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Abstract: Scene understanding of remote sensing images is of great significance in various applica-
tions. Its fundamental problem is how to construct representative features. Various convolutional
neural network architectures have been proposed for automatically learning features from images.
However, is the current way of configuring the same architecture to learn all the data while ignoring
the differences between images the right one? It seems to be contrary to our intuition: it is clear
that some images are easier to recognize, and some are harder to recognize. This problem is the
gap between the characteristics of the images and the learning features corresponding to specific
network structures. Unfortunately, the literature so far lacks an analysis of the two. In this paper, we
explore this problem from three aspects: we first build a visual-based evaluation pipeline of scene
complexity to characterize the intrinsic differences between images; then, we analyze the relationship
between semantic concepts and feature representations, i.e., the scalability and hierarchy of features
which the essential elements in CNNs of different architectures, for remote sensing scenes of different
complexity; thirdly, we introduce CAM, a visualization method that explains feature learning within
neural networks, to analyze the relationship between scenes with different complexity and semantic
feature representations. The experimental results show that a complex scene would need deeper and
multi-scale features, whereas a simpler scene would need lower and single-scale features. Besides,
the complex scene concept is more dependent on the joint semantic representation of multiple objects.
Furthermore, we propose the framework of scene complexity prediction for an image and utilize it to
design a depth and scale-adaptive model. It achieves higher performance but with fewer parameters
than the original model, demonstrating the potential significance of scene complexity.

Keywords: scene understanding; feature learning; scene complexity; adaptive networks

1. Introduction

Scene understanding is one of the essential and challenging tasks for computer vision
and photogrammetry [1]. It plays a vital role in many applications, such as autonomous
driving, navigation, indoor and outdoor mapping, as well as localization [2,3]. In particular,
the classification task is the basis for some downstream tasks, such as segmentation [4] and
detection [5]. Its Key is acquiring strong representative features to represent the semantic
knowledge of images. Thanks to the rapid development of research related to convolutional
neural networks [6–8], the automatic learning of features from images now replaces the
manual construction of features in the past. In recent years, the focus of research has
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gradually shifted from designing sophisticated feature extraction algorithms [9–13] to
building efficient network architecture [14] to learn expressive features. Some works
focus on introducing prior knowledge into the architecture of networks to improve the
learning of features. Studies [15,16] try to combine satellite image characters and the
general convolutional neural network. Chen et al. [17] proposed a CNN architecture by
combining a scene’s context to perform object detection. Qu et al. [18] presented a modified
Faster-RCNN to solve the problem of object detection in infrared streetscape images with
limited samples. Liu et al. [19] designed a superpixel-guided embedding CNN to handle
limited labeled data and irregular spatial dependency in remote sensing images. Moreover,
Xu et al. [20] proposed a segmentation model that uses guided filters to rectify the features.
These works focus on improving performance by modifying the architecture of networks
based on artificial prior knowledge.

Figure 1. Two similar scenes in content but with different semantic content, left: samples of commer-
cial center; right: samples of dense residential.

Many methods [21–23] for scene recognition of remote sensing images have been
proposed in recent years, but these methods use the same network for all images. Is this
the right way? It is counter-intuitive: some scenes are easier to recognize, while others are
harder to recognize. In other words, using a uniform architecture or introducing artificial
priors while ignoring the differences in the images themselves may cause a mismatch in
feature learning, e.g., in Figure 1, commercial center and dense residential are similar in
content, it requires the network to learn the feature of the style. The reason behind this is
the gap between the inherent nature of the images and the features learned by the network
architecture. However, current research lacks an analysis of the relationship between the
two.

Bridging the gap between image properties and feature learning of network faces
three problems:

1. how to measure the inherent properties of images.
2. how to analyze the relationship between image properties and features learned from

different structures.
3. how to make the features learned within the network correspond to the semantic

concepts of images for straightforward interpretation.

