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Abstract: Convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI)
classification. Many algorithms focus on the deep extraction of a single kind of feature to improve
classification. There have been few studies on the deep extraction of two or more kinds of fusion
features and the combination of spatial and spectral features for classification. The authors of this
paper propose an HSI spectral–spatial classification method based on deep adaptive feature fusion
(SSDF). This method first implements the deep adaptive fusion of two hyperspectral features, and then
it performs spectral–spatial classification on the fused features. In SSDF, a U-shaped deep network
model with the principal component features as the model input and the edge features as the model
label is designed to adaptively fuse two kinds of different features. One comprises the edge features
of the HSIs extracted by the guided filter, and the other comprises the principal component features
obtained by dimensionality reduction of HSIs using principal component analysis. The fused new
features are input into a multi-scale and multi-level feature extraction model for further extraction of
deep features, which are then combined with the spectral features extracted by the long short-term
memory (LSTM) model for classification. The experimental results on three datasets demonstrated that
the performance of the proposed SSDF was superior to several state-of-the-art methods. Additionally,
SSDF was found to be able to perform best as the number of training samples decreased sharply, and
it could also obtain a high classification accuracy for categories with few samples.

Keywords: hyperspectral image classification; adaptive feature fusion; multi-feature fusion; multi-
scale and multi-level feature extraction model

1. Introduction

A hyperspectral sensor is a spectrometer that can simultaneously image a specific area
on consecutive tens or hundreds of bands to obtain a hyperspectral image (HSI). Compared
with multispectral images, HSIs have a wide range of bands and higher spectral resolution.
Because hyperspectral imaging involves different bands, HSIs can obtain rich spectral
information [1], which is conducive to resource exploration [2] and environmental moni-
toring [3]. However, due to its high data dimensions, there is a problem of dimensional
disaster in HSI processing. In fact, in the classification of hyperspectral data, many bands
are redundant and have little positive effect on the classification result, so they seriously af-
fect the processing results and efficiency. Therefore, feature selection and feature extraction
came into being. For example, principal component analysis (PCA) [4,5] and independent
component analysis (ICA) [6,7] are typical methods that transform high-dimensional data
into low-dimensional data. In traditional HSI classification methods, support vector ma-
chine (SVM) [8,9], random forest [10], and other methods have been considered as efficient
algorithms. Moreover, a problem is that different spectra presented by HSIs may belong to
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the same category and similar spectra may belong to different categories, so it is difficult to
obtain a high accuracy in classification by only considering spectral information. In recent
years, the question of how to make full use of spatial features has become attractive in the
field of HSI classification.

Kang et al. [11] used the first principal component or the first three principal compo-
nents of an HSI as a gray or color guide image to perform an edge-preserving filtering on
the probability map obtained by the classifier, and then they selected the largest probability
pixel to achieve classification. Additionally, adding texture features can be used to in-
crease the classification accuracy of an HSI [12]. In recent years, deep networks have gained
widespread attention. A stacked autoencoder (SAE) [13,14], as one of the typical deep learn-
ing models, can extract and classify features by encoding and decoding the input vectors.
Deep belief networks (DBNs) [15] and convolutional neural networks (CNNs) [16–18] have
been proposed for spectral–spatial HSI classification. Furthermore, to obtain deep-level
features, Zhao et al. [19] used dimensionality reduction methods and 2DCNN models to
extract spectral and spatial features. Using the neighborhood block as the input of the net-
work, a 3DCNN [20,21] was used to direct extracted spectral and spatial features from an
original HSI to make full use of its spectral–spatial features and improve the classification
results. Mou et al. [22] proposed the idea to use the time-series networks such as the RNN
(recurrent neural network), LSTM (long short-term memory), and GRU (gated recurrent
unit) for HSI classification, but the method only extracted hyperspectral spectral features,
thus leading to limited classification accuracy. Xu et al. [23] proposed a multi-scale CNN
model. This model first performed PCA on HSIs to extract three principal components as
the input of the network, which combined the characteristics of each pooling layer with the
spectral characteristics to classify HSIs. In this method, only three principal components
were extracted from hyperspectral data as input features, and most HSI information was
lost, so it was not good enough to achieve excellent classification results. Zhong et al. [24]
designed a spectral spatial residual network (SSRN) for HSI classification, where the input
data was a three-dimensional cube and the network used spectral and spatial residual
blocks to learn discriminative features from the rich spectral and spatial features in the
original HSI. However, this method only used residual alternating learning to obtain fusion
features, and the feature fusion was not sufficient, so the extraction of spatial features was
not good enough. Mu et al. [25] proposed a multi-scale and multi-level spectral–spatial
feature fusion network (MSSN), where neighborhood blocks of different scales were used
as the input of the network. The spectral features extracted by the 3D convolutional neural
network and the spatial features extracted by the 2D convolutional neural network were
combined in the form of 3D–2D alternating residual blocks and a self-mapping method.
Song et al. [26] designed a deep feature fusion network (DFFN) for HSI classification by
introducing residual learning and simultaneously adding the outputs of different levels of
networks to further improve the classification results. The fusion method, however, was
only an addition operation of the output features at different levels, the feature fusion of
which was too simple and resulted in an insufficient fusion. Guo et al. [27] proposed an
efficient deep feature extraction and HSI classification method based on multi-scale spatial
features and cross-domain convolutional neural network (MSCNN) that could make full
use of the multi-scale spatial features obtained by the guided filter. The cross-domain
convolutional neural network was used to reorder the multi-scale spatial features, which
were then input into a simple convolutional neural network model for classification. This
method only performed a kind of recombination operation on the edge features, and it did
not introduce other features. The network model only extracted features simply and did
not make full use of the features of the HSI.

To solve the above problems and to adaptively fuse the two different features in a deep
network, we propose a spectral–spatial HSI classification method based on deep adaptive
feature fusion (SSDF). In this paper, a U-shaped network structure was used to enhance
the fusion of deep features. The edge features and the principal component features of the
HSIs were fused adaptively to obtain new features. The new features were input into a
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multi-scale and multi-level feature extraction (MMFE) model, and the output features were
then combined with the spectral features for classification.

The contributions of this work are as follows:
(1) The authors of this paper propose a U-shaped deep network that can adaptively

fuse two different features consisting of convolutional layers, pooling layers, and deconvo-
lution layers. The U-shaped network model was constructed to make sure that the two
different features and the new feature after fusion have the same size. The labels of the
U-shaped network are not the true labels of the image that are used in most literature;
instead, they are the edge feature maps obtained by the guided filtering. The inputs of the
U-shaped network are hyperspectral principal component feature maps. The U-shaped
network is trained to learn the correlation and complementarity of two different features,
adaptively fusing two different features and generating new feature maps. The new feature
maps alleviate the problem of the low classification accuracy caused by using single kind
of features.

(2) The authors of this paper designed an MMFE model that extracts the feature map
of each pooling layer for convolution operation and finally inputs the convolved features
to the global average pooling layer to extract the main information. The extraction of
multi-level and multi-scale features can deeply extract the edge and abstract features of the
image, which is beneficial to the final classification. The proposed deep adaptive feature
fusion and spectral–spatial classification network uses advanced and different kinds of
features as the input of the classification network, which can realize the multi-scale and
multi-level fusion of multiple features, thus resulting in higher classification accuracy.

2. Materials and Methods

Here, we introduce SSDF. Sections 2.1–2.3 introduce the methods for feature extrac-
tion and fusion, and Sections 2.4–2.6 introduce the methods for the classification of the
extracted features. Assume there is a hyperspectral dataset X = {x1, x2, . . . , xN} ∈ R1×1×b,
where N is the number of labeled pixels and b is the number of spectral bands.
Y = {y1, y2, . . . , yN} ∈ R1×1×L represents the corresponding one-hot label vector set, where
L is the category of objects. We partition all data available into three sets—the training,
validation, and test sets, which are denoted by Z1, Z2, and Z3, respectively. Their corre-
sponding one-hot label vector sets are Y1, Y2, and Y3. First, the SSDF network uses Z1 and
Y1 to update the network parameters. Then, Z2 and Y2 are used to monitor the temporary
model generated by the network. Finally, Z3 and Y3 are used to evaluate the performance
of the optimal training model.

