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Abstract: The morphological characteristics of yardangs are the direct evidence that reveals the wind
and fluvial erosion for lacustrine sediments in arid areas. These features can be critical indicators
in reconstructing local wind directions and environment conditions. Thus, the fast and accurate
extraction of yardangs is key to studying their regional distribution and evolution process. However,
the existing automated methods to characterize yardangs are of limited generalization that may
only be feasible for specific types of yardangs in certain areas. Deep learning methods, which are
superior in representation learning, provide potential solutions for mapping yardangs with complex
and variable features. In this study, we apply Mask region-based convolutional neural networks
(Mask R-CNN) to automatically delineate and classify yardangs using very high spatial resolution
images from Google Earth. The yardang field in the Qaidam Basin, northwestern China is selected
to conduct the experiments and the method yields mean average precisions of 0.869 and 0.671 for
intersection of union (IoU) thresholds of 0.5 and 0.75, respectively. The manual validation results on
images of additional study sites show an overall detection accuracy of 74%, while more than 90% of
the detected yardangs can be correctly classified and delineated. We then conclude that Mask R-CNN
is a robust model to characterize multi-scale yardangs of various types and allows for the research of
the morphological and evolutionary aspects of aeolian landform.

Keywords: aeolian landform; yardang; morphological characteristic; deep learning; Mask R-CNN;
Google Earth imagery

1. Introduction

Yardangs are wind-eroded ridges carved from bedrock or cohesive sediments, and
are found broadly in arid environments on Earth [1–4], other planets including Mars [5–7],
Venus [8,9] and Saturn’s largest moon Titan [10]. Yardangs usually occur in groups and
display a wide variety in scales and morphologies in different locations [11]. The morpholo-
gies of yardangs are the feedback results of the topographies, wind regimes and sediment
types when they formed, which makes them critical paleoclimatic and paleoenvironmental
indicators [12–14]. Significant work has been done regarding yardang morphologies and
their spatial distributions, evolution processes and controlling factors [5,12,15–21].

The rapid development of remote sensing (RS) technologies has enabled the observa-
tion and measurement of yardangs at various spatial scales. De Silva et al. [22] studied the
relationship between the yardang morphologies and the material properties of the host
lithology using multi-source RS data combined with field surveys. Al-Dousari et al. [12]
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produced a geomorphological map in the Um Al-Rimam depressions with all of the
yardang-like morphologies based on a series of aerial photos with 60 cm resolution.
Li et al. [20] mapped four types of yardangs in the Qaidam Basin from Google Earth
images and analyzed the factors that control their formation and evolution. In addition,
Wang et al. [7] used Google Earth images and unmanned aerial vehicle (UAV) images to ap-
ply a refined classification of yardangs to the same region. Hu et al. [21] manually extracted
the geometries of yardangs such as length to width (l/w) ratios, orientations, spatial density
and spacing to analyze their controlling factors. Xiao et al. [23] conducted an ultra-detailed
characterization of whaleback yardangs using centimeter-resolution orthomosaics and
digital elevation models (DEMs) derived from UAVs.

Due to the complicated morphometric features of yardangs such as multi-scaled
forms and irregular shapes, the characterization of yardangs has relied heavily on visual
interpretation and manual digitalization. These methods, however, are time-consuming
and limit the size of a study area. To solve this problem, some researchers have proposed
semi-automated approaches to extract yardangs from imagery. For example, Ehsani and
Quiel [24] applied the Self Organizing Map (SOM) algorithm to characterize yardangs in
the Lut Desert based on Shuttle Radar Topography Mission (SRTM) data. Zhao et al. [25]
used the Canny edge detection (CED) algorithm to extract yardangs from Landsat 8 images.
The ellipse-fitting algorithm was then used to calculate the morphological parameters
of yardangs on 1.7 m DEM generated by UAV images. Yuan et al. [26] developed a
semi-automated procedure to characterize yardangs from Google Earth images using
object-based image analysis (OBIA) and CED. Although these methods can be used to
extract yardangs from imagery, experimental parameter setting and adjustment (e.g., the
scale of the segmentation in OBIA) are still needed in the application. This means that they
may just be suitable for a fixed type of yardangs within a relatively small area. To detect and
characterize yardangs of various forms and scales, there is a strong need to design a self-
adaptive, fully automated method with general applicability. This method ought to quickly
extract the yardangs’ morphological features without requiring a priori specification of the
scale. This will help geomorphologists in the future to study the formation mechanism and
evolution process of yardangs from a pan-regional view.