For the first problem, although some methods, e.g., cosine similarity and Euclidean
distance, reflect the differences between images, they lack the characterization of the images
themselves. Structural similarity assesses the variability among statistical features between
images but lacks semantic features. We introduce scene complexity to measure the intrinsic
property of images. It considers high-level semantic feature representations and image
memorability to evaluate one scene concept’s learning difficulty more objectively. Several
scene complexity measurements have been proposed, such as radiosity and scene visibility
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complexity [24], which applied the concept of entropy from information theory to study 3D
scene visibility. Methods introduce the cognitive neuroscience to discuss potential image
properties, such as saliency [25,26], memorability [27] and search difficulty [28]. Some
studies use it in feature matching to help improve object tracking [29]. Nevertheless, there
is little literature about the synthesis of human visual perception and computer vision.
In this paper, we decompose the estimation into two components: the memorability and
search difficulty of an image. Specifically, we proposed a pipeline for scene complexity
evaluation using visual processing tasks and building a scene complexity dataset called the
AID-22. It is the first scene complexity dataset in remote sensing, and its images are mainly
sampled from the AID [30]. For the second problem, Remote sensing images are sensitive to
scale and are hierarchical in semantic representation. We analyze the relationship between
the nature of images and the scale and hierarchy of features. Since the scale and hierarchy
in CNNs are mainly determined by the size of receptive field and depth in the network
architecture, which is the fundamental element of the network architecture, we analyze
the relationship between images of various complexity and the depth and receptive field
of the network. For the third problem, some works tried to open the black box of CNNs
to interpret the mechanism of feature learning. Some works focus on visualizing the
activation neurons [31] or the inverse mapping of the max response on neurons [32]. These
works demonstrate that CNNs learn features, from general features to high-level semantic
features, layer by layer. Furthermore, Zhou et al. [33] proposed CAM to automatically
learn the contribution of image region features to the semantic representation. Therefore,
we use CAM to visualize the mapping relationship between attention in learning features
and scene objects at different complexity levels.

The contributions of our work are as follows:

1. We introduce scene complexity and analyze the relationship between remote sensing
scenes of different complexity and the scale and hierarchy of feature learning in
CNNs.

2. We propose a scene complexity measure that integrates scene search difficulty and
scene memorability. Besides, we construct the first scene complexity dataset in remote
sensing.

3. We design a scene complexity prediction framework to adapt different complexity
data to the network depth and scale, which effectively improves the downstream
model’s recognition accuracy and reduces the number of parameters.

4. We visualized and analyzed the relationship between semantic concept represen-
tation and model feature learning for scenes of different complexity, showing that
complex scenes rely on learning multi-object features jointly to support semantic
representation.

2. Materials and Methods
2.1. The Scene Complexity Dataset Construction

The quality of the training dataset is an important factor that impacts the performance
of a model [34]. Considering the nature of scene complexity, we select 22 categories of
scenes, whose complexity is more distinguishable, from the AID dataset [30] as our basic
dataset because of its applicable characteristics. The dataset contains 360 samples per class;
each sample is a 600 × 600 pixels RGB image with a spatial resolution ranged from 1 to 8m.
Note that to balance the image size with the hardware limits, we resize the original images
to 256 × 256 pixels in the experiments.

Evaluating the degree of the images is central to building our dataset. Referring to
how humans understand diverse complex scenes, the more complicated a scene is, the
more difficult it is to search for objects that belong to the scene, and memorizing it is
even more difficult. Based on this cognitive phenomenon, we addressed the problem by
measuring how memorable an image is and how easily it can be searched. We refer to [27]
that characterized the consistency of an image memory across various observers and time
delays. To measure image memorability, we asked volunteers to view a sequence of images.
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During the process, they would scan each image for 1 s and have 1.4 s rest. Once they
recognized an image they had seen before, they would report the image. We shuffled
images and asked volunteers to rest before the next sequence (we set a time of 12 s for the
sequence) to avoid exhaustion (the procedure is shown in Figure 2). We asked volunteers
to repeatedly view the images and then recognize them and rank them according to the
length of repeated sessions required to recognize them. The longer the repeated session,
the higher the memorability score. The pictures were then scored for memorability (from 1
to 10) based on the repeated session times. Moreover, the scores were normalized to 0 to 1.

Figure 2. Visual memorability evaluation pipeline for sequence testing.

Similar to [28], we tested the human response time during the visual search task
and converted it into difficulty scores. We invited volunteers to select 10 to 15 samples
randomly and asked them to execute the following visual tasks:

1. Given an image they were required to answer “yes” or “no” to a question about
whether there was a particular object class in the image or point to a location when
asked to locate a randomly selected object in the image, for example,” Is there an
airplane?” or “Where is the house?”;

2. The response time to correctly answer the questions about the image was recorded;
3. For each image, the average response time for the two types of question, across all the

volunteers, was calculated;
4. The sum of the search difficulty score and the memorability score is used as the scene

complexity score of an image (Figure 3).

To simplify the experiment, we normalized an image’s score on the range 1 to 10 and
divided the range into three superclasses: low, middle, and high complexity. Furthermore,
we calculated the mean of a category’s complexity scores as the total score and used the
K-means clustering method, setting K = 3, to automatically categorize the dataset into
three clusters. Figure 4 shows the three levels of the clustering result. The number in the
circle indicates the clustering center, and the elements surrounding it shows the mean score
of each category.
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Figure 3. Samples with different scene complexity scores.

Figure 4. Scene complexity score and clustering results for each class of AID-22. It is composed of
3 super-classes according to scene complexity: the low complexity contains 6 classes of scenes, the
middle complexity contains 9 classes of scenes, and the high complexity scene contains 7 classes of
scenes. Every class contains 360 images, which size is 256 × 256.
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Figure 5. The three modified versions of inception V1. The RFs of the last layer before output are
11 × 11 or 47 × 47 or 83 × 83, separately. Nevertheless, the RFs of original inception V1 is the
combination ranged from 11 × 11 to 83 × 83.

2.2. Methods
2.2.1. How to Control the Scale of Learning Feature

The scale of feature learning is mainly decided by two factors: the input image’s size
and the receptive fields (RFs). Because we usually use uniform input size in one network,
we mainly discuss the receptive fields in this paper. The depth and kernel size control the
scope of receptive fields. To control the variables, we use the same depth and only adjust
the kernel size in convolutional layers to explore the effect of the features’ scale on the
recognition of scenes of different complexity. Specifically, we train the GoogLeNet [35],
which is composed of multiple inceptions. The original inception V1 contains two layers:
the first layer is three parallel convolutional layers with kernel size 1 × 1 and one pooling
layer; the second layer is three parallel convolutional layers with various kernel size 1× 1,
3 × 3, and 5 × 5, which ensure to learning multiple scales of features. Besides it, we modify
three versions of inception based on it as a contrast. Figure 5 shows the architecture of the
modified inception with RFs, which indicate the scale of features.

2.2.2. How to Control the Hierarchy of Learning Feature

Deep network extracts high-level semantic features via stacked layers [6], which
ensure the feature can encode a scene’s concept. To explore the hierarchy of feature
learning in remote sensing imagery understanding, we train models with various depth,
which ensures the feature is of multiple levels of features, from scene complexity.

To analyze the influence of network depth on remote sensing scene recognition,
we trained models using the VGG-16/19 models [36], which are composed of 13 or 16
convolution layers and three fully connected layers. Both of the networks utilize a uniform
convolutional kernel size of (k = 3 × 3 ), which eliminates the interference of other possible
factors. We implemented the experiments in the Caffe [37] and trained models on the
AID-22. The capacity of networks is sufficient for classifying this dataset [38], which avoids
the interference of network capacity change to experimental results.