2.1. Guided Filter for Edge Feature Extraction

Guided filtering [28] is an edge preservation filter with excellent performance that can
make the output image retain the characteristics of the filtered image and better load the
edge information of the guided image. In fact, the guided filtering method makes use of a
local linear relationship between the output image of the guided filtering and the guided
image. Assuming that the guided image is I and the input image is s, the filtered output
image c is obtained by a local linear model as follows:

ci = ak Ii + dk ∀i ∈ ωk, ci ∈ c (1)

where ωk is a square window with pixel k at the center and its length and width is (2r + 1).
ak and dk are the coefficients to be estimated of the linear model.

Then, to estimate the ak and dk parameters of the linear model, a cost function is
established according to the difference between the input image s and the output image c:

E(ak, dk) = ∑
i∈ωk

(
(ak Ii + dk − si)

2 + εak
2
)

(2)



Remote Sens. 2021, 13, 746 4 of 23

where ε is a regularization parameter that avoids making ak too large. Finally, the ridge
regression technique [29] is used for parameter estimation. By minimizing the cost function
(Equation (2)), the coefficients ak and dk can be solved as follows:

ak =
1
|ω|

∑
i∈ω

Iisi − µksk

σ2
k + ε

(3)

dk = sk − akµk (4)

where µk and σ2
k are the mean and the variance of the guided image I in the window,

respectively; |ω| is the total number of pixels in the window; and sk is the mean of the
input image s in the window. The guided filtered output image can be calculated after the
ak and dk coefficients are obtained.

It can be seen from Equation (1) that the output image and the guided image have
a linear relationship in the window, that is ∆ci = ak∆Ii. Therefore, when the guided
image I contains edge information, the output image c retains the edge information at
the corresponding position. Therefore, the output image c is a feature map with the edge
features of the HSI.

The authors of this paper used guided filtering technology to extract the edge features
of the image, as shown in Figure 1.
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In Figure 1, it can be seen that the minimum noise fraction rotation (MNF) [30] is used
to denoise the input image first, and then PCA is used to extract the first few principal
components of the denoised image as the input image PC1-PCe for guided filtering. The
guided image is the first independent component feature map IC1 of the HSI extracted by
ICA. Taking PC1-PCe as input images and using IC1 and three different windows [2,4,6] to
perform guided filtering operations to obtain 3e filtering feature vectors at various scales,
we can stack all vectors to form a multi-scale guided filtering feature set, namely the edge
feature image set.

2.2. Principal Component Feature Extraction

Because the high-dimensional characteristics of HSIs bring problems such as compu-
tational complexity and information redundancy, it was required to use PCA to reduce
the dimensionality of the spectral information of HSIs and to extract the first e principal
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component features. The spectral matrix Xs of the HSI is obtained according to the spectral
information of the samples as follows:

Xs =


x11, x12, · · · , x1p
x21, x22, · · · , x2p

...
xn1, xn2, · · · , xnp

 (5)

where n denotes the number of all pixels in the HSI, p denotes the length of the spectral
information of the samples, Xs represents the spectral matrix of the HSI with n samples, and
each row of Xs represents a spectrum sample with length p. We calculate the average value
xi of the i-th dimensional spectral information of the sample by the following formula:

xi =
1
n

n

∑
k=1

xki (6)

Further calculations yield the covariance matrix S of the spectral matrix Xs:

S =



S11, · · · , S1j, · · · , S1n
...

...
...

Si1, · · · , Sij, · · · , Sin
...

...
...

Sn1, · · · , Snj, · · · , Snn

 (7)

The component at the i-th row and the j-th column of the covariance matrix S is:

Sij =
1

n− 1

n

∑
k=1

(xki − xi)•
(

xkj − xj

)
(8)

where xkj represents the j-th dimensional spectral value of the k-th sample, xj represents
the average value of the j-th dimensional spectral values of all the samples, and 1 < k ≤ n.

Then, the covariance matrix S is diagonalized, and the feature vectors are orthogo-
nally normalized. The normalized eigenvectors are arranged according to the size of the
corresponding eigenvalues, from large to small, to obtain a feature matrix Xz. Then the
spectral feature matrix Xa = Xz ∗ Xs, where the first c columns of Xa are the first c principal
component features of the HSI.

Thus far, we used guided filtering to obtain the features that contain the main edge
information of the HSI, and we adopted PCA to reduce the dimensions to obtain the
features that contain the principal components of an HSI.

2.3. Adaptive Feature Fusion

During the linear transformation of guided filtering, due to the difference in the
radius of the sliding window, a part of the image information will be lost and the image
information will not be fully utilized. In contrast, the principal component features of an
HSI are the first few principal components of the image obtained by the PCA dimensionality
reduction of the whole image, which can make up for the problem of information loss
caused by the different sliding window radii in guided filtering. Therefore, to make
more comprehensive use of HSI information, the authors of this paper adaptively fused
these two different HSI features so that the HSI information could be fully utilized. As
a deep autonomous learning model, deep learning can make a network adaptively learn
the correlation and difference between model inputs and model labels by training on a
network, thereby generating fusion features that contain both edge features and principal
component features. Thus, the authors of this paper designed a U-shaped deep fusion
network model with the principal component features as the model input and the edge



Remote Sens. 2021, 13, 746 6 of 23

features as the model label. The final output of the model comprises the fusion features that
contain edge features and principal component features. The U-shaped network structure
is shown in Figure 2.
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Figure 2. U-shaped deep adaptive fusion model.

In Figure 2, a, 2a, 4a, and 8a represent the size of the feature map; 1 × 1, 3 × 3,
5 × 5, and 7 × 7 represent the size of the convolution kernel; and 1, 64, and 128 represent
the dimensions of the image. The fusion model consists of three parts: a convolution
layer, a pooling layer (downsampling layer), and a deconvolution layer. This U-shaped
structure, using the redefined input data and label data, enhances the fusion of the two
features. As a feature extractor, the convolution layer can convert the input image into
multi-scale features, which makes the features more abstract. However, the purpose of the
designed network is to fuse features with the same size as the input features. Therefore, a
deconvolution layer is designed after the convolutional layer, which can generate dense
and enlarged feature maps.

Assume that the input data of the U-shaped model is x, and the output of the i-th
convolutional layer is represented as:

Fi(x) = θi(µi) (9)

µi = Fi−1(x) ∗wi + bi (10)

where θi(·) is the activation function of the i-th layer and wi and bi represent the filters and
bias vectors of the i-th layer, respectively. According to the description of the proposed U-
shaped architecture, the estimation of the network parameters Θ = {wi, bi|i ∈ (1, 2, . . . , M)}
can be obtained by minimizing the loss between the fusion features and the label features,
where M is the number of layers of the model. The loss function is expressed by mean
square error as follows:

Loss(x, Θ) =
1
H

H

∑
h=1

∣∣∣∣∣∣F(xh, Θ)− xGF
h ||

2
2 (11)
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where F(xh, Θ) represents the output of the network, xGF
h represents the label feature map,

and H represents the number of pixels on each feature map. The authors of this paper
made use of multiple feature maps for feature fusion, so after each training gets a fused
feature, the network parameters are initialized and the next feature map is retrained until
all feature maps have been trained. All the obtained fusion feature maps are stacked in the
spectral dimension to obtain the adaptive fusion features with the same dimensions and
sizes as the original two features. These features include the edge and principal component
features of the HSI, and the fusion features obtained by the adaptive method are more
beneficial to the HSI classification.

2.4. Multi-Scale and Multi-Level Feature Extraction

The method shown in Figure 2 merely fuses the two kinds of features adaptively. To
achieve better classification results, we needed to design a deep-level feature extraction and
classification model. In this paper, an MMFE model was designed for classification. With the
increasing of the number of convolutional layers, the spatial size of the feature map decreases
sharply, leading to some information loss of the image. In a traditional CNN architecture, the
fully connected layer is usually directly connected to the output of the last convolutional layer.
In this case, the network pays more attention to the deep features and ignores the shallow
features. The authors of this paper propose combining shallow convolution features with
deep ones in classification. A diagram of the MMFE is given in Figure 3.
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To make full use of the features of different levels, the proposed network adds a 2D
convolution layer (conv2d) after each pooling layer. The first purpose of this is to extract
multi-level features by adding convolution layers at different levels. The second is that the
size of the feature map can be changed by using a convolution layer so that the feature
maps of different levels have the same size after passing through the convolution layer. Let
Ci = f (wixi + bi) denote the i-th feature map obtained by introducing the convolutional
layer after the pooling layer, where f is the activation function, xi is the feature map after
the pooling layer, and wi and bi are the corresponding weight matrices and bias terms,
respectively. The multi-level feature map output by the convolution is input to the ADD
layer to perform addition C5 = ∑4

i=1 Ci, and the combined C5 is then input to the global
average pooling (GAP) to stretch it into a one-dimensional tensor, where the GAP can
extract the main information of the feature map and can reduce parameters at the same
time. The output of GAP finally passes through the fully connected layer (FC). This model
extracts the deep features of the new features after fusion, and the obtained features also
have multiple levels.
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2.5. Spectral Feature Extraction

The authors of this paper used the LSTM model to extract the spectral features of the
original HSI. The core module in the LSTM model is the storage unit, as shown in Figure 4.
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The storage unit consists of four elements, i.e., the input gate (it = σ(Rixt + Giht−1 + bi)),
the forget gate ( ft = σ(R f xt + G f ht−1 + b f )), the output gate (ot = σ(Roxt + Goht−1 + bo)),
and the cell state (Ct = it⊗ tanh(Rcxt +Gcht−1 + bc)+ ft⊗Ct−1). The input gate determines
how much new information is added to the cell state (Ct = it ⊗ tanh(Rcxt + Gcht−1 + bc) +
ft ⊗ Ct−1). The output of the output gate is based on the cell state, but it is also a filtered
version. The forget gate determines what information is discarded from the cell sate. The
output of LSTM is ht = ot ⊗ tanh(Ct). In the above formulas, Ri, R f , Ro, Rc, Gi, G f , Go, Gc
is the weight matrix and bi, b f , bo, bc is the bias vector; tan h is the hyperbolic tangent;
σ(x) = 1/(1 + exp(−x)) is the sigmoid function; and ⊗ is the dot product. x is each
band of the HSI input into the LSTM model, and h is the corresponding one-dimensional
resultant vector. All the bands of pixels on the HSI are sequentially input into the LSTM
model, and then a one-dimensional vector is output. Thus, the one-dimensional vector is a
feature vector with the spectral characteristics of the HSI.

2.6. SSDF Model

Sections 2.1–2.4 introduced the adaptive feature fusion of edge features and principal
component features, as well as the MMFE model for classification. These methods focus
on processing the spatial context of pixels without considering the correlation between the
pixels and different bands. Though deep feature extraction and fusion are performed on
HSIs, most of the band information is ignored during feature preprocessing, and spectral
features are not fully utilized. Therefore, we further introduced the LSTM model (Section 2.5)
to extract the spectral band information of the HSI, which is combined with the spatial features
obtained by the MMFE model to perform spectral–spatial classification and form a complete
SSDF method. As shown in Figure 5, SSDF designs a deep adaptive fusion model to fully
fuse the principal component features extracted by PCA and the edge features extracted by
guided filtering, and the fused features are further extracted by MMFE and then combined
with the spectral features extracted by LSTM for the final classification, which improves the
classification accuracy. The Pavia University hyperspectral dataset [31] was input into the
network of the proposed SSDF as an example, which is shown in Figure 5.
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The network in the upper half of Figure 5 consists of two parts: one is the feature
fusion network and the other is the MMFE model. The two networks are independently
trained without affecting each other. In the feature fusion network, the first c principal
components of the HSI are used as the input of the fusion network, and the hyperspectral
edge feature map obtained by the guided filtering is used as the labels of the fusion network.
During network training, only one principal component feature map is input at a time,
corresponding to the label that is also an edge feature map. The feature map output by
the last layer of the network after training is a fusion feature map that combines two
hyperspectral features. A total of c feature maps need to be fused, so each time a feature
map is re-input, the network parameters are initialized to ensure training consistency. After
all the c feature maps are trained, the obtained c feature maps are stacked to get the final
fusion feature. Then, the obtained fused features are input into the MMFE network to
further extract multi-scale and multi-level features. The MMFE network outputs a one-
dimensional spatial feature vector ŷa by using convolution layers and pooling operations
alternately, followed by a fully connected layer.

The input of the lower half of Figure 5 is the original HSI. For this example, all
the bands of each pixel of the HSI were input into the LSTM model to obtain the one-
dimensional feature vector of the pixel. This feature vector was then input into a fully
connected layer to further extract integrated features to obtain a spectral feature vector ŷb.

In the SSDF model, the spatial feature vector ŷa, spectral feature vector ŷb, and the
classifier training are integrated into a unified network. To complete the unified spectral–
spatial classification using the feature stacking method, the feature vector ŷa obtained in
the MMFE is connected to the feature vector ŷb obtained in the LSTM to form a new feature
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vector ŷ, which then passes through a fully connected layer and a SoftMax layer. The loss
function of SSDF is defined as Equation (12).

L = − 1
m

m

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (12)

where yi represents the label feature map, ŷi represents the corresponding predicted label
of the i-th training sample, and m represents the size of the training set. As the classification
network is trained, all parameters are simultaneously optimized by a small batch random
gradient descent algorithm. Finally, the SoftMax layer generates the prediction vector set
ŷ = {ŷ1, ŷ2, . . . , ŷN}.

3. Experiment Setup
3.1. Experimental Datasets

We used three real hyperspectral datasets [31,32] to test the performance of SSDF,
including the Indian Pines, Pavia University, and Salinas scene datasets.

(1) Indian Pines dataset: This was captured by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) from the remote sensing test area in the northwest area of the Indian
state. This dataset contained 220 bands, and 20 noise bands were removed before the
experiments. Each band was of size 145 × 145 and had a wavelength ranging from 0.4 to
2.5 µm. It contained 16 ground-truth classes and a total of 10,249 samples with a spatial
resolution of 20 m per pixel. Figure 6a,b shows its false-color image and the corresponding
ground-truth map.
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Figure 6. Indian Pines dataset. (a) The false-color image. (b) The ground-truth map.

(2) Pavia University dataset: This was captured by the Reflective Optics System
Imaging Spectrometer (ROSIS) from Pavia University in northeastern Italy. This dataset
contained 115 bands, and 12 noise bands were removed before the experiments. Each band
was of size 610 × 340 and had a wavelength ranging from 0.43 to 0.86 µm. It contained
nine ground-truth classes and a total of 42,776 samples with a spatial resolution of 1.3 m
per pixel. Figure 7a,b shows its false-color image and the corresponding ground-truth map.
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map.

(3) Salinas scene dataset: This was collected by AVIRIS sensor over Salinas Valley,
California. This dataset contained 224 bands, and 20 water absorption bands were removed
before the experiments. Each band was of size 512 × 217. It contained 16 ground-truth
classes and a total of 54,129 samples with a spatial resolution of 3.7 m per pixel. Figure 8a,b
shows its false-color image and the corresponding ground-truth map. Table 1 introduces
the meaning of each category in three datasets and the number of samples they contained.
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Table 1. Information of each category in three datasets.

Indian Pines Pavia University Salinas Scene

No. Color Class Samples Color Class Samples Color Class Samples

1
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 
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2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 

Indian Pines Pavia University Salinas Scene 

No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 
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5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 
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No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 

Indian Pines Pavia University Salinas Scene 

No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 

10  Soybean-N 972     Corn_S_G_W 3278 

11  Soybean-M 2455     Lettuce_R_4wk 1068 
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 

Indian Pines Pavia University Salinas Scene 

No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 

10  Soybean-N 972     Corn_S_G_W 3278 

11  Soybean-M 2455     Lettuce_R_4wk 1068 

Fallow_smooth 2678
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 
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No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 

Indian Pines Pavia University Salinas Scene 

No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 

Indian Pines Pavia University Salinas Scene 

No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 

10  Soybean-N 972     Corn_S_G_W 3278 

11  Soybean-M 2455     Lettuce_R_4wk 1068 

Stubble 3959
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 

Indian Pines Pavia University Salinas Scene 

No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 

10  Soybean-N 972     Corn_S_G_W 3278 

11  Soybean-M 2455     Lettuce_R_4wk 1068 
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12  Soybean-C 593     Lettuce_R_5wk 1927 

13  Wheat 205     Lettuce_R_6wk 916 

14  Woods 1265     Lettuce_R_7wk 1070 

15  Build-G-T-D 386     Vinyard_untrained 7268 

16  Stone-S-T 93     Vinyard_V_T 1807 

3.2. Experimental Setup 

We divided all samples of each dataset into training, validation, and test sets. Then, 

we used the training set to update the parameters, used the validation set to monitor the 

generation of the network temporary model, and kept the model with the highest valida-

tion rate. Finally, we used the test set to test the classification performance of the reserved 

model. For Indian Pines dataset, 10%, 10%, and 80% samples were randomly selected from 

each class as the training, validation, and test sets, respectively. For the Pavia University 

and Salinas scene datasets, 5%, 5%, and 90% samples were randomly selected from each 

class as the training, validation, and test sets, respectively. 

Overall accuracy (OA), average accuracy (AA), and the kappa coefficient were 

adopted as the evaluation indicators [33] to evaluate the classification performance of each 

method. In our experiments, after appropriate experimental adjustments, the training 

epoch of the fusion network was set to 2000 times, and the learning rate was set to 0.003. 

The training epoch of the MMFE and LSTM network was set to 400 times, and the batch 

size was set to 128. The pooling layer used the maximum pooling operation. For this pa-

per, the activation function at the output layer used the SoftMax activation function, and 

the activation functions in other locations all used the Rectified Linear Units (ReLU) acti-

vation function. For the Indian Pines, Pavia University, and Salinas scene datasets, the 

numbers of guided filtering input images were 10, 5, and 5, respectively, and the guided 

filtering radii of the three datasets were 2, 4, and 6, respectively. Thus for the three da-

tasets, we got fused feature dimensions of 30, 15, and 15, respectively. To avoid bias esti-

mates, we ran the experiments five times and provided the final results by calculating the 

average of five values. All experiments were performed on the NVIDIA 1080Ti graphics 

card using Python. 

3.3. Influence of Settings 

3.3.1. The Effectiveness of Fusion Features 

To verify the validity of fusion features, we compared the experimental results of 

fusion features with those of single kind of features on the three datasets. As shown in 

Table 2, the principal component features (PFs), edge features (EFs), and fusion features 

(FFs) proposed in this paper were input into the MMFE, and they were then combined 

with the spectral characteristics obtained by the LSTM model for classification. The effects 

of different features were compared in terms of OA, AA, and kappa coefficient. 

Table 2. The results of different features on different datasets. OA: overall accuracy; AA: average 

accuracy; PFs: principal component features; EFs: edge features; FFs: fusion features. 

Indian Pines (10%) PFs EFs FFs 

OA 98.53% 98.50% 99.37% 

AA 95.32% 97.19% 99.08% 

Kappa 0.9833 0.9829 0.9929 

Pavia University (5%) PFs EFs FFs 

OA 98.87% 99.39% 99.68% 

AA 98.68% 99.41% 99.49% 

Kappa 0.9850 0.9927 0.9958 

Salinas Scene (5%) PFs EFs FFs 

OA 98.51% 99.13% 99.81% 

AA 99.28% 99.41% 99.79% 

Kappa 0.9834 0.9903 0.9979 

Bitumen 1330
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 

       

(a)                    (b) 

Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 

Indian Pines Pavia University Salinas Scene 

No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 

10  Soybean-N 972     Corn_S_G_W 3278 

11  Soybean-M 2455     Lettuce_R_4wk 1068 

Celery 3579
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 

Indian Pines Pavia University Salinas Scene 

No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 

10  Soybean-N 972     Corn_S_G_W 3278 

11  Soybean-M 2455     Lettuce_R_4wk 1068 

Hay-W 478
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12  Soybean-C 593     Lettuce_R_5wk 1927 

13  Wheat 205     Lettuce_R_6wk 916 

14  Woods 1265     Lettuce_R_7wk 1070 

15  Build-G-T-D 386     Vinyard_untrained 7268 

16  Stone-S-T 93     Vinyard_V_T 1807 

3.2. Experimental Setup 

We divided all samples of each dataset into training, validation, and test sets. Then, 

we used the training set to update the parameters, used the validation set to monitor the 

generation of the network temporary model, and kept the model with the highest valida-

tion rate. Finally, we used the test set to test the classification performance of the reserved 

model. For Indian Pines dataset, 10%, 10%, and 80% samples were randomly selected from 

each class as the training, validation, and test sets, respectively. For the Pavia University 

and Salinas scene datasets, 5%, 5%, and 90% samples were randomly selected from each 

class as the training, validation, and test sets, respectively. 

Overall accuracy (OA), average accuracy (AA), and the kappa coefficient were 

adopted as the evaluation indicators [33] to evaluate the classification performance of each 

method. In our experiments, after appropriate experimental adjustments, the training 

epoch of the fusion network was set to 2000 times, and the learning rate was set to 0.003. 

The training epoch of the MMFE and LSTM network was set to 400 times, and the batch 

size was set to 128. The pooling layer used the maximum pooling operation. For this pa-

per, the activation function at the output layer used the SoftMax activation function, and 

the activation functions in other locations all used the Rectified Linear Units (ReLU) acti-

vation function. For the Indian Pines, Pavia University, and Salinas scene datasets, the 

numbers of guided filtering input images were 10, 5, and 5, respectively, and the guided 

filtering radii of the three datasets were 2, 4, and 6, respectively. Thus for the three da-

tasets, we got fused feature dimensions of 30, 15, and 15, respectively. To avoid bias esti-

mates, we ran the experiments five times and provided the final results by calculating the 

average of five values. All experiments were performed on the NVIDIA 1080Ti graphics 

card using Python. 

3.3. Influence of Settings 

3.3.1. The Effectiveness of Fusion Features 

To verify the validity of fusion features, we compared the experimental results of 

fusion features with those of single kind of features on the three datasets. As shown in 

Table 2, the principal component features (PFs), edge features (EFs), and fusion features 

(FFs) proposed in this paper were input into the MMFE, and they were then combined 

with the spectral characteristics obtained by the LSTM model for classification. The effects 

of different features were compared in terms of OA, AA, and kappa coefficient. 

Table 2. The results of different features on different datasets. OA: overall accuracy; AA: average 

accuracy; PFs: principal component features; EFs: edge features; FFs: fusion features. 

Indian Pines (10%) PFs EFs FFs 

OA 98.53% 98.50% 99.37% 

AA 95.32% 97.19% 99.08% 

Kappa 0.9833 0.9829 0.9929 

Pavia University (5%) PFs EFs FFs 

OA 98.87% 99.39% 99.68% 

AA 98.68% 99.41% 99.49% 

Kappa 0.9850 0.9927 0.9958 

Salinas Scene (5%) PFs EFs FFs 

OA 98.51% 99.13% 99.81% 

AA 99.28% 99.41% 99.79% 

Kappa 0.9834 0.9903 0.9979 

S-B-
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Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 
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Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 

Indian Pines Pavia University Salinas Scene 

No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 

10  Soybean-N 972     Corn_S_G_W 3278 

11  Soybean-M 2455     Lettuce_R_4wk 1068 

Grapes_untrained 11,271

9

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 20 
 

 

introduces the meaning of each category in three datasets and the number of samples they 

contained. 

       

(a)                     (b) 

Figure 7. Pavia University dataset. (a) The false-color image. (b) The ground-truth map. 

       

(a)                    (b) 

Figure 8. Salinas scene dataset. (a) The false-color image. (b) The ground-truth map. 

Table 1. Information of each category in three datasets. 

Indian Pines Pavia University Salinas Scene 

No. Color Class Samples Color Class Samples Color Class Samples 

1  Alfalfa 46  Asphalt 6631  Brocoli_G_W_1 2009 

2  Corn-N 1428  Meadows 18,649  Brocoli_G_W_2 3726 

3  Corn-M 830  Gravel 2099  Fallow 1976 

4  Corn 237  Trees 3064  Fallow_R_P 1394 

5  Grass-M 483  P-M-sheets 1345  Fallow_smooth 2678 

6  Grass-T 730  Bare Soil 5029  Stubble 3959 

7  Grass-P-M 28  Bitumen 1330  Celery 3579 

8  Hay-W 478  S-B-Bricks 3682  Grapes_untrained 11,271 

9  Oats 20  Shadows 947  Soil_V_D 6203 

10  Soybean-N 972     Corn_S_G_W 3278 

11  Soybean-M 2455     Lettuce_R_4wk 1068 

Oats 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

12  Soybean-C 593     Lettuce_R_5wk 1927 

13  Wheat 205     Lettuce_R_6wk 916 

14  Woods 1265     Lettuce_R_7wk 1070 

15  Build-G-T-D 386     Vinyard_untrained 7268 

16  Stone-S-T 93     Vinyard_V_T 1807 
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we used the training set to update the parameters, used the validation set to monitor the 
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3.2. Experimental Setup 

We divided all samples of each dataset into training, validation, and test sets. Then, 

we used the training set to update the parameters, used the validation set to monitor the 

generation of the network temporary model, and kept the model with the highest valida-

tion rate. Finally, we used the test set to test the classification performance of the reserved 

model. For Indian Pines dataset, 10%, 10%, and 80% samples were randomly selected from 

each class as the training, validation, and test sets, respectively. For the Pavia University 

and Salinas scene datasets, 5%, 5%, and 90% samples were randomly selected from each 

class as the training, validation, and test sets, respectively. 

Overall accuracy (OA), average accuracy (AA), and the kappa coefficient were 

adopted as the evaluation indicators [33] to evaluate the classification performance of each 

method. In our experiments, after appropriate experimental adjustments, the training 

epoch of the fusion network was set to 2000 times, and the learning rate was set to 0.003. 

The training epoch of the MMFE and LSTM network was set to 400 times, and the batch 

size was set to 128. The pooling layer used the maximum pooling operation. For this pa-

per, the activation function at the output layer used the SoftMax activation function, and 

the activation functions in other locations all used the Rectified Linear Units (ReLU) acti-

vation function. For the Indian Pines, Pavia University, and Salinas scene datasets, the 

numbers of guided filtering input images were 10, 5, and 5, respectively, and the guided 

filtering radii of the three datasets were 2, 4, and 6, respectively. Thus for the three da-

tasets, we got fused feature dimensions of 30, 15, and 15, respectively. To avoid bias esti-

mates, we ran the experiments five times and provided the final results by calculating the 

average of five values. All experiments were performed on the NVIDIA 1080Ti graphics 

card using Python. 

3.3. Influence of Settings 

3.3.1. The Effectiveness of Fusion Features 

To verify the validity of fusion features, we compared the experimental results of 

fusion features with those of single kind of features on the three datasets. As shown in 

Table 2, the principal component features (PFs), edge features (EFs), and fusion features 

(FFs) proposed in this paper were input into the MMFE, and they were then combined 

with the spectral characteristics obtained by the LSTM model for classification. The effects 

of different features were compared in terms of OA, AA, and kappa coefficient. 

Table 2. The results of different features on different datasets. OA: overall accuracy; AA: average 

accuracy; PFs: principal component features; EFs: edge features; FFs: fusion features. 

Indian Pines (10%) PFs EFs FFs 

OA 98.53% 98.50% 99.37% 

AA 95.32% 97.19% 99.08% 

Kappa 0.9833 0.9829 0.9929 

Pavia University (5%) PFs EFs FFs 

OA 98.87% 99.39% 99.68% 

AA 98.68% 99.41% 99.49% 

Kappa 0.9850 0.9927 0.9958 

Salinas Scene (5%) PFs EFs FFs 

OA 98.51% 99.13% 99.81% 

AA 99.28% 99.41% 99.79% 

Kappa 0.9834 0.9903 0.9979 
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We divided all samples of each dataset into training, validation, and test sets. Then, 
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generation of the network temporary model, and kept the model with the highest valida-

tion rate. Finally, we used the test set to test the classification performance of the reserved 

model. For Indian Pines dataset, 10%, 10%, and 80% samples were randomly selected from 

each class as the training, validation, and test sets, respectively. For the Pavia University 

and Salinas scene datasets, 5%, 5%, and 90% samples were randomly selected from each 

class as the training, validation, and test sets, respectively. 

Overall accuracy (OA), average accuracy (AA), and the kappa coefficient were 

adopted as the evaluation indicators [33] to evaluate the classification performance of each 

method. In our experiments, after appropriate experimental adjustments, the training 

epoch of the fusion network was set to 2000 times, and the learning rate was set to 0.003. 

The training epoch of the MMFE and LSTM network was set to 400 times, and the batch 

size was set to 128. The pooling layer used the maximum pooling operation. For this pa-

per, the activation function at the output layer used the SoftMax activation function, and 

the activation functions in other locations all used the Rectified Linear Units (ReLU) acti-

vation function. For the Indian Pines, Pavia University, and Salinas scene datasets, the 

numbers of guided filtering input images were 10, 5, and 5, respectively, and the guided 

filtering radii of the three datasets were 2, 4, and 6, respectively. Thus for the three da-

tasets, we got fused feature dimensions of 30, 15, and 15, respectively. To avoid bias esti-

mates, we ran the experiments five times and provided the final results by calculating the 

average of five values. All experiments were performed on the NVIDIA 1080Ti graphics 

card using Python. 

3.3. Influence of Settings 

3.3.1. The Effectiveness of Fusion Features 

To verify the validity of fusion features, we compared the experimental results of 

fusion features with those of single kind of features on the three datasets. As shown in 

Table 2, the principal component features (PFs), edge features (EFs), and fusion features 

(FFs) proposed in this paper were input into the MMFE, and they were then combined 

with the spectral characteristics obtained by the LSTM model for classification. The effects 

of different features were compared in terms of OA, AA, and kappa coefficient. 

Table 2. The results of different features on different datasets. OA: overall accuracy; AA: average 

accuracy; PFs: principal component features; EFs: edge features; FFs: fusion features. 

Indian Pines (10%) PFs EFs FFs 

OA 98.53% 98.50% 99.37% 

AA 95.32% 97.19% 99.08% 

Kappa 0.9833 0.9829 0.9929 

Pavia University (5%) PFs EFs FFs 

OA 98.87% 99.39% 99.68% 

AA 98.68% 99.41% 99.49% 

Kappa 0.9850 0.9927 0.9958 

Salinas Scene (5%) PFs EFs FFs 
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AA 99.28% 99.41% 99.79% 
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3.2. Experimental Setup 

We divided all samples of each dataset into training, validation, and test sets. Then, 

we used the training set to update the parameters, used the validation set to monitor the 

generation of the network temporary model, and kept the model with the highest valida-

tion rate. Finally, we used the test set to test the classification performance of the reserved 

model. For Indian Pines dataset, 10%, 10%, and 80% samples were randomly selected from 

each class as the training, validation, and test sets, respectively. For the Pavia University 

and Salinas scene datasets, 5%, 5%, and 90% samples were randomly selected from each 

class as the training, validation, and test sets, respectively. 

Overall accuracy (OA), average accuracy (AA), and the kappa coefficient were 

adopted as the evaluation indicators [33] to evaluate the classification performance of each 

method. In our experiments, after appropriate experimental adjustments, the training 

epoch of the fusion network was set to 2000 times, and the learning rate was set to 0.003. 

The training epoch of the MMFE and LSTM network was set to 400 times, and the batch 

size was set to 128. The pooling layer used the maximum pooling operation. For this pa-

per, the activation function at the output layer used the SoftMax activation function, and 

the activation functions in other locations all used the Rectified Linear Units (ReLU) acti-

vation function. For the Indian Pines, Pavia University, and Salinas scene datasets, the 

numbers of guided filtering input images were 10, 5, and 5, respectively, and the guided 

filtering radii of the three datasets were 2, 4, and 6, respectively. Thus for the three da-

tasets, we got fused feature dimensions of 30, 15, and 15, respectively. To avoid bias esti-

mates, we ran the experiments five times and provided the final results by calculating the 

average of five values. All experiments were performed on the NVIDIA 1080Ti graphics 

card using Python. 

3.3. Influence of Settings 

3.3.1. The Effectiveness of Fusion Features 

To verify the validity of fusion features, we compared the experimental results of 

fusion features with those of single kind of features on the three datasets. As shown in 

Table 2, the principal component features (PFs), edge features (EFs), and fusion features 

(FFs) proposed in this paper were input into the MMFE, and they were then combined 

with the spectral characteristics obtained by the LSTM model for classification. The effects 

of different features were compared in terms of OA, AA, and kappa coefficient. 

Table 2. The results of different features on different datasets. OA: overall accuracy; AA: average 

accuracy; PFs: principal component features; EFs: edge features; FFs: fusion features. 

Indian Pines (10%) PFs EFs FFs 

OA 98.53% 98.50% 99.37% 

AA 95.32% 97.19% 99.08% 

Kappa 0.9833 0.9829 0.9929 

Pavia University (5%) PFs EFs FFs 

OA 98.87% 99.39% 99.68% 

AA 98.68% 99.41% 99.49% 

Kappa 0.9850 0.9927 0.9958 

Salinas Scene (5%) PFs EFs FFs 

OA 98.51% 99.13% 99.81% 

AA 99.28% 99.41% 99.79% 

Kappa 0.9834 0.9903 0.9979 
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3.2. Experimental Setup 

We divided all samples of each dataset into training, validation, and test sets. Then, 

we used the training set to update the parameters, used the validation set to monitor the 

generation of the network temporary model, and kept the model with the highest valida-

tion rate. Finally, we used the test set to test the classification performance of the reserved 

model. For Indian Pines dataset, 10%, 10%, and 80% samples were randomly selected from 

each class as the training, validation, and test sets, respectively. For the Pavia University 

and Salinas scene datasets, 5%, 5%, and 90% samples were randomly selected from each 

class as the training, validation, and test sets, respectively. 

Overall accuracy (OA), average accuracy (AA), and the kappa coefficient were 

adopted as the evaluation indicators [33] to evaluate the classification performance of each 

method. In our experiments, after appropriate experimental adjustments, the training 

epoch of the fusion network was set to 2000 times, and the learning rate was set to 0.003. 

The training epoch of the MMFE and LSTM network was set to 400 times, and the batch 

size was set to 128. The pooling layer used the maximum pooling operation. For this pa-

per, the activation function at the output layer used the SoftMax activation function, and 

the activation functions in other locations all used the Rectified Linear Units (ReLU) acti-

vation function. For the Indian Pines, Pavia University, and Salinas scene datasets, the 

numbers of guided filtering input images were 10, 5, and 5, respectively, and the guided 

filtering radii of the three datasets were 2, 4, and 6, respectively. Thus for the three da-

tasets, we got fused feature dimensions of 30, 15, and 15, respectively. To avoid bias esti-

mates, we ran the experiments five times and provided the final results by calculating the 

average of five values. All experiments were performed on the NVIDIA 1080Ti graphics 

card using Python. 

3.3. Influence of Settings 

3.3.1. The Effectiveness of Fusion Features 

To verify the validity of fusion features, we compared the experimental results of 

fusion features with those of single kind of features on the three datasets. As shown in 

Table 2, the principal component features (PFs), edge features (EFs), and fusion features 

(FFs) proposed in this paper were input into the MMFE, and they were then combined 

with the spectral characteristics obtained by the LSTM model for classification. The effects 

of different features were compared in terms of OA, AA, and kappa coefficient. 

Table 2. The results of different features on different datasets. OA: overall accuracy; AA: average 

accuracy; PFs: principal component features; EFs: edge features; FFs: fusion features. 

Indian Pines (10%) PFs EFs FFs 

OA 98.53% 98.50% 99.37% 

AA 95.32% 97.19% 99.08% 

Kappa 0.9833 0.9829 0.9929 

Pavia University (5%) PFs EFs FFs 

OA 98.87% 99.39% 99.68% 

AA 98.68% 99.41% 99.49% 

Kappa 0.9850 0.9927 0.9958 

Salinas Scene (5%) PFs EFs FFs 

OA 98.51% 99.13% 99.81% 

AA 99.28% 99.41% 99.79% 

Kappa 0.9834 0.9903 0.9979 
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3.2. Experimental Setup 

We divided all samples of each dataset into training, validation, and test sets. Then, 

we used the training set to update the parameters, used the validation set to monitor the 

generation of the network temporary model, and kept the model with the highest valida-

tion rate. Finally, we used the test set to test the classification performance of the reserved 

model. For Indian Pines dataset, 10%, 10%, and 80% samples were randomly selected from 

each class as the training, validation, and test sets, respectively. For the Pavia University 

and Salinas scene datasets, 5%, 5%, and 90% samples were randomly selected from each 

class as the training, validation, and test sets, respectively. 

Overall accuracy (OA), average accuracy (AA), and the kappa coefficient were 

adopted as the evaluation indicators [33] to evaluate the classification performance of each 

method. In our experiments, after appropriate experimental adjustments, the training 

epoch of the fusion network was set to 2000 times, and the learning rate was set to 0.003. 

The training epoch of the MMFE and LSTM network was set to 400 times, and the batch 

size was set to 128. The pooling layer used the maximum pooling operation. For this pa-

per, the activation function at the output layer used the SoftMax activation function, and 

the activation functions in other locations all used the Rectified Linear Units (ReLU) acti-

vation function. For the Indian Pines, Pavia University, and Salinas scene datasets, the 

numbers of guided filtering input images were 10, 5, and 5, respectively, and the guided 

filtering radii of the three datasets were 2, 4, and 6, respectively. Thus for the three da-

tasets, we got fused feature dimensions of 30, 15, and 15, respectively. To avoid bias esti-

mates, we ran the experiments five times and provided the final results by calculating the 

average of five values. All experiments were performed on the NVIDIA 1080Ti graphics 
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3.2. Experimental Setup

We divided all samples of each dataset into training, validation, and test sets. Then,
we used the training set to update the parameters, used the validation set to monitor
the generation of the network temporary model, and kept the model with the highest
validation rate. Finally, we used the test set to test the classification performance of the
reserved model. For Indian Pines dataset, 10%, 10%, and 80% samples were randomly
selected from each class as the training, validation, and test sets, respectively. For the Pavia
University and Salinas scene datasets, 5%, 5%, and 90% samples were randomly selected
from each class as the training, validation, and test sets, respectively.

Overall accuracy (OA), average accuracy (AA), and the kappa coefficient were adopted
as the evaluation indicators [33] to evaluate the classification performance of each method.
In our experiments, after appropriate experimental adjustments, the training epoch of
the fusion network was set to 2000 times, and the learning rate was set to 0.003. The
training epoch of the MMFE and LSTM network was set to 400 times, and the batch size
was set to 128. The pooling layer used the maximum pooling operation. For this paper,
the activation function at the output layer used the SoftMax activation function, and the
activation functions in other locations all used the Rectified Linear Units (ReLU) activation
function. For the Indian Pines, Pavia University, and Salinas scene datasets, the numbers
of guided filtering input images were 10, 5, and 5, respectively, and the guided filtering
radii of the three datasets were 2, 4, and 6, respectively. Thus for the three datasets, we got
fused feature dimensions of 30, 15, and 15, respectively. To avoid bias estimates, we ran
the experiments five times and provided the final results by calculating the average of five
values. All experiments were performed on the NVIDIA 1080Ti graphics card using Python.
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3.3. Influence of Settings
3.3.1. The Effectiveness of Fusion Features

To verify the validity of fusion features, we compared the experimental results of
fusion features with those of single kind of features on the three datasets. As shown in
Table 2, the principal component features (PFs), edge features (EFs), and fusion features
(FFs) proposed in this paper were input into the MMFE, and they were then combined
with the spectral characteristics obtained by the LSTM model for classification. The effects
of different features were compared in terms of OA, AA, and kappa coefficient.

Table 2. The results of different features on different datasets. OA: overall accuracy; AA: average
accuracy; PFs: principal component features; EFs: edge features; FFs: fusion features.

Indian Pines (10%) PFs EFs FFs

OA 98.53% 98.50% 99.37%
AA 95.32% 97.19% 99.08%

Kappa 0.9833 0.9829 0.9929

Pavia University (5%) PFs EFs FFs

OA 98.87% 99.39% 99.68%
AA 98.68% 99.41% 99.49%

Kappa 0.9850 0.9927 0.9958

Salinas Scene (5%) PFs EFs FFs

OA 98.51% 99.13% 99.81%
AA 99.28% 99.41% 99.79%

Kappa 0.9834 0.9903 0.9979

It can be seen from Table 2 that the results of fusion feature were better than those of
the single kind of features on the three evaluation indicators. For example, in the Indian
Pines dataset, if only the hyperspectral principal component features or edge features were
used for classification, the AA was only 95.32% or 97.19%, respectively. After fusing two
kinds of features, the AA of the fusion features reached 99.08%, and the accuracy was
improved by about 4% or 2%, respectively, which showed that the fused features performed
well in the classification tasks. For the Pavia University and Salinas scene datasets, the
results of FFs were also better than those of PFs and EFs. The results shown in Table 2
demonstrate that the idea of feature fusion is effective, with focus on the complementarity
between different features. Thus, the multi-feature fusion had a richer correlation between
spectral information and spatial information, thus improving the classification performance
of the network.

3.3.2. The Effectiveness of Introducing Spectral Features by LSTM

To verify the necessity and effectiveness of introducing spectral features by LSTM,
three classification methods were compared: the method that directly inputs HSIs into
LSTM (LSTM), the method that only uses MMFE classification after the U-shaped network
that generates fusion features (U-shaped and MMFE), and the SSDF method proposed in
this paper. The results are given in Table 3. It can be seen in Table 3 that the SSDF method
had the best overall classification accuracy on the three datasets.

Table 3. The overall accuracy (%) of different methods.

Methods Indian Pines Pavia University Salinas Scene

LSTM 81.57 90.99 92.64
U-shaped and MMFE 98.96 99.04 99.28

SSDF 99.37 99.68 99.81
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It can be seen from Table 3 that if only LSTM was used for classification, the classifica-
tion results were not satisfactory. Because the extraction of single spectral features only
shallowly uses the information of the HSI, the use of the spatial relationship between pixels
and the reasonable judgment of edge pixels was insufficient. The second method was
found to significantly improve the classification results by introducing principal component
features, edge features, and a multi-scale and multi-level classification structure. However,
this method mainly focuses on processing the spatial context of pixels, ignoring the correla-
tion between the pixels and different bands. In contrast, SSDF was found to achieve better
results by combing the features of two methods. Experimental results showed that the
further introduction of spectral features by LSTM was necessary, and it further improved
classification performance.

4. Classification Results

We compared the proposed method with two classic methods, the SVM [8,9] and
PCA [4,5], and five state-of-the-art methods, LSTM [22], 3DCNN [21], SSRN [24], DFFN [26],
and MSCNN [27].

The SVM, as a classic machine learning method for classification, was used as a base-
line for comparison. The PCA method used here referred to using the first 20 principal
components and SVM with Radial Basis Function (RBF-SVM) for classification. LSTM [22]
used long-term and short-term memory models to extract and utilize spectral features in
image bands. 3DCNN [21] used a three-dimensional convolution cube to extract spectral
and spatial features from the original HSIs. SSRN [24] fused the spectral features obtained
by the 3D convolution kernel and the spatial features obtained by the 2D convolution
kernel in a tandem manner, allowing the model to obtain the spectral and spatial features.
DFFN [26] combined features extracted from residual networks in different levels for classi-
fication. MSCNN [27] proposed the use of cross-domain convolutional neural networks for
feature extraction and classification. For the sake of fairness, we adjusted the parameters to
make these comparison methods achieve their best performances, and we trained these
models in the exact same experimental environment.

4.1. Results on Indian Pines

Table 4 shows the classification results of eight methods on the Indian Pines dataset.
Figure 9 shows the false-color image, the ground truth, and the classification maps of all
methods on the Indian Pines dataset.

As can be seen from Table 4, the OA results of SSDF were 18.19% and 22.98% higher
than those of SVM and PCA, respectively. The OA values of SSDF were also 17.8%, 8.99%,
1.15%, 0.31%, and 0.86% higher than the LSTM, 3DCNN, SSRN, DFFN, and MSCNN state-
of-the-art methods, respectively. It can be observed from Figure 9 that the classification
maps of SVM, PCA, LSTM, and 3DCNN had the serious problem of “salt and pepper”,
whereas the classification maps of DFFN and our SSDF were most similar to the ground
truth. Additionally, the SSDF method still performed well when there were few samples
in some categories. As shown in Table 4, the classification accuracy of SSDF on the first
category (Alfalfa) reached 100%, and it reached 100% on the seventh category (Grass-P-M),
which exceeded most other classification algorithms. At the same time, SSDF could also
obtain satisfactory results in the 9th and 16th categories.
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Table 4. The classification results of all methods on the Indian pine dataset with OA, AA and Kappa data given in the form of mean ± standard deviation. Legend: SVM, support vector
machine; PCA, principal component analysis and SVM with Radial Basis Function (RBF-SVM); LSTM, long short-term memory network; 3DCNN, three-dimensional convolutional
neural network; SSRN, spectral–spatial residual network; DFFN, deep feature fusion network; MSCNN, multi-scale spatial features and cross-domain convolutional network; and SSDF,
spectral–spatial classification method based on deep adaptive feature fusion.

Class SVM PCA LSTM 3DCNN SSRN DFFN MSCNN SSDF

1 83.33 61.90 56.10 59.52 97.37 100 80.95 100
2 72.78 63.22 75.18 91.60 99.35 98.88 97.82 99.73
3 65.19 58.50 66.80 87.01 97.62 99.41 100 99.24
4 63.08 45.33 61.97 85.98 79.98 100 100 98.85
5 90.57 89.66 86.41 88.51 98.98 98.43 97.24 99.48
6 95.59 96.96 95.28 98.93 98.66 99.99 99.85 99.48
7 69.23 50.00 68.00 84.62 90.48 100 92.31 100
8 93.51 98.61 97.91 100 100 100 100 100
9 72.22 22.22 66.66 94.44 94.44 80 100 94.12
10 71.09 67.09 82.15 84 97.64 99.51 98.51 98.58
11 86.11 79.64 82.71 91.04 98.66 98.18 98.19 99.70
12 72.28 64.98 72.23 76.03 98.32 98.15 94.57 97.65
13 96.76 95.68 100 99.46 100 100 100 99.38
14 97.89 96.22 96.75 97.54 98.33 100 99.82 100
15 47.71 49.14 44.96 77.87 100 99.98 99.43 100
16 80.95 84.52 92.78 97.62 98.65 95.83 98.81 97.22

OA (%) 81.18 ± 1.54 76.39 ± 0.89 81.57± 1.05 90.38 ± 0.89 98.22 ± 0.25 99.06 ± 0.16 98.51 ± 0.31 99.37 ± 0.12
AA (%) 78.64 ± 1.49 70.23 ± 1.35 80.62± 1.52 88.39 ± 1.46 98.08 ± 0.59 98.24 ± 0.50 97.34 ± 0.57 99.08 ± 0.17

Kappa × 100 78.36 ± 1.02 72.94 ± 1.12 78.92 ± 0.48 89.03 ± 0.96 97.97 ± 0.85 98.93 ± 0.23 98.29 ± 0.36 99.29 ± 0.11
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4.2. Results on Pavia University

Table 5 provides the classification results of eight methods on the Pavia University
dataset. Figure 10 shows the false-color image, the ground truth, and the classification
maps of all methods on the Pavia University dataset.

As can be seen from Table 5, the OA values of SSDF were 6.3% and 6.51% higher than
those of the traditional SVM and PCA methods, respectively. The OA values of SSDF were
also 7.04%, 3.42%, 0.17%, 0.41%, and 0.62% higher than the LSTM, 3DCNN, SSRN, DFFN,
and MSCNN state-of-the-art methods, respectively. At the same time, it was seen that
SSDF achieved better classification results than other methods in most categories. It can be
observed from Figure 10 that the classification maps of SSRN, DFFN, MSCNN, and SSDF
were very close to the ground truth. In contrast, other methods had the serious problem of
“salt and pepper.”
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Table 5. The classification results of all methods on the Pavia University dataset with OA, AA, and Kappa data given in the form of mean ± standard deviation.

Class SVM PCA LSTM 3DCNN SSRN DFFN MSCNN SSDF

1 92.87 94.33 91.67 95.84 99.94 99.78 98.60 99.97
2 98.09 98.49 97.00 98.79 100 100 99.99 99.96
3 74.03 78.65 78.89 87.42 94.21 98.79 94.74 98.94
4 94.68 92.51 92.04 96.39 98.26 96.55 98.42 98.04
5 99.37 98.90 98.67 99.14 99.51 99.01 100 99.7
6 85.72 81.56 89.06 91.27 100 100 100 100
7 83.07 82.28 79.50 93.35 99.58 99.49 98.49 100
8 90.74 88.94 86.27 95.77 99.43 98.46 97.37 99.61
9 99.78 99.89 99.65 97 100 90.49 96.78 98.72

OA (%) 93.38 ± 0.68 93.17 ± 0.46 92.64 ± 0.64 96.26 ± 0.18 99.51 ± 0.09 99.27 ± 0.16 99.06 ± 0.23 99.68 ± 0.08
AA (%) 90.93 ± 0.54 90.62± 0.67 90.99± 0.83 94.99 ± 0.80 99.49 ± 0.17 98.63 ± 0.52 98.27 ± 0.32 99.49 ± 0.06

Kappa × 100 91.18 ± 0.82 90.87 ± 0.23 90.23± 0.56 95.03 ± 0.50 97.97 ± 0.12 99.03 ± 0.19 98.76 ± 0.31 99.58 ± 0.11
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4.3. Results on Salinas Scene

Table 6 gives the classification results of eight methods on the Salinas scene dataset. Figure 11
shows the false-color image, the ground truth, and the classification maps of all methods.
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Table 6. The classification results of all methods on the Salinas scene dataset with OA, AA, and Kappa data given in the form of mean ± standard deviation.

Class SVM PCA LSTM 3DCNN SSRN DFFN MSCNN SSDF

1 96.8 98.32 99.67 95.29 100 100 100 100
2 97.01 99.97 99.94 99.80 100 100 100 100
3 99.31 97.23 99.09 99.57 100 100 98.62 100
4 98.04 99.55 99.51 97.58 99.84 99.52 97.51 99.84
5 96.58 97.99 98.80 99.84 99.29 99.96 99.49 99.30
6 95.93 99.65 99.92 99.04 100 100 100 100
7 97.03 99.38 99.51 97.94 100 100 99.94 99.97
8 82.96 90.94 91.34 93.68 98.39 98.73 99.26 99.57
9 98.79 99.89 99.69 98.61 100 100 100 100

10 87.12 93.80 93.97 94.09 100 99.39 99.84 99.83
11 91.23 91.23 95.84 94.98 99.16 97.51 99.21 100
12 98.96 99.95 99.19 99.62 100 99.54 100 100
13 93.69 97.24 99.02 96.9 100 100 99.31 99.88
14 85.55 94.39 93.78 94.99 98.76 99.37 98.03 98.96
15 69.04 58.07 62.85 87.31 95.72 98.33 95.83 99.82
16 89.34 98.66 99.20 95.34 99.69 99.87 99.18 100

OA (%) 89.35 ± 0.43 91.38±0.23 92.38±0.73 95.56 ± 0.79 99.01 ± 0.23 99.38 ± 0.08 99.04 ± 0.28 99.81 ± 0.05
AA (%) 92.34 ± 0.36 94.77±0.83 95.96±0.64 96.54 ± 0.64 99.57 ± 0.15 99.51 ± 0.19 99.14 ± 0.12 99.79 ± 0.08

Kappa × 100 88.09 ± 0.71 90.37±0.33 91.49±0.85 95.06 ± 0.51 98.89 ± 0.31 99.31 ± 0.11 98.93 ± 0.18 99.79 ± 0.06
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It can be seen from Table 6 that the OA values of SSDF were 10.46% and 8.43% higher
than those of the traditional SVM and PCA methods, respectively. The OA values of SSDF
were also 7.43%, 4.25%, 0.8%, 0.43%, and 0.77% higher than LSTM, 3DCNN, SSRN, DFFN,
and MSCNN, respectively. Specifically, it can be seen that for the 8th (Grapes_untrained)
and 15th classes (Vinyard_untrained), which were difficult for classification, SSDF achieved
the best results. At the same time, according to the variance values of the evaluation
indexes in Table 6, it can be seen that the performance of SSDF was more stable. It can be
observed from Figure 11 that the classification map of SSDF was much more similar to the
ground truth than those of other methods. Especially, the red area in the upper left corner
of each image in Figure 11 distinctly demonstrates the superiority of SSDF.

5. Discussion

To test the generalization ability and robustness of the SSDF, we randomly selected
5%, 10%, 15%, and 20% labeled samples from the Indian Pines dataset and 3%, 4%, 5%, and
6% labeled samples from the Pavia University and Salinas scene datasets as the training
data. The curves in Figure 12 show the overall accuracies of the eight methods versus
different percentages of training samples.
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It can be seen from Figure 12 that when there were fewer training data, SSDF could
still achieve a much higher classification accuracy than SVM, PCA, LSTM, and 3DCNN,
and it was also superior to other the state-of-the-art SSRN, DFFN and MSCNN methods.

As can be seen from all the above experimental results, the proposed SSDF achieved
the best classification performance in most categories, and it also obtained the best classifi-
cation results on the three evaluation indicators of OA, AA, and Kappa. The reasons for
this performance improvement are as follows:

(1) The principal component features and edge features were used as the input and
label of the U-shaped network, respectively, so that the network adaptively generated new
fusion features that could adaptively learn the correlation and complementarity of two
different features through network training and provide more sufficient information for
classification.

(2) The MMFE model combined low-level features with high-level features, making
the model perform better.

Compared with the simple spectral–spatial combination of SSRN, the proposed SSDF
introduced the idea of merging multiple features, thus fully merging the rich feature
correlation and feature dissimilarity between two different features. At the same time,
compared with the MSCNN network, SSDF not only used the U-shaped network to
adaptively generate advanced features but also introduced the idea of a multi-scale and
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multi-level classification network, and this structure could more deeply extract the original
information of HSIs and further improve the classification effect.

6. Conclusions

The authors of this paper have proposed a hyperspectral image spectral–spatial
classification based on deep adaptive feature fusion (SSDF). Compared with other existing
network models, the U-shaped structure in SSDF is composed of special inputs and labels,
i.e., the principal component features and edge features are used as the input and label of the
U-shaped network, respectively. Corresponding training of inputs and labels through deep
networks can effectively extract and fuse two elementary features to generate advanced
features. Moreover, compared with a network model with single feature input, SSDF was
found to greatly retain the complementarity and rich correlation among the features by
making full use of various features. Additionally, the proposed SSDF model contains a
multi-scale and multi-level network for extracting deep features that, to some extent, fuses
elementary features with advanced features, thus making our method more generalizable.
The experimental results showed that the performance of SSDF on the three datasets was
better than other existing state-of-the-art methods, and SSDF was always able to obtain
good classification results under different training conditions, which further validated that
the proposed SSDF has excellent generalization ability and robustness.

Though the idea of multi-feature fusion brings higher classification accuracy, it also
increases the computational complexity of a model. In the future, we will try to simplify
the proposed model. Furthermore, although the fusion of edge features and principal
component features has shown its effectiveness of improving classification accuracy, we
will investigate the possibility of working with other types of features for fusion, which
may result in better performance if better combination of features is found.
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