Deep learning (DL) approaches [27] have recently received great attention in remote
sensing and are widely utilized in tasks including pixel-level classification, object detection,
scene understanding and data fusion [28–30]. In DL, convolutional neural networks (CNNs)
are most commonly applied to analyze visual imagery. They use a series of convolutional
layers to progressively extract higher level features from the input images. In contrast
to conventional machine learning methods, CNNs have deeper and more complicated
architectures with a huge number of parameters, resulting in a high capability of feature
extraction [31]. Specifically in geomorphological research, many CNN-based methods are
used for terrain feature detection and landform mapping. Li and Hsu [32] proposed a DL
network based on a Faster region-based convolutional neural networks (R-CNN) model
to identify natural terrain features (e.g., craters, sand dunes, rivers). However, simply
localizing the terrain features with bounding boxes is not sufficient to study landform
processes and their impacts on the environment. The introduction of fully convolutional
neural networks (FCNs) could increase the accuracy of the result by upsampling images
back to their original sizes via deconvolution, which allows the feature map to be produced,
with each pixel belonging to its class label [33,34]. A number of the state-of-the-art semantic
segmentation models such as UNet and DeepLabv3+ use the FCN architectures, while
other authors also applied these models to map landforms by roughly delineating their
borders [35–37]. Beyond that, DL shows a high ability to detect and delineate each distinct
object at a pixel level in an image, also known as instance segmentation [38–40]. This
means it has major potential for the precise characterization of micro-landforms and
geological bodies while utilizing the advantages of very high spatial resolution (VHSR)
remote sensing data.
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In this study, we use the instance segmentation method to distinguish individual
yardang as a separate instance and specifically adopt the Mask R-CNN model proposed by
He et al. [39] to conduct the experiment. The Mask R-CNN is an extension of the Faster
R-CNN [41], integrating the object detection and segmentation tasks by adding a mask
branch into the architecture. This model can be described as a two-stage algorithm. Firstly,
it generates the candidate object bounding boxes on feature maps produced by the convo-
lutional backbone. Secondly, it predicts the class of the object, refines the bounding box and
generates a binary mask for each region of interest (RoI). In the remote sensing domain,
the Mask R-CNN is usually applied to detect man-made objects such as buildings [42],
aircraft [43] and ships [44]. However, it has hardly been used for terrain feature extraction.
Zhang et al. [45] used this method to map ice-wedge polygons from VHSR imagery and
systematically assessed its performance. They reported that the Mask R-CNN can detect
up to 79% of the ice-wedge polygons in their study area with high accuracy and robustness.
Chen et al. [46] detected and segmented rocks along a tectonic fault scarp by using Mask
R-CNN and estimated the spatial distributions of their traits. Maxwell et al. [47] extracted
valley fill faces from LiDAR-derived digital elevation data using the Mask R-CNN. They
used this method to map geomorphic features using LiDAR-derived data but stated poor
transferability for photogrammetrically derived data. It should be noted that in former
research, the spatial scales of geomorphic objects and their shape irregularity have not
changed significantly.

We conclude that there is a need to investigate these methods for aeolian landforms
and specifically for multi-scaled yardangs with various complexity. Therefore, the main
purposes of this study are: (1) to automatically characterize and classify three types of
yardangs using the Mask R-CNN model on VHSR remote sensing images provided by
Google Earth; (2) to evaluate the accuracy and the generalization capacity of the model
by applying it to the test dataset and extra image scenes at different sites. In this study,
we will separately assess the correctness of detection, classification and delineation tasks,
and analyze their performances regarding the different spatial resolutions (0.6, 1.2, 2.0 and
3.0 m) of the images.

2. Materials and Methods
2.1. Study Area and Data

The Qaidam Basin, located in the northeastern part of the Tibetan Plateau, is a hyper-
arid basin with an average elevation of 2800 m above sea level. Covering an area of
approximately 120,000 km2, it is the largest intermontane basin enclosed by the Kunlun
Mountains in the south, the Altyn-Tagh Mountains in the northwest and the Qilian Moun-
tains in the northeast [48]. The East Asian Monsoons, which extend to the southeastern
basin, carry the main moisture source and cause a gradual reduction in the annual precipi-
tation from the southeast to the northwest, decreasing from 100 mm to 20 mm [7,25]. The
northwesterly to westerly winds prevailing in the basin sculpt enormous yardang fields,
covering nearly 1/3 of the whole basin [19,49]. The basin is also the highest-elevation
yardang field on Earth.

The yardangs are mainly distributed in the central eastern and northwestern parts
of the basin. The classification schemes for yardangs are different depending on the
geographical regions. In this study, we focused on three major types—long-ridge, mesa
and whaleback yardangs that are widely developed in the Qaidam Basin. Table 1 illustrates
their characteristics that can be distinguished in remotely sensed images.

Table 1. Characteristics of the three main types of yardangs.

Type Characteristic

Long-ridge Long strip shape with flat and narrow tops and convex flanks
Mesa Irregular in shape and unclear orientations with flats top and steep sides

Whaleback Teardrop shape with blunt heads and tapered tails, some with sharp crests on
their backs
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In this study, we used very high spatial resolution images from Google Earth. Due
to the vast and uneven distribution of yardangs, we firstly selected 24 rectangular image
subsets of different areas that host representative yardangs (Figure 1). Ten of these image
subsets with a spatial resolution of 1.19 m target areas with long-ridge yardangs, which are
usually longer than 200 m. They are mainly distributed in the northernmost part of the
basin. The other 14 subsets with resolution of 0.60 m cover areas where a significant amount
of mesa and whaleback yardangs are located. All of the image subsets are composed of R
(red) G (green) B (blue) bands and were downloaded using LocaSpaceViewer software.
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Figure 1. The study area and examples of yardangs. (a) Geographical settings of Qaidam Basin and locations of the
original Google Earth image subsets. Images with resolution of 0.60 m and 1.19 m are displayed in red and blue rectangles,
respectively. Enlarged images (true color) displayed examples of three types of yardangs, which are (b–d) long-ridge
yardangs, (e–g) mesa yardangs and (h–j) whaleback yardangs.
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2.2. Annotated Dataset

The DL model used in this study requires rectangular image subsets as the input. In
order to generate an adequate dataset that can be used to train and test the Mask R-CNN
algorithm, all 24 image subsets were clipped into 512 × 512 pixel image patches with an
overlap of 25% in their X and Y directions, respectively, using Geospatial Data Abstraction
Library (GDAL, https://gdal.org/ (accessed on 31 December 2020)). The image patch
containing at least one instance of yardang object with clear and complete boundary was
considered valid. Finally, 899 image patches were selected for further manual annotation.
We used the “LabelMe” image annotation tool [50] to annotate all the yardangs objects
using polygonal annotations. For the instance segmentation step, every single object
instance was required to be differentiated. Therefore, we distinguished each instance
of the same class by adding sequence numbers after their class names. We delineated
an approximately even number of yardang objects for long-ridge, mesa and whaleback
yardangs (2568, 2539 and 2532 polygonal objects, respectively) to avoid class imbalance
problems [51]. The annotations were saved in the format of JavaScript Object Notation
(.json) and were converted into useable datasets using Python. These datasets were then
split at random into three sub-datasets at the proportion of 8:1:1. The resulting training
dataset consisted of 719 patches, the validation dataset yielded 90 patches and the test
dataset yielded another 90 patches.

2.3. Mask R-CNN Algorithm

The Mask R-CNN has been one of the most popular deep neural network algorithms
and aims to complete object instance segmentation [39]. As an extension of the Faster
R-CNN [41], a branch that outputs the object mask was constructed in the Mask R-CNN, re-
sulting a much finer localization and extraction of objects. The Mask R-CNN is a two-stage
procedure. In the first stage, the Residual Learning Network (ResNet) [52] backbone archi-
tecture extracts features from raw images, and the Feature Pyramid Network (FPN) [53]
improves the representation of the object by generating multi-scale feature maps. Next, the
Region Proposal Network (RPN) scans the feature maps and proposes regions of interest
(RoI) which may contain objects. In the second stage, the proposed RoIs will be assigned to
the relevant area of the corresponding feature map and generate the fixed size feature map
via RoIAlign. Then for each RoI, the classifier predicts the class and refines the bounding
box whilst the FCN [33] predicts the segmentation mask. For a detailed discussion of the
Mask R-CNN, readers can consult He et al. [39].

2.4. Implementation

In this study, we specifically used an open-source package developed by the Mat-
terport team to implement the Mask R-CNN method [54]. The model is built on Python
3, Keras and TensorFlow, and the source codes are available on GitHub (https://github.
com/matterport/Mask_RCNN (accessed on 31 December 2020)). The experiments were
conducted on a personal computer equipped with an Intel i5-8600 CPU, 8 GB of RAM and
a NVIDIA GeForce GTX 1050 5 GB graphic card.

To train the model on our dataset, we created a subclass from the Dataset class and
modified the loading dataset function provided in the source codes. We concluded from
many studies [45,47,55–57] that the utilization of pre-trained weights learned from other
tasks to initialize the model will benefit the training efficiency and result. Although different
data and classes are used and targeted in other tasks (e.g., everyday object detection), some
common and distinguishable features can be learned and applied in another disparate
dataset (known as transfer learning) [30,56]. As a result, we used the pre-trained weights
learned from the Microsoft Common Object in Context (MS-COCO) dataset [58] to train
our model instead of building the Mask R-CNN from scratch. In the training process, we
adopted the ResNet-101 as the backbone and used a learning rate of 0.002 to train the head
layers for 2 epochs. This was followed by training all layers at the learning rate of 0.001
for 38 epochs. The default learning momentum of 0.9 and the weight decay of 0.0001 were

https://gdal.org/
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
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used for all epochs. We adopted 240 training and 30 validation steps for each epoch with a
mini-batch size of one image patch. We set all the losses (RPN class loss, RPN bounding
box loss, Mask R-CNN class loss, Mask R-CNN bounding box loss and Mask R-CNN mask
loss) to be equally weighted and kept the default configuration for other parameters. The
full description of parameter settings can be found in the above-mentioned Matterport
Mask R-CNN repository. Data augmentation is a strategy to artificially increase the amount
and diversity of data and is commonly used to minimize overfitting during the training for
neural networks [28,30,59–61]. Therefore, we applied random augmentations for training
dataset including horizontal flips, vertical flips and rotations at 90◦, 180◦ and 270◦ using
the imgaug library [62]. The validation dataset was used to avoid overfitting and to decide
which model weights to use. Once a final model was obtained, it was used to detect
yardangs in the test datasets and in other study sites. The detection confidence threshold
was set at 70%, which meant that objects with confidence scores below 0.7 were ignored.

2.5. Accuracy Assessment

We assessed the trained Mask R-CNN model on the test dataset based on the mean
average precision (mAP) over the different intersection of union (IoU) thresholds ranging
from 0.50 to 0.95 in 0.05 increments. The mAP computes the mean average precision value
in each category over multiple IoUs and represents the area under the precision-recall
curve. The IoU is the ratio of the intersection area and the union area of predicted mask
and ground truth mask of an object [61,63]. This can be described in Equation (1) where A
is the inferred polygon of yardang and B is the manually digitalized one.

IoU(A, B) =
area(A ∩ B)
area(A ∪ B)

(1)

We calculated the IoU value for each image patch in the test dataset while the confusion
matrix was used to analyze the efficiency of the method on specific categories. In order to
test the transferability and robustness of the Mask R-CNN method, we applied the model
on 80 randomly selected image subsets (spatial resolution of 0.60 m and spatial extent of 1
km × 1 km) excluding previously annotated datasets in the Qaidam Basin (Figure 2). We
then manually assessed the accuracies of detecting, classifying and delineating yardangs.
The criteria of accuracy evaluation of the three sub-tasks are as follows:
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For the detection task, a true positive (TP) indicates a correctly detected yardang and
a false positive (FP) indicates a wrongly detected yardang, which in fact belongs to the
background. A missed yardang ground truthc is a false negative (FN). We then calculated
the precision, recall and overall accuracy (OA) of the method for detecting yardangs using
the equations below.

Pre cision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Overrall Accuracy =
TP

TP + FP + FN
(4)

For classification and delineation tasks, we focused on those instances that were
correctly detected as yardangs. A positive classification refers to a correct type of a detected
yardang. Likewise, a positive delineation means the Mask R-CNN successfully outlined a
yardang based on the interpreter’s judgment. We then calculated the accuracies of these
tasks.

3. Results
3.1. Model Optimization and Accuracy

We recorded the learning curve of the model and evaluated its accuracy. As shown in
Figure 3, the overall loss is the sum of the other five losses. The validation loss shows a
fluctuation and reaches its lowest value after 27 epochs (0.527). Although the training loss
presents a continuous decline trend, it declines very slowly and no substantial improvement
of validation loss is recorded in the following epochs. This indicates overfitting, where
after 27 epochs, the model tends to learn the detail and noise in the training data. This
negatively affects the performance of detecting yardangs. Therefore, we selected the Mask
R-CNN model that was trained for 27 epochs. The convergence after several epochs was
also noted in some related works [45,47,57]. It can be attributed to the usage of pre-trained
weights and the relatively small amount of training data for a specific object, which have
fewer features to learn compared to a common dataset.

We applied the final model on the test dataset that contained 90 image patches in-
cluding 768 yardangs (291 long-ridge yardangs, 263 mesa yardangs and 214 whaleback
yardangs). The total numbers of predicted long-ridge, mesa and whaleback yardangs
are 306, 285 and 197, respectively. The IoU measures how much the predicted yardang
boundaries overlap with the ground truth. We received a mean IoU value of 0.74 for the
test dataset and 90% of the test patches yielded IoU values greater than 0.5 (Figure 4a).
Mean average precisions (mAPs) at different IoU thresholds are plotted in Figure 4b, where
the averaged mAP of 10 IoU thresholds is 0.588. The mAP50 (mAP at IoU = 0.50) is 0.869,
indicating that the model performs well with a common standard for object detection.
The mAP75 (mAP at IoU = 0.75) is 0.671 when a more stringent metric is used, showing
a relatively high accuracy and the effectiveness of this model. The normalized confusion
matrix (Figure 4c) displays the fine classification results of yardangs, showing that three
types of yardangs can be clearly distinguished. However, the prediction accuracy of the
whaleback yardangs is 0.76, which is the lowest value compared to the other two types.
The morphological features of whaleback yardangs are more complex due to their diverse
variance in sizes and shapes [7], which results in relatively more false and failed detections
of this kind of yardangs.
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Figure 4. Metrics used to evaluate the accuracy of the Mask R-CNN model to detect yardangs on test dataset. (a) Histogram
of IoU values between predicted masks and ground truths. (b) mAP over IoU thresholds of 0.50–0.95. (c) Normalized
confusion matrix of classification results of three types of yardangs and the background.

3.2. Case Studies and Validation

To assess the transferability of this method, we conducted the case studies using the
80 Google Earth image subsets described in 2.5 with a spatial resolution of the original
images of 0.6 m. We resampled these image subsets to three different spatial resolution
images of 1.2 m, 2.0 m and 3.0 m using the nearest neighbor method. We applied the same
trained model on these four groups of images with spatial resolutions from 0.6 to 3.0 m
and analyzed their performances.
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3.2.1. Case Study Results of 0.6 m Resolution Images

A total of 3361 yardangs are detected in this experiment, while 447 of them are
false positives and 556 yardangs are missed. Table 2 shows the accuracies of detection,
classification and delineation where the overall accuracy (OA) of detection is 74% with
a precision and recall of 0.87 and 0.84, respectively. For successfully detected yardangs,
the Mask R-CNN shows an ability to distinguish the fine classes of yardangs with a
classification OA of 91%. The model can infer the outline of yardangs with a delineation
OA of 95%, which proves that this method can be used for a precise characterization of
yardangs. Figure 5 presents enlarged examples of classification and delineation results,
with their locations marked in Figure 2. The long-ridge yardangs are arranged densely
with very narrow spacing and show a wide range of lengths (from meters to hundreds of
meters). Under these circumstances, there may be some missing instances or overlapping
boundaries (Figure 5b,d). Although the shapes of mesa yardangs are mostly irregular,
they can be well depicted because of their complete and clear boundaries (Figure 5f,h).
For most of the whaleback yardangs, although their sizes vary widely, the delineation
results are satisfactory. In some cases, the boundaries between the whaleback yardangs
and their background can be very blurred and can thus cause some oddly shaped polygons
(Figure 5j,l).

Table 2. Accuracy assessment for original images (0.6 m).

Count Precision Recall Overall
Accuracy (%)

Detection
TP 2914

0.87 0.84 74FP 447
FN 556

Classification
T 2648 - - 91F 266

Delineation
T 2768 - - 95F 146

3.2.2. Case Study Results of 1.2 m Resolution Images

A total of 1939 yardangs are detected in this case study. Based on visual inspection,
189 of them are false positives. The number of false negatives is 1719, which means ap-
proximately half of the yardangs are not detected. The down-sampled images lose some
key features to detect small targets and, as expected, the recall of detecting decreases from
0.84 to 0.5. This results in a significant reduction of detection OA from 74% to 48%. Table 3
provides the detection, classification and delineation accuracies. Compared to the original
images, the OA of classification and delineation drop by 6% and 2%, respectively. Some
long-ridge yardangs shorter than 50 m are missed out and some overlapping polygons
are created because of the ambiguous boundaries between yardangs (Figure 6b,d). The
delineation results of mesa yardangs are still satisfying but several small residual yardangs
are missed (Figure 6f,h). However, the detection of whaleback yardangs is drastically af-
fected by the reduced spatial resolution. In Figure 6l, the number of the detected whaleback
yardangs decreases by nearly 80% compared to the result of 0.6 m spatial resolution images
(Figure 5l). It is noted that most of the missed yardangs were shorter than 40 m.
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Table 3. Accuracy assessment for original images (1.2 m).

Count Precision Recall Overall
Accuracy (%)

Detection
TP 1750

0.90 0.50 48FP 189
FN 1719

Classification
T 1492 - - 85F 258

Delineation
T 1627 - - 93F 123
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long-ridge, mesa and whaleback yardangs are depicted using polygons with red, yellow and blue borders, respectively.

3.2.3. Case Study Results of 2.0 m Resolution Images

A total of 1415 yardangs are detected on this set of images with 2.0 m spatial resolution.
The number of false positives and false negatives are 109 and 2162, respectively (Table 4).
Due to the increase of the missed detections, the OA of detection drops to 37%. Similarly,
the OA of classification slightly decreases 1% compared to the result of 1.2 m resolution
images. It is found that 94% of all detected yardangs can be correctly delineated regardless
of the resampling issues, which indicates the image segmentation stability of this model.
In this case study, many small end-to-end long-ridge yardangs are detected as one long
yardang as a result of blurred boundaries (Figure 7b,d). The mesa yardangs can still be
well delineated but more relatively small yardangs are missed (Figure 7f,h). The number of
the detected whaleback yardangs decreases as the image pixel size increases and yardangs
that are longer than 50 m are more likely to be detected (Figure 7j,l).
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Table 4. Accuracy assessment for original images (2.0 m).

Count Precision Recall Overall
Accuracy (%)

Detection
TP 1306

0.92 0.38 37FP 109
FN 2162

Classification
T 1100 - - 84F 206

Delineation
T 1229 - - 94F 79

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 20 
 

 

Table 4. Accuracy assessment for original images (2.0 m). 

  Count Precision Recall 
Overall  

Accuracy (%) 

Detection 

TP 1306 

0.92 0.38 37 FP 109 

FN 2162 

Classification 
T 1100 

- - 84 
F 206 

Delineation 
T 1229 

- - 94 
F 79 

 

Figure 7. Example delineation and classification results on 2.0 m images. (a,c,e,g,i,k): enlarged 2.0 m spatial resolution 

images with their locations marked in Figure 2. (b,d,f,h,j,l): corresponding characterization results by Mask R-CNN where 

long-ridge, mesa and whaleback yardangs are depicted using polygons with red, yellow and blue borders, respectively. 

3.2.4. Case Study Results of 3.0 m Resolution Images 

The numbers of true positives and false negatives equate to 1042 and 2426, respec-

tively (Table 5), which means that only 30% of the ground truth features are predicted on 

the 3.0 resolution images. The OA of detection, classification and delineation are 29%, 83% 

and 93%, respectively. Even though the outlines of yardangs are still recognizable for hu-

man eyes, the losses of boundary information are significant and make it hard for Mask 

R-CNN to detect and depict them. Therefore, the reduction of detected yardangs happen 

to all types, especially for long-ridge yardangs (Figure 8b and 8d) and whaleback 

yardangs (Figure 8j and 8l), which are densely aligned and accompanied by many small 

yardang objects. Similar to the other case studies, the detection and delineation results of 

Figure 7. Example delineation and classification results on 2.0 m images. (a,c,e,g,i,k): enlarged 2.0 m spatial resolution
images with their locations marked in Figure 2. (b,d,f,h,j,l): corresponding characterization results by Mask R-CNN where
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3.2.4. Case Study Results of 3.0 m Resolution Images

The numbers of true positives and false negatives equate to 1042 and 2426, respectively
(Table 5), which means that only 30% of the ground truth features are predicted on the
3.0 resolution images. The OA of detection, classification and delineation are 29%, 83%
and 93%, respectively. Even though the outlines of yardangs are still recognizable for
human eyes, the losses of boundary information are significant and make it hard for Mask
R-CNN to detect and depict them. Therefore, the reduction of detected yardangs happen
to all types, especially for long-ridge yardangs (Figure 8b,d) and whaleback yardangs
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(Figure 8j,l), which are densely aligned and accompanied by many small yardang objects.
Similar to the other case studies, the detection and delineation results of mesa yardangs are
stable while benefitting from their relatively simple and clear morphological characteristics
(Figure 8f,h).

Table 5. Accuracy assessment for original images (3.0 m).

Count Precision Recall Overall
Accuracy (%)

Detection
TP 1042

0.94 0.30 29FP 67
FN 2426

Classification
T 869 - - 83F 173

Delineation
T 974 - - 93F 68
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3.3. Transferability

The four case studies evaluate the transferability of Mask R-CNN with respect to
the image content and spatial resolution. Although the study sites are geographically
close to the locations of training data, considering the complex and various development
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environments of yardangs, they still exhibit variance in micro-landform at different degrees.
The trained Mask R-CNN still achieved 74% OA of detection on 0.6 m spatial resolution
images of new study sites. The OA of Mask R-CNN decreases as the pixel size of the image
increases. However, the OA of detection, classification and delineation show different
reactions to the increasing pixel size. The OA of detection drops by 45% (Figure 9a) when
downsampling the image from 0.6 m to 3.0 m, which is a great degradation level compared
to the 8% reduction of classification OA (Figure 9b) and 2% reduction of delineation OA
(Figure 9c). This is mainly because the coarser resolution images lose some key information
for effectively identifying yardangs and the background. Nonetheless for those yardangs
who have been successfully detected, their boundaries are clear enough to be depicted and
the variance of geomorphic characteristics of three types of yardangs are still significant.
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4. Discussion
4.1. Advantages and Limitations of Using Google Earth Imagery

Google Earth is a large collection of remotely sensed imagery including satellite and
aerial images. The full coverage of the yardang fields in the study area and the availability
of VHSR images make it possible to characterize yardangs with fine differentiations. The
Google Earth images are acquired with different sensors and for different points in time,
causing the variance in color and texture of yardangs in different images. This introduces
more diversity to the training data and helps the model to learn more features of yardangs.
However, the distribution of VHSR images in the study area is uneven. For example, the
VHSR image subsets we used for annotation can be the mosaic results of images which
have been resampled to the same resolution. Some of them are up-sampled from coarser
images; however, the content and information of the images are not or very limitedly
promoted as the pixel size of the image decreases. In addition, some yardangs are partly
integrated with the background or are covered by gravel and sand. In such cases, it is hard
for human interpreters to make an integral and accurate annotation of yardangs on images.
As a result, the model may not sufficiently extract the detailed features of some yardangs
during the training stage.

4.2. Advantages and Limitations of the Method

The results of this study that focus on characterizing aeolian yardangs demonstrate
that the Mask R-CNN can be used to extract multi-scale and multi-type terrain features
synthetically. The model learns the multi-level feature representations from the training
data and could be successfully applied to the test dataset and other regions. Thanks to
transfer learning, which is a notable advantage of deep learning, this method can potentially
be applied to the other yardang fields on the Earth or even on the other planets. To the
best of our knowledge, this is the first study that used DL method to automatically detect,
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classify and delineate yardangs on remotely sensed imagery. However, there are still some
limitations.

Methodologically, the performance of the Mask R-CNN largely depends on the quan-
tity and quality of the training data, which require massive time and labor inputs for data
selecting and labeling. In addition, as a supervised learning method, a large number of
hyperparameters can influence the performance of the model. Considering the existing
equipment condition in this study, it seems impossible to fully optimize the Mask R-CNN
model. We adjusted some of the settings to make this heavy-weighted model easier to
train on a smaller GPU. Despite this, the training process still took around 10 hours for
40 epochs. This was a much longer time for completing one experiment than needed for
traditional machine learning methods and caused extremely high costs to be incurred for
comparative studies. Therefore, the optimization relied on a limited series of experiments
by tuning a small number of model parameters. Based on the case studies, we analyzed
the effect of spatial resolution on mapping yardangs and found a negative correlation
between image downsampling and OA of detection (Figure 9). Due to the relatively high
spatial resolution (0.60 m and 1.19 m) of the training data, the prediction performance was
very poor on coarser images. This indicates that the model requires a certain consistency
between training data and predicting data.

Another crucial factor that affects the model performance lies in the yardangs’ intrinsic
feature complexity. To improve the quality of the training data, we select representative
yardangs with very distinctive features. We also purposely balance the number of annotated
instances for three types of yardangs to avoid potential biases, namely that the model is
not more sensitive to a certain class. Although we collect training data from different sites
and used data augmentation, the training dataset is not fully adequate considering the
wide range of possible variations of yardang shapes. When applied to regions that host
atypical yardangs, the prediction results are usually unsatisfactory. For example, some
long-ridge yardangs show an ambiguous morphology. Their upwind sides are eroded
into small ridges with tapered heads while their downwind sides gradually get wider and
converge together without clear boundaries [7]. Under such circumstances, the Mask R-
CNN may only delineate parts of the yardang or may generate a bizarre polygon that does
not appropriately represent its direction and geometry. This also happens to whaleback
yardangs when they occur in dense arrangements that are hard to be identified separately.
The surfaces of yardangs are not always flat and smooth. In some places, remnant cap
layers grow on the top surfaces of some long-ridge and mesa yardangs. Sometimes, these
portions of a whole yardang are recognized as small yardangs by Mask R-CNN and thus
generate several intersected or contained polygons, which does not reflect the real situation.

Despite being incredibly slow, the development of yardangs is a dynamic process
and it is common for terrain features to have gradational boundaries in the transitional
zone, which raises new issues for precise classification of yardangs. For instance, the
downwind part of some long-ridge yardangs are cut off by fluvial erosion and gradually
turn into mesa yardangs [20]. Once separated blocks are observed, they are recognized
as mesa yardangs by interpreters. However, some of the yardangs remain the features of
long-ridge yardangs and mislead the Mask R-CNN to predict them as long-ridges with
relatively shorter lengths. It can be explained that the R-CNN (Region-based Convolutional
Neural Network) model only uses information within a specific proposal region of an
image but ignores the contextual information which is also crucial for object detection
tasks [40]. Specifically, yardangs are spatially clustered and the visual identification for
an ambiguously featured yardang would take the landscape pattern and the types of
surrounding yardangs as references. These are the global and local surrounding contexts
that are not considered in the Mask R-CNN. As a result, the model generated slightly
confused classification results of yardangs in such situations.



Remote Sens. 2021, 13, 733 16 of 19

4.3. Recommendations and Future Work

A limited amount of training data has always been a large obstacle for applying
deep learning in the remote sensing domain especially on the extraction of natural terrain
features [36,37]. Therefore, a large image dataset covering aeolian landforms with labeled
data from multiple spatial resolutions and different sources is needed. The model trained
on the thematic data may improve the performance of transfer learning compared to the
utilization of pre-trained weights on normal photographs. The Mask R-CNN shows its
advantage in extracting objects with unique color and textural features [42,45,57,64] on
optical images. However, the elevation information of yardangs, which is an important
parameter to distinguish between different types of yardangs and to differentiate them
from other classes, is not involved in this study. Previous studies verified a high potential
of CNN-based deep learning models for learning features from digital elevation data and
other terrain derivatives [37,47,65]. Therefore, more attention should be given to additional
information (e.g., DEMs) or the combined representations that integrate multi-source
data as inputs for deep learning models. This can foreseeably promote the detection and
delineation results of yardangs if their spectral and geometric characteristics are similar to
the other aeolian landform. Further ways to improve terrain feature mapping could be the
implementation of unsupervised [66], semi-supervised [67] and weakly-supervised [68]
deep learning models for remote sensing image classification and segmentation. These
approaches are an efficient way to extract features from unlabeled data and can break
through the limitations caused by the scarcity of annotation data.

To verify the effectiveness of our method to characterize yardangs, future work is
necessary to conduct comparative experiments using different algorithms, including object-
based image analysis (OBIA) [69] and other conventional machine learning methods, in
future studies. We also have to compare different CNN-based semantic segmentation
methods like UNet and DeepLabv3+ while considering the recent progress within the
computer vision domain. As a black-box model, the features that are learned by deep
neural networks are unclear and the prediction results are usually of poor interpretability.
Additional refinement of the current models may solve this problem, such as by introducing
domain knowledge into the training process.

5. Conclusions

In this project, we apply the Mask R-CNN, a deep learning model for instance seg-
mentation. The experimental results indicate that the Mask R-CNN can successfully extract
the features of yardangs from the training dataset. In particular, the method can efficiently
localize yardangs, depict their boundaries and classify them into correct fine categories
simultaneously during the prediction stage. Our method yields a mean IoU value of 0.74
and when the IoU threshold is 0.5 for the testing dataset, there is a mean average precision
of 0.869. Based on visual inspection, the automatically delineated boundaries of yardangs
are very similar to manually annotated boundaries as they are accurate enough to support
further morphological analysis. When applied to additional images with a wider geograph-
ical extent and complex background, the Mask R-CNN shows good transferability and can
detect up to 74% of yardangs on 0.6 m spatial resolution images. The model trained on
VHSR images has the potential to be applied to coarser images. However, the accuracy of
detecting yardangs is more sensitive to the changes in image resolution compared to the
classification and delineation tasks.

The extraction ability of the model for three types of yardangs differs slightly. In
tendency, it yields better results for mesa yardangs, which have less complicated forms
compared to long-ridge and whaleback yardangs. Since we focus on the most representative
yardangs in this study, there is a need for further studies on the characterization of yardang
features with variable complexities. Future work should also include a systematic analysis
of the model optimization and comparative studies between deep learning and other
methods. We hope that a largely automated and accurate yardang characterization based on
the deep learning method will support future scientific studies on yardangs. The resulting
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data should support geomorphometric and spatial distribution studies on yardangs and
other aeolian landforms.
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