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Abstract: Collaborative representation-based detector (CRD), as the most representative anomaly
detection method, has been widely applied in the field of hyperspectral anomaly detection (HAD).
However, the sliding dual window of the original CRD introduces high computational complexity.
Moreover, most HAD models only consider a single spectral or spatial feature of the hyperspectral
image (HSI), which is unhelpful for improving detection accuracy. To solve these problems, in
terms of speed and accuracy, we propose a novel anomaly detection approach, named Random
Collective Representation-based Detector with Multiple Feature (RCRDMF). This method includes
the following steps. This method first extract the different features include spectral feature, Gabor
feature, extended multiattribute profile (EMAP) feature, and extended morphological profile (EMP)
feature matrix from the HSI image, which enables us to improve the accuracy of HAD by combining
the multiple spectral and spatial features. The ensemble and random collaborative representation
detector (ERCRD) method is then applied, which can improve the anomaly detection speed. Finally,
an adaptive weight approach is proposed to calculate the weight for each feature. Experimental
results on six hyperspectral datasets demonstrate that the proposed approach has the superiority
over accuracy and speed.

Keywords: hyperspectral image (HSI); hyperspectral anomaly detection (HAD); multiple feature;
collaborative representation-based detector (CRD); ensemble and random collaborative represen-
tation detector (ERCRD); random collective representation-based detector with multiple feature
(RCRDMF)

1. Introduction

Hyperspectral imagery (HSI), a term that refers to images captured by hyperspectral
sensors, can provide rich spectral information for use in identifying different materials with
thousands of adjacent contiguous electromagnetic spectrum bands [1–5]. Due to its fine
detection capability, HSI has been widely applied in the fields of target detection [2], change
detection [6–8], and classification [9–11]. Of these, target detection plays a particularly
important role in many different fields, such as environmental monitoring [12–14] and
mineral exploration [15]; accordingly, in recent years, many scholars have begun conducting
research in this field [2].

Depending on whether or not prior information is used, target detection methods can
be divided into supervised and unsupervised methods [16]. Supervised target detection
methods utilize the known spectral information to detect targets [17], while unsupervised
methods detect anomalies from their surrounding background without any prior infor-
mation [2,18]. In fact, it is difficult to acquire the accurate spectral information of ground
targets, because it is susceptible to atmosphere absorption, illumination change, noise
corruption, and so on [19]. Thus, it is difficult to obtain the precise spectral information
for the supervised method. However, unsupervised target detection methods, which are
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also referred to as anomaly detection methods and require no prior information, have
more important research value in reality and have, thus, been widely applied in various
fields, including food quality, safety control, search and rescue, mineral detection, and
environmental surveillance [2,20–22].

Anomaly detection also can be viewed as a binary classification problem, in which it
is necessary to separate the anomaly class from the background class [1,2]. The anomaly
pixels typically exhibit distinct spectral or spatial differences with their surrounding back-
ground [2,23–25]. A number of anomaly detection methods have been developed in recent
years, among the most famous of which is the Reed-Xiaoli (RX) method. First, the RX
method assumes that the background conforms to a multivariate Gaussian distribution,
after which the corresponding mean and covariance values of the HSI image can be calcu-
lated. Finally, an appropriate threshold is set to distinguish the anomalies by estimating
the Mahalanobis distance [26]. The global RX (GRX) and local RX (LRX) are two versions
of the RX algorithm. The GRX method uses the whole image to model the background,
while LRX utilizes the local dual-window to model the background [27]. The kernel RX
(KRX) [28] algorithm is a nonlinear version of the RX algorithm that uses kernel theory
to transform every pixel to a high-dimensional space. However, KRX is highly computa-
tionally demanding, making it unsuitable for the processing of large-scale hyperspectral
data. A modified KRX method has also been proposed to improve the calculation efficiency
of KRX algorithm, which assumes that the background class is a spherical covariance
matrix [29]. Moreover, a fast generalization of KRX, namely cluster KRX (CKRX), was also
proposed. This approach applies a fast eigendecomposition method to achieve anomaly
detection by clustering the background pixels [30].

In addition, a number of representation-based methods have been proposed. These
methods do not require any statistical assumptions and have, thus, attracted significant
attention [20]. These techniques make use of the conspicuous characteristics of anomalies:
the low probability of occurrence and the different spectral signature from the background
pixels [27]. There are several forms of representation-based methods, including the sparse
representation-based methods [1,31–37], the low-rank methods [38–43], and the collabora-
tive methods [44–48].

Recently, sparse representation methods have been widely used in hyperspectral
anomaly detection applications. Li et al. proposed using background joint sparse repre-
sentation (BJSR) model for hyperspectral anomaly . First, the BJSR model is adopted to
estimate the adaptive orthogonal background complementary subspace through adaptively
selective the most representative background bases for the local region. An unsupervised
adaptive subspace detection method is then proposed to control the influence of the back-
ground while highlighting the anomalies [34]. Ma et al. designed a new spectral feature
selection framework based on sparse representation for anomaly detection. The residues
between the background spectrum reconstruction error and anomaly spectrum recovery
error are minimized so as to enable the representative spectra to be picked out. In this way,
the anomaly’s deviation can be significantly enlarged relative to the background. Finally,
a global multiple-view detection strategy is presented that can improve the detection
accuracy by comprehensively considering the virtues of different groups of representative
features selected from multiple dictionaries [36]. Ling et al. proposed a hyperspectral
anomaly detection method that operates by sparse representation and linear mixture model
(SR-LMM). This algorithm assumes that the background can be approximately represented
as a sparse linear combination of its surroundings, while the anomaly cannot [1].

Moreover, a number of studies have also investigated low-rank representation-based
anomaly detection approaches, which assume that the background follows a low-rank
prior and the anomaly is sparsely distributed [38]. Sun et al. proposed the low-rank and
sparse matrix decomposition (LRaSMD) approach, which calculates the Euclidean distance
between the corresponding sparse component vector and the mean vector of the sparse ma-
trix, an approach enabling the score of each pixel to be obtained [40]. Based on the LRaSMD
model, some other improved algorithms have been proposed. Zhang et al. proposed an
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LRaSMD-based Mahalanobis distance method (LSMAD). This approach utilizes the low
rank of the background together with the sparse property of the anomalies, enabling the
background and the sparse component to be obtained. The low-rank prior knowledge
of the background is explored to facilitate computing of the background statistics and
constructs a Mahalanobis-distance-based anomaly detector [41]. Zhang et al. proposed the
parts representation-based low rank and sparse matrix decomposition anomaly detector
(PRLRaSAD), which assumes that the low rank component can be described via parts-based
representation. Furthermore, PRLRaSAD combines parts-based and holistic-based repre-
sentation to model the original HSI. Owing to the sparse properties of the anomaly target, it
is grounded in a holistic-based representation, while the background is grounded in parts-
based representation. Based on these descriptions of HSI, the PRLRaSAD method divides
the HSI decomposition optimization problem into three subproblems, so that the basis
vector matrix, coefficient matrix, and sparse matrix, respectively, can be computed [42].

Window-based operations are the most commonly used technique for hyperspectral
anomaly detection. Among them, collaborative representation-based detector (CRD) is
the most representative anomaly detection method, and it was first used for hyperspectral
anomaly detection in Reference [44]. The CRD algorithm assumes that each pixel in the
background can be approximately represented by its neighborhoods, while this is not the
case for anomalies. A sliding dual window is used to achieve background estimation. For
the CRD method, when more classes (i.e., samples for anomaly detection) are involved, the
least squares solution is unstable. Moreover, if the test pixel is anomalous, while several
samples from the background are similarly anomalous, a detection error will occur. To solve
the limitations of CRD algorithms, Su et al. proposed the CRD with principal component
analysis (PCA) for removing outlier (PCAroCRD) model, which adopts spatial-domain
PCA to exact the principal information of background. This principal information was
then used as samples for collaborative representation, while the information of abnormal
pixels in the background was removed. Adopting this approach can make the detection
result more stable [45]. Vafadar et al. proposed a modified collaborative-representation-
based method with outlier removal anomaly detector (CRBORAD), which utilizes spectral
information together with spatial information to detect anomalies. The CRBORAD method
adaptively estimates the background with reference to its adjacent pixels within a sliding
dual-window. Through subsequent stages, precise anomaly detection can be obtained [46].
Zhang et al. proposed a dual collaborative representation (DCR)-based hyperspectral
anomaly detection method to resolve a common problem, namely that the attributes of test
pixels are often affected by the background knowledge containing abnormal information.
The DCR method employs low-rank and sparse matrix decomposition to obtain a low-rank
background matrix. The density information of the pixels in a sliding dual window is then
calculated by applying the density peak clustering algorithm to the low-rank background
matrix. With reference to the pixel density, the highest density can be selected as the pure
background pixel set to provide an approximate representation of the test pixels. Based
on the residuals of this dual-stage collaborative representation, a decision function can be
utilized to detect abnormal pixels [48]. However, these CRD methods adopt the sliding
dual-window approach, which introduces higher computational complexity. To solve this
problem, Wang et al. proposed the ensemble and random collaborative representation
detector (ERCRD), which adopts a random background modeling to replace the sliding dual
window of the original CRD [49]. However, the ERCRD algorithm only uses the spectral
characteristics of HSI. In reality, HSI images contain rich information: specifically, spectral,
textural and spatial features. Making full use of these features can effectively improve
the anomaly detection results. The Gabor feature can typically be used to represent the
HSI spatial texture information. The extended morphological profile (EMP) and extended
multiattribute profile (EMAP) features can further be utilized to represent the HSI spatial
structure information.

In this paper, we propose a novel anomaly detection approach, named Random
Collective Representation-Based Detector with Multiple Feature (RCRDMF). First, the
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four different features, named spectral feature, Gabor feature, EMP feature, and EMAP
feature matrix, are extracted from the HSI image. This prevents any single feature from
containing only a specific spectral or spatial characteristic of the HSI image. The ERCRD
method is then applied to rapidly complete anomaly detection for each feature matrix. In
order to simultaneously use the above information from various feature matrix, we need to
find an approach to integrate them. A reasonable way is to linearly combine them with
appropriate weights. We propose an adaptive weight approach to balance the various
feature information, which helps making better use of them for hyperspectral anomaly
detection. Compared to the existing CRD-based models, RCRDMF algorithm has the
following advantages:

1 The different features contain the spatial characteristics and specific spectral of the
HSI. Fusing these features into the anomaly detection model is beneficial to improving
the detection accuracy.

2 The ERCRD algorithm can accelerate the speed of anomaly detection. With the help
of the ERCRD method, the RCRDMF model also incurs a lower time cost than the
traditional CRD approaches.

3 The adaptive weight approach is proposed to calculate the weight for each feature,
which avoids the need to tune the weight parameter.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
work of CRD and ERCRD and presents the details of the proposed RCRDMF. Experimental
results are presented in Section 3 and discussed in Section 4. Finally, our conclusions are
presented in Section 5.

2. Materials and Methods

Let X ∈ Rd×n denote the HSI data, where d and n represent the number of dimensions
and pixels, respectively.

2.1. Collective Representation-Based Detector

The CRD assumes that the background point can be linearly represented by adja-
cent pixels, while an anomaly cannot. Let X = [x1, x2, · · · , xn] ∈ Rd×n represent a two-
dimensional HSI matrix that is transformed via three-dimensional hyperspectral imagery,
where n and d represent the number of the pixels and spectral bands, respectively. For
the pixel xi ∈ Rd×1, its surrounding pixels are selected as adjacent pixels by two square
windows of different sizes around the pixel of interest, as shown in Figure 1. The adjacent
pixels between the sliding dual window can be represented as Xs = [x̃1, x̃2, · · · , x̃s] ∈ Rd×s,
where s is the number of the adjacent pixels and s = wout ×wout −win ×win. The objective
function of CRD can, thus, be defined as follows:

min
αi
‖xi − Xsαi‖2

2 + λ‖αi‖2
2, (1)

where αi ∈ Rs×1 and λ represent the coefficient vector and regularization parameter,
respectively. Moreover, by setting the derivative of αi to zero, the solution of Eq. (1) can be
expressed as follows:

α̂i = (XT
s Xs + λI)−1XT

s xi, (2)

where I is the identity matrix.
Once the coefficient vector αi is obtained, the corresponding anomaly score can be

computed as follows:

δi = ‖xi − Xsα̂i‖2. (3)

If δi is larger than a predefined threshold, then xi is regarded as an anomalous pixel.
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Outer window

Inner window

Figure 1. The sliding dual window of the collaborative representation-based detector (CRD).

2.2. Random Collective Representation-Based Detector

CRD algorithm calculates the optimal weight of each pixel based on the sliding dual
window, which incurs very high computational costs. To solve this problem, Wang et al.
proposed the Ensemble and Random Collective Representation-Based Detector (ERCRD)
method. Rather than using the sliding dual window, some pixels are randomly selected
from the whole image as the background. The background pixels can be represented as
Xr = [x̃1, x̃2, · · · , x̃r] ∈ Rd×r. ERCRD assumes that all non-abnormal points in the image
can be linearly represented by these randomly selected background points, an approach
that reduces computational complexity. Thus, the objective function is:

min
A
‖X − Xr A‖2

F + λ‖A‖2
F, (4)

where A ∈ Rm×n and λ are the weight matrix and regularization parameter, respectively.
Setting the derivative w.r.t A to zero, the solution of A is:

A = (XT
r Xr + λI)−1XT

r X. (5)

Thus, the matrix X can be reconstructed as Xr A. In the same way as CRD, the
reconstruction error of pixel xi can be regarded as the anomaly score, which is obtained in
the following way:

δi = ‖xi − Xrai‖2, (6)

where xi and ai are the i column of X and A, respectively. Then, if δi is larger than a given
threshold, xi is can be viewed as an anomaly. Figure 2 shows the random background
modeling of the ERCRD.

Compared with the CRD method, ERCRD has the following two advantages: faster
speed and higher accuracy. However, the ERCRD algorithm uses only the spectral char-
acteristics of HSI, while HSI contains rich information, specifically the spectral feature,
texture feature, morphological feature and spatial feature. Making full use of these features
can effectively improve the anomaly detection results.
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Figure 2. Random background modeling of the ensemble and random collaborative representation
detector (ERCRD).

2.3. The Proposed Method
2.3.1. Multiple Feature Extraction

Usually, there are four types of features that can be extracted from an HSI image: the
spectral feature, the Gabor feature, the extended morphological profile (EMP) feature, and
the extended multiattribute profile (EMAP) feature. The details of all these features are
described as follows:

1. Spectral feature: The spectral feature of pixel xi is the corresponding spectral signature.
We use Xspe ∈ Rd×n to represent the entire image spectral feature matrix.

2. Gabor feature: The Gabor feature is obtained via Gabor transformation, a transfor-
mation method that is capable of extracting the corresponding features from the
frequency domain and has been widely used in the image processing field for the
extraction of texture features.
Firstly, a projection matrix W ∈ Rd×m should be calculated via the principal compo-
nent analysis (PCA) model, as follows:

max
W TW=I

tr(W TXspeXT
speW

T), (7)

where I ∈ Rm×m is the identity matrix. m is the number of top principal component
images, which can be defined as follows:

Ipci ∈ Rm×h×w = W TX. (8)

Ipci can then be convolved with a Gabor filter in different orientations and at different
scales. The Gabor feature Xgabor ∈ Rd2×n can be then obtained by extracting the
filtering coefficients; here, d2 is the product of the number of orientations, scales, and
principal component images. For example, when the numbers of orientations, scales,
and principal component images are 6, 5, and 5, respectively, d2 = 6× 5× 5 = 150.

3. EMP feature: The EMP feature is also obtained by means of the PCA (principal
component analysis, PCA) method. First, we extract the first m principal component
images by means of the PCA approach. Then, the morphological profile of each
principal component image is extracted via its structural elements (SEs). Finally, we
construct the EMP feature with combining the acquired morphological profiles. For
the EMP feature matrix Xemp ∈ Rd3×n, d3 is connected to the number of m and SEs.
When m = 5 and SEs = 6, d3 = (2× 6 + 1)× 5 = 65.

4. EMAP feature: The EMAP feature is also based on the top m principal component
images. Moreover, it also relies on the morphological attribute filters. For each
principal component image, the morphological attribute filters are utilized to gen-
erate the extended attribute profiles (EAPs). EAP = [AP1, AP2, · · · , APm], where
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APi(i = 1, 2, · · · , m) represents the attribute filtering of component i. The EMAP fea-
ture can be generated by extending EAPs with four different attributes of the regions:
area, size, elongation, and homogeneity. In the EMAP feature matrix Xemap ∈ Rd4×n,
d4 is related to the number of m and the parameters of the attribute filters employed.
Since each of filters can produce nine features, d4 can be obtained accordingly, e.g.,
when m = 5, d4 = 9× 4× 5 = 180.

2.3.2. Random Collective Representation-Based Detector with Multiple Feature

Inspired by Ensemble and Random Collective Representation-based Detector (ERCRD)
method, we propose a new anomaly detection approach, referred to as Random Collective
Representation-Based Detector with Multiple Feature (RCRDMF). First, the four feature
matrices discussed above are extracted from the HSI image. Then, for each feature matrix,
the ERCRD method is utilized to achieve anomaly detection. Figure 3 shows the feature
extract and random background modeling of the RCRDMF. Finally, the adaptive weight
approach is adopted to assign the corresponding weight for each feature.

Figure 3. Feature extracting and random background modeling of the Random Collective Representation-Based Detector
with Multiple Feature (RCRDMF).
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Let X1 = Xspe, X2 = Xgabor, X3 = Xemp, X4 = Xemap. Xv
r represents the samples in

the v-th view features, which are randomly selected. The proposed RCRDMF model is
then expressed in the following form:

min
A,αv

V

∑
v=1

1
αv
‖Xv − Xv

r A‖2
F + λ‖A‖2

F, s.t.
V

∑
v=1

αv = 1, αv > 0. (9)

Xv
r ∈ Rd×r is the randomly selected background in the v-th view features, where r

represents the number of random sampling pixels. Moreover, αv is the weight of the v-th
view features, which can be adaptively solved as the optimization process. A ∈ Rr×n and
λ represent the weight matrix and regularization parameter, respectively.

In Equation (9), there are two variables that must be solved, A and αv. In this paper,
we adopt the following alternating iterative approach to solving this problem.

Fix αv, update A Equation (9) can be rewritten in the following form:

min
A

V

∑
v=1

1
αv
‖Xv − Xv

r A‖2
F + λ‖A‖2

F. (10)

Taking the derivative w.r.t A, and setting the derivative to zero, we have

A = (
V

∑
v=1

1
αv

Xv
r

TXv
r + λI)−1(

V

∑
v=1

1
αv

Xv
r

TXv). (11)

Fix A, update αv
Let hv = ‖Xv − Xv

r A‖2
F, such that Equation (9) is equal to:

min
αv

V

∑
v=1

1
αv

hv, s.t.
V

∑
v=1

αv = 1, αv > 0. (12)

Thus, the Lagrange function of Equation (12) is:

V

∑
v=1

1
αv

hv − λα(
V

∑
v=1

αv − 1), (13)

where λα is the Lagrange multiplier. With simple algebraic manipulations, we obtain

αv =
(hv)

1
2

∑V
v=1(hv)

1
2

. (14)

Once A and αv are obtained, the reconstruction error for each pixel xi, which is
regarded as the anomaly score, can be calculated as follows:

δi =
V

∑
v=1

1
αv
‖xv

i − Xv
r ai‖2. (15)

If δi is larger than a given threshold, xi is can be viewed as an anomaly.
As the background points are randomly selected, the results may be inconsistent

at each run. To solve this problem, we adopt the strategy of repeating this process and
integrating these results. Define the number of repetitions as T; the final anomaly score is
as follows:

γi =
T

∑
t=1

δt
i . (16)

The steps are presented in more detail in Algorithm 1.
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Algorithm 1 The algorithm of RCRDMF

Input: HSI data matrix X, the number of randomly selected background points r and
repetitions T.

1: Extract the four features: the spectral feature X1 = Xspe, the Gabor feature X2 = Xgabor,
the EMP (extended morphological profile, EMP) feature X3 = Xemp, and the EMAP
(extended multiattribute profile, EMAP) feature X4 = Xemap. Let Xv

r be the samples in
the v-th view features.

2: for t = 1 : T do
3: Initialize weight αv = 1/4.
4: repeat
5: Fix αv, calculating A by Equation (11).
6: Fix A, calculating αv by Equation (14).
7: until Converge
8: Calculate δi by Equation (15)
9: end for

Output: The final anomaly score by Equation (16).

3. Experimental Results

In this section, experiments are conducted to verify the detection performance of the
proposed RCRDMF approach. All experiments are carried out on a PC with ThinkPad X1
carbon, i7, 16G RAM, MATLAB R2018b. In these experiments, the following six hyperspec-
tral images are chosen.

1. AVIRIS-I: This image was captured from the San Diego airport area, CA, USA, by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. The original image
contained 224 spectral bands in wavelengths ranging from 370 to 2410 nm with 3.5 m
pixels. After removing the poor-quality bands, there are 189 bands remaining to be
analyzed in the experiments. Moreover, each band has 400× 400 pixels. The AVIRIS-I
dataset is selected from the top left of this entire image with a size of 120× 120 pixels.
There are three airplanes, containing 58 pixels, which can be regarded as anomalies
that should be recognized. The false color image and the corresponding ground truth
map of the AVIRIS-I image are shown in Figure 4a,d, respectively.

2. AVIRIS-II: This image was also obtained from the original San Diego airport image.
Unlike the AVIRIS-I dataset, the region selected here is of size 100× 100 pixels and is
drawn from the San Diego airport image. In the AVIRIS-II dataset, the anomalies that
need to be detected in the scene are also three airplanes, this time taking up a total
of 134 pixels. The false color image and the corresponding ground truth map of the
AVIRIS-II image are presented in Figure 4b,e, respectively.

3. AVIRIS-III: As with the AVIRIS-I and AVIRIS-II datasets, it is also selected from the
San Diego airport image: the difference is that it is cropped from the top left of the
San Diego airport image with a size of 200× 240 pixels. In the AVIRIS-III dataset, six
airplanes made up of 90 pixels in total are viewed as the anomalies. The false color
image and the corresponding ground truth map of the AVIRIS-III image are shown in
Figure 4c,f, respectively.

4. Cri: It was collected by the Nuance Cri hyperspectral sensor. Cri has 46 spectral bands
in wavelengths ranging from 650 to 1100 nm. In each band, there are 400× 400 pixels.
The anomalies in this image are 10 rocks containing 2216 pixels. The false color image
and the corresponding ground truth map of the Cri image are shown in Figure 4g,j,
respectively.

5. ABU-airport-2: This was acquired by the AVIRIS sensor from ABU(Airport–Beach–Urban)
dataset [50]. ABU-airport-2 has 204 spectral bands, each with 100× 100 pixels. In this
image, the anomalies are 2 airports. The false color image and the corresponding ground
truth map of the ABU-airport-2 image are presented in Figure 4h,k, respectively.
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6. Salinas: It was also obtained by the AVIRIS sensor. After discarding the 20 water
absorption bands, there are 204 spectral bands remaining in the analysis. The size of
each band is 180× 180 pixels. The false color image and the corresponding ground
truth map of the Salinas image are shown in Figure 4i,l, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. False color image of (a) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)-I, (b)
AVIRIS-II, (c) AVIRIS-III. The ground truth map of (d)AVIRIS-I, (e) AVIRIS-II, (f) AVIRIS-III. False
color image of (g) Cri, (h) ABU-airport-2, (i) Salinas. The ground truth map of (j) Cri, (k) ABU-airport-
2, (l) Salinas.

3.1. Detection Performance

In this part, we conduct experiments on the six datasets presented above to evaluate
the superiority of the proposed RCRDMF method. The evaluation indicators comprise
a qualitative evaluation metric (color detection map) and quantitative evaluation metric
(area under the receiver operating characteristic (ROC) curve (AUC) value, running time,
ROC curve, and the normalized background-anomaly separation map). The color detection
map is a visual representation which uses the brightness to indicate the anomaly detection
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result of the pixels. The higher the anomaly detection score, the brighter the pixel, and
the more likely the pixel is an anomaly. ROC represents the relationship between the
detection probability (DP) and the false alarm rate (FAR). The greater the AUC, the better
the detection results. Moreover, the normalized background-anomaly separation maps
use two box plots to describe the distribution of anomaly scores gammai for anomalies
and background points, respectively. The five values in a box plot from top to bottom
are the maximum, the upper quartile, the median, the lower quartile, and the minimum.
The greater the difference between the distributions of anomalies and background points,
the more easily they can be distinguished, thus illustrating the better performance of
the algorithm.

We further compare our methods with five state-of-the-art methods: GRX, LRX, CRD,
LSMAD, and ERCRD. Among them, LRX and CRD are sensitive to the sliding double
window sizes. We set the inner window size win to range from 3 to 11, while the outer
window size wout ranges from 5 to 15. For the ERCRD and RCRDMF methods, the number
of random sample r is set based with reference to the dataset size. For small datasets
(AVIRIS-I and AVIRIS-II), r = 10; for medium datasets (AVIRIS-III, Salinas), r = 50; for
large datasets (Cri), r = 100. Specially, for dataset ABU-airport-2, which is a small dataset,
r = 100. We will discuss this issue in the discussion section. The number of repetitions is
T = 20. Table 1 lists the AUC values obtained by different methods, in which the maximum
value is in bold. And Table 2 records the detection time.

Table 1. The area under the receiver operating characteristic (ROC) curve (AUC). Values by different
methods on the six datasets.

Dataset GRX LRX CRD LSMAD ERCRD RCRDMF

AVIRIS-I 0.9111 0,8194 0.9742 0.9717 0.9787 0.9911
AVIRIS-II 0.9403 0.8276 0.9357 0.9724 0.9798 0.9861
AVIRIS-III 0.8710 0.8326 0.9685 0.9308 0.9165 0.9616
Cri 0.9134 0.6779 0.7220 0.9236 0.9141 0.9943
ABU-airport-2 0.8404 0.9492 0.9443 0.9438 0.9220 0.9759
Salinas 0.8872 0.9499 0.9075 0.9481 0.9422 0.9607

Table 2. The detection time by different methods on the six datasets.

Dataset GRX LRX CRD LSMAD ERCRD RCRDMF

AVIRIS-I 0.0914 60.7072 90.6277 13.0894 0.6448 3.5191
AVIRIS-II 0.0608 56.3844 60.2825 8.2589 0.4245 0.7417
AVIRIS-III 0.2786 219.3801 338.3894 47.6509 2.0212 13.8526
Cri 0.1558 101.2296 387.3111 35.6779 2.2044 178.7775
ABU-airport-2 0.0769 56.4996 62.4306 11.7918 0.6671 0.9319
Salinas 0.2304 169.9561 191.2008 39.1329 2.2376 36.6195

For the AVIRIS-I dataset, the color detection result maps of different approaches
are presented below in Figure 5. From this figure, we can determine that CRD, LSMAD,
ERCRD, and RCRDMF methods can detect the locations and shapes of the three airplanes.
The results obtained by the RCRDMF method are seen to be the clearest. Moreover, the
corresponding ROC curve and background-anomaly separation map are presented in
Figure 6. We can see that the ROC curve of RCRDMF method is far closer to the top left;
in addition, the AUC value obtained by RCRDMF reaches 0.9911, much higher than the
others. The gap between background and anomaly is large. The time cost for RCRDMF is
3.5191, which is faster than the CRD method. These results illustrate the superiority of the
proposed RCRDMF method.
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(a) GRX (b) LRX (c) CRD

(d) LSMAD (e) ERCRD (f) RCRDMF

Figure 5. Color detection maps obtained by different algorithms for the AVIRIS-I dataset. (a) global
RX (GRX), (b) local RX (LRX), (c) CRD, (d) LRaSMD-based Mahalanobis distance method (LSMAD),
(e) ERCRD, (f) RCRDMF.
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Figure 6. Detection accuracy evaluation for the AVIRIS-I dataset. (a) Receiver operating characteristic
(ROC) curves. (b) Normalized background-anomaly separation maps.

For the AVIRIS-II dataset, the color detection result maps of different approaches are
presented in Figure 7. The GRX, LSMAD, ERCRD, and RCRDMF methods can clearly
detect the locations and shapes of the three airplanes. Among them, GRX, LSMAD, and
ERCRD mistakenly identify many background points as anomalies, while RCRDMF can
obtain a clearer detection result. Figure 8, Table 1, and Table 2 present the corresponding
quantitative result. We can make the following observations. Firstly, the ROC curve of this
method is much closer to the top left. The corresponding AUC value of RCRDMF is 0.9861,
much higher than the others. Secondly, RCRDMF obