effectiveness and superiority
of the proposed algorithm. The experimental results confirmed that the proposed EaSLRP
method can accurately separate the anomalies and background in LWIR hyperspectral
images. Compared with both statistical methods and the latest methods, the proposed
EaSLRP method shows a superior anomaly detection performance and is also more robust.

Through the experiments, we came to the following conclusions: (1) The proposed
method shows an excellent detection capability in thermal infrared hyperspectral emissivity
imagery in which the spectral contrast and SNR are low; (2) the proposed method reduces
the complexity of the background by region segmentation, and low-rank modeling and
decomposition are utilized to remove some of the noise and extract pure background
information. The spectral difference between the anomalies and background is increased by
the use of the Mahalanobis distance detector, which results in the proposed method having
a better detection capability than the other methods; (3) only the number of background
endmembers has a significant influence on the accuracy of the algorithm; and (4) because
there is no temperature effect, the emissivity domain image is more suitable for anomaly
detection than the radiance image, and the effect is more stable.

In LWIR imagery, the spectral contrast is higher in the radiance image. Therefore, how
to extend the anomaly detection algorithm from the emissivity domain to the radiance
domain and solve the anomaly detection problem in the radiance domain in the case of
temperature uncertainty will be an important research question in the future.
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