2.2.3. Designing Image-Adaptive Networks with Scene Complexity

Predicting the degree of scene complexity. Benefiting from the strong capabilities of
CNN for feature representation, we view scene complexity as synthesizing multiple-levels
of features. We use resnet-18 [39] rather than other classic models to extract features of
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one scene because it is easy to train and can learn better features. In Figure 6, we show
the pipeline of scene complexity prediction. It contains three steps: firstly, we train the
pretrained resnet-18 on the constructed scene complexity dataset. The resnet-18 is trained
100,000 iterations with an initial learning rate lr = 1× 10−3, batch size = 64. Secondly, we
use it to extract the features of the last FC-layer. Thirdly, we utilize the extracted features
to train the SVM to predict the scene complexity of images. The categories of images
are sorted into three degrees of complexity by the prediction score. It achieves 92.85%
test accuracy on complexity prediction. This result suggests that classifying the scene
complexity is a high-level semantic task, and deep convolution neural networks can do
well.

Figure 6. The pipeline for predicting scene complexity of images. The training process contains
three phases: firstly, we train resnet-18 pretrained on ImageNet on the constructed scene complexity
dataset. Secondly, we use it to extract features. Thirdly, we utilize the extracted features to train the
SVM to predict the scene complexity of images.

Improving the recognition accuracy and lighten the model parameters size. The
prediction of complexity plays the role of data preprocessing. It categories the images with
complexity and take them into the downstream networks with various depth (e.g., revised
VGG-16). We designed modified versions of VGG-16. Table 1 shows the architectures
of VGG-16*. Compared with the original VGG-16, all use the same convolutional layers,
except that fully connected layers and output layers (VGG-16*-A) for different scene
complexity images are configured behind different convolutional layers, respectively, thus
allowing images of different complexity to adapt to different network depths. All images
share the shallow layer of the network. Moreover, the number of neurons in the output
layer is modified because the number of processed scene classes decreases much, and the
fully connected layer no longer needs such a massive number of neurons. Considering the
massive number of flatten layer parameters corresponding to low and medium complexity,
we use Maxpool and Global average pool (GAP) and process them parallel, i.e., Maxpool
processes the convolutional layer’s information inputs it to the next convolutional layer. In
contrast, GAP processes the convolutional layer’s information and flows to each output
module (VGG-16*-D). In addition to significantly reducing the number of parameters in the
model, GAP integrates global information, while using global information in the shallow
layers is sufficient. We also give two other versions (VGG-16*-B, VGG-16*-D) depending
on the GAP modules’ location.
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Table 1. The architecture of revised VGG-16 with adaptive depth.

ConvNet Configuration

VGG-16 VGG-16*-A VGG-16*-B VGG-16*-C VGG-16*-D

Conv3-64
Conv3-64

Maxpool

Conv3-128
Conv3-128

Maxpool

Conv3-256
Conv3-256
Conv3-256

Maxpool Maxpool Maxpool|GAP Maxpool|GAP Maxpool|GAP

\ FC-1024
FC-6

FC-1024
FC-6

FC-1024
FC-6

FC-1024
FC-6

Conv3-512
Conv3-512
Conv3-512

Maxpool Maxpool Maxpool Maxpool|GAP Maxpool|GAP

\ FC-1024
FC-9

FC-1024
FC-9

FC-1024
FC-9

FC-1024
FC-9

Conv3-512
Conv3-512
Conv3-512

Maxpool Maxpool Maxpool Maxpool Maxpool|GAP

FC-4096
FC-4096

FC-22
soft-max

FC-1024
FC-7

soft-max

FC-1024
FC-7

soft-max

FC-1024
FC-7

soft-max

FC-1024
FC-7

soft-max

2.2.4. Class Activation Mapping and Semantic Representation

To explore the feature learning mechanism for images of different complexity, we
utilized a visual approach named Class Activation Mapping (CAM) [33] to map the re-
lationship between the output and the original input image. It visualizes the pixels that
highly contribute to recognition. CAM learns the mapping from the pixels of an image to
the output probability and reflects the weights that pixels contribute to the prediction score
via a heat map (Figure 7). The most important part is building the class activation maps, it
is calculated by:

Mc = ∑
K

wc
k fk(x, y) (1)

where k is the number of neurons in the last convolution layer, wc
k is the weight that the

k-th neuron contributes to the prediction score corresponding to class c, and fk(x, y) is the
activation function of the k-th neuron of the last convolution layer at position (x, y). To
calculate the feature maps’ weight in the last convolutional layer, the full connected layer
of GoogLeNet, which is between the last convolution layer and the output layer, is replaced
with global average pooling (GAP) and the auxiliary loss function is removed.
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Figure 7. The pipeline and CAM calculation. The CAMs represent the contribution of objects on the
input images to the prediction, corresponding to the semantic expression. The warmer part means
the higher contribution to represent the semantic of an image.

2.3. Training Details

We train all models on our constructed scene complexity dataset. It contains 3 degrees
of complexity, a total of 22 categories, each class of 360 samples. Furthermore, the dataset is
divided into the training set, validation set, and test set in a ratio of 3:1:1. We implemented
models on Caffe. In all experiments, we initialize the models’ weights using a Gaussian
distribution. The activation function used is the ReLU activation function. We use a grid
search to obtain the best model by setting the learning rate as η = {0.1, 0.01, 0.001, 0.0001} ,
and divide it by 10 per 50,000 iterations. The maximum number of iterations is 300,000. The
optimization policy is stochastic gradient descent with a batch size equal to the maximum
number of examples that the hardware could support. We test models every 10,000
iterations and then save the best result as the final model. The momentum is 0.9, and the
weight decay is 0.0005. We resize the input image to the size networks required and train
models using the NVIDIA GTX1070 8GB GPU.

3. Results

Current studies [40] prove that a model learns a scene by encoding objects’ distribu-
tion. However, the feature representation that the model learns remains unclear. Thus,
we explored the relationship among the semantic concept of a scene, the scale, and the
hierarchy of feature learning, based on CNN’s, from the perspective of scene complexity.
Our experiments use our own constructed AID-22 scene complexity dataset, which contains
three degrees of scene complexity image samples. Moreover, as introduced in Section 2,
these sample complexities are clustered to obtain the corresponding complexity degree.
Furthermore, we constructed an adaptive network to improve model performance based
on VGG-16. It can adjust its depth and scales to the scene complexity of an image. The
experimental results show that the modified network increases the recognition accuracy
with only one-tenth parameters.

3.1. How the Scale of Feature Learning Influences the Recognition of Scenes with Different
Complexity

Except for the overall accuracy (OA), which is defined by the ratio of the predicted
sample to the entire data sample, we utilize the kappa coefficients [41] to evaluate the
performance of the model because it measures the consistency between the prediction and
ground truth more objectively. Experimental results show that RFs significantly influence
remote sensing scene recognition. Multiple scale features are usually useful for improving
the overall accuracy in scene recognition. Table 2 shows that the kappa coefficient of
GoogLeNet with multiple scales RFs is higher than that of other single-scale RF models.
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The inception 5× 5 model, with a larger convolution kernel scale, works best in single-scale
RF models; the smallest scale inception, 1 × 1, drops more than others. It suggests that the
different levels of granularity of features have various weights for the whole dataset.

Table 2. The OA and kappa coefficient results for a multi-scale inception embedded model.

Model GoogLeNet Inception 1 × 1 Inception 3 × 3 Inception 5 × 5

OA 0.8329 0.6863 0.7761 0.7815
Kappa 0.8269 0.6708 0.7651 0.7706

To explore the relationship between RFs and scene complexity, we separately analyzed
category recognition accuracy with complexity. With increasing scene complexity, the
model with a multi-scale RFs performs better than the single-scale architecture. As seen in
Figure 8, the four inception models have nearly the same performance in the low scene
complexity categories, but it is evident that the multi-scale inception works best.

The classes with high scene complexity are sensitive to the change of the learning
feature’s scale, while classes with low scene complexity are not sensitive. As shown in
Figure 9, the precision curve rises as the scale increases. Note that the multi-scale model
rises the fastest and that a similar phenomenon occurs with moderate-complexity scene
recognition, but it is not evident in low-complexity scenes. It indicates that a complicated
scene representation requires multiple-scale features. Nonetheless, it is sufficient to encode
simple scenes with single-scale features.

Figure 8. Performance of different inception models for various complex scenes. Top: simple
scene, middle: moderate-complexity scene, and bottom: high-complexity scene. The horizontal axis
indicates the dimensions 1 × 1, 3 × 3, 5 × 5, and the original multi-scale inception network, and the
vertical axis represents the average accuracy of the model tested on a particular complexity class. To
compare the variance of accuracy to complexity in the standard range, we limited the y-axis to the
same scale (0.25).
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Figure 9. Results of the performance of different inception models on various scene complexity
categories. Warmer colors indicate higher test accuracy; the x-axis represents the scene complexity
category, the y-axis represents the model scale, and the z-axis represents the test accuracy. The
multi-scale inception model outperforms the other models in high-complexity scene recognition
tasks, but some low-complexity scenes’ accuracy worsens.

3.2. How the Hierarchy of Feature Learning Influences the Recognition of Scenes with Different
Complexity

Experimental results in Table 3 show that a deeper network performs better on overall
accuracy. The VGG-19 model achieves higher accuracy than the VGG-16 model. And
the overall accuracy of the VGG models, with the best performance of is 95%. While the
GoogLeNet, which is lower than VGG, has 83% OA (Table 2). It suggests that a deeper
network is usually beneficial for improving the overall recognition but may lead to higher
computational costs and time complexity.

Table 3. Overall accuracy tested on the AID-22 scene dataset using the VGG.

Model Train Accuracy (%) Test Accuracy (%)

VGG-16 96.15 94.1
VGG-19 96.89 94.91

We further investigated different classes’ recognition and found that different depth
models are good at identifying different scenes. As seen in Figure 10, the VGG-16 is
preferable for bare land recognition and has weak performance in the mountain category,
whereas the VGG-19 model performs better than the VGG-16 model in recognizing the
playground. It shows that different scenes require a specific depth of networks. Thus, we
conclude that a unified depth of features may benefit partial categories of scenes but may
obstruct some scenes’ recognition.

We calculated the overall average accuracy of images with different scene complexity
on various deep networks in Figure 11. Simple scenes are more easily recognized on
shallow networks, while complex sets rely more on deep networks. Deeper network
models can significantly improve the recognition accuracy of complex networks but may
impair simple scenes’ recognition. Specifically, when using VGG-19, the OA accuracy
improves by 3% on highly complex sets; however, the OA accuracy decreases on all other
complexity scenes, especially on simple sets. We also calculate the standard deviation of
recognition accuracy for each complexity scene, as shown by the solid black line. We find
that the recognition accuracy of the shallow network is more stable on the low complexity
scene. In contrast, the recognition accuracy of the deep network is more stable on the
high complexity scene. Thus, we can conclude that the complex scene relies more on the
high-level features, while the simple scene relies more on the shallow features. Under such
conditions, the recognition accuracy of models is higher and more stable.
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Figure 10. Results of the recognition performance of different depth VGG networks on various scene
categories. The blue dots indicate the results of the VGG-19 model testing using the dataset, and the
red dots indicate the VGG-16 results. The arrow direction shows the change in the accuracy for a
particular category.

Figure 11. Recognition results of different complex scenes for various network depths. The horizontal
axis represents the models’ various network depths tested on sets from other complexity classes; the
vertical axis represents the overall average accuracy.

More precisely, because the Kendall correlation coefficient is constant in the range of
the various measurements, we utilized it to compute the correlation between the VGG-Net
depth variable and the change in the samples’ probability from the VGG-16 model to the
VGG-19 model. The Kendall π is 0.179, which indicates that a complex scene is sensitive
to network depth and that a positive correlation exists between the scene complexity and
network depth. We speculate that the Kendall value would increase for a more complex
dataset or for some models that have much larger differences in network depth because
some of the categories, especially ones with high-complexity scenes, are recognized as well.

3.3. How Adaptive Networks Based on Scene Complexity Improve Model’s Performance

According to the above analysis, different complexity requires matching features
of different scales and depths. Specifically, simple scenes rely on shallow and global
single-scale feature learning, while complex sets rely on deep and multi-scale feature
learning. How to build adaptive networks for images of specific complexity? Based on
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VGG-16, we construct the depth adaptive ground VGG-16* (Table 1) to verify how scene
complexity helps the model learn features better and improve its performance. Table 4
shows the comparison results between the VGG-16* family and the plain VGG-16. The
deep adaptive ground network(without GAP) improves 0.4% in test accuracy and 1.5%
in training accuracy. It increases the number of network parameters by 1.5 times and
requires longer training time. Furthermore, VGG-16*-B/C/D reduces the number of model
parameters and training time after using GAP. And the recognition accuracy has been
further improved.

Table 4. The result of depth adaptive VGG-16 on AID-22.

Model Train Accuracy (%) Test Accuracy (%) Iteration Parameters

VGG-16 96.15 94.10 200,000 134M
VGG-16*-A 97.56 94.51 240,000 343M
VGG-16*-B 97.89 95.42 150,000 138M
VGG-16*-C 98.11 95.80 100,000 37M
VGG-16*-D 97.20 94.86 80,000 12M

Moreover, when we configure GAP for all output layer modules, the number of
VGG-16*-D’s parameters is reduced by 9 times, and the accuracy is improved by nearly
0.8%—noting that it is not advantageous to use GAP on all complexity images. The model’s
recognition accuracy can be enhanced when using GAP on simple scenes (VGG-16*-B/C),
but the recognition accuracy decreases when using GAP on complex sets (VGG-16*-D). It
is mainly because the GAP operation preserves global information but ignores local details,
which are crucial in the semantic representation of high complexity scenes. To summarize,
by using scene complexity adaptive models, it is possible to improve the accuracy by
almost 2%, reduce the model parameters by nearly 9 times, and reduce the training time by
twice. We conclude that adaptive networks based on the scene complexity can effectively
improve the performance of scene recognition.

4. Discussion

We explored the influence of feature learning on scene recognition by analyzing
the learned features’ distribution patterns. As introduced in Section 2, we use CAMs to
visualize the mapping of learned features to the input image, quantifying the contribution
of different regions in the image to the semantic concept representation. CAMs are obtained
by training GoogLeNet*, with a recognition accuracy of 91.82%, ensuring that the learned
features are representative. The experimental results show that the scene semantic concept
relies on the encoding of multiple objects and their distribution patterns. In Figure 12,
vehicles are highlighted, which indicates that cars and their combined distribution patterns
are critical to represent the concept of parking. Simultaneously, the highway class relies on
the encoding of vehicles’ features in addition to the characteristics of roads, and the two
together encode the semantic concept representation of highways. A similar phenomenon
occurs in other scenarios. For instance, in the port class, CAMs respond only to boats and
their distribution, and dense residuals respond only to buildings.
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Figure 12. CAMs of four classes in the AID-22. The warmer the color is, the more outstanding
the contribution the region makes to recognition. A lower tone indicates a minimal effect on the
prediction result. Similarly, the port category is determined by water and its surrounding areas.

Analyzing the relationship between feature learning and the corresponding prediction
via CAMs, the experiments indicate that learning objects’ pattern dramatically influences
the prediction result. Figure 13 shows the most likely categories of an image. When
the model learns the sea, sand, and waves’ features, it recognizes the beach as “beach”.
However, if the model ignores sand features’ learning, it acknowledges the beach as a
“port”. This method offers a way to dissect critical parts of the model from the perspective
of feature learning. Moreover, We list some of the CAMs in Figure 14, which are categories
of the RSI-CB [42], to demonstrate it is independent of specific datasets. We trained
GoogLeNet* to generate CAMs and resized the hot maps to the same size as the input
images.

Figure 13. Top-5 CAMs of a sample. From left to right are the top five CAMs in terms of prediction
score. GT is the beach category.
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Figure 14. CAMs of the marina, city building, crossroad, and dam. These categories are all sampled
from RSI-CB dataset.

We further explored the distribution pattern combined with scene complexity and
found that scenes with high complexity are represented by encoding multiple key objects
(Figure 15). The activation mode is monotonous for simple scenes but centered (1–3 objects)
on one or more objects for complex scenes.

To exclude this phenomenon for only a specific category, we randomly selected
20 samples per class and computed the CAMs. We counted the number of samples that
responded to multiple objects (Figure 16). The experimental results demonstrate that the
joint representation of various objects supports one scene’s representation. The CAMs of
80% of the samples in the 15 categories, 22, respond to multiple objects. Several complex
classes are lower than 50%. These scenes express semantic information through a single
entity, such as the center category, representing its concept by individual building.
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Figure 15. CAMs of different scene complexity scenes. The top row shows low-complexity scene
visualization; the middle row shows moderate-complexity scenes; the bottom row shows the high-
complexity scenes. For the farmland object, the activation distribution covers the whole region.
However, for the baseball field object, the activated areas are significantly concentrated on a few
elements.

Figure 16. The proportion of samples for which corresponding CAMs exhibit a joint multi-object
distribution. The horizontal axis represents the scene type, and the vertical axis represents the
proportion of samples that respond to multiple objects in the CAMs in each category.

We conducted similar experiments using the RSI-CB dataset to demonstrate that this
phenomenon generalizes to other datasets by occluding multiple objects in a scene and
analyzing the corresponding responsive patterns of CAMs (Figure 17). CAMs of the avenue
class respond to the trail and the surrounding trees, which indicates that both jointly encode
the avenue’s semantic concept. Furthermore, when obscure the trees, the model can only
learn the trail features, so the CAMs only respond to the trail area, which causes the model
to identify the avenue as a river bridge incorrectly. The results show that the recognition of
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remote sensing scenes has learned the comprehensive features of multiple targets and that
a single target is insufficient to represent the scene.

Figure 17. Occluding an object in a scene. Left: GT is an avenue that the model correctly identifies, and
CAM responds in the forest and road areas; right: occlude the forest area and the model incorrectly
identifies it as a river-bridge, and the corresponding CAM response area mainly concentrates at the
road junction.

5. Conclusions

In this paper, we discuss using uniform CNNs to process all images while ignoring the
existence of differences in the remote sensing images themselves is unreasonable. We first
introduce the scene complexity to metric images’ nature and construct a scene complexity
dataset in the remote sensing field. Then, we compare and analyze the effect of hierarchical
and scale feature learning on scene recognition with different complexity. We construct a
scene complexity prediction framework and use it for depth and scale adaptive models,
which effectively improves the recognition accuracy and reduces the model size. Finally,
we introduced the interpretable tool CAMs of CNNs to analyze the differences of feature
learning patterns for scenes of different complexity, and the experiments show that multiple
objects jointly express semantic concepts in complex scenes.

We believe that scene complexity can not only improve the performance of scene
recognition, e.g., by improving accuracy and reducing model complexity but can also be
extended to other scene understanding tasks. (e.g., segmentation and visual reasoning)
and applications. In future work, we will explore how to introduce the information of
scene complex to improve these models’ performance. Besides, we will further explore
how to improve the semantic representation of complex scenarios using multiple objects’
joint distribution.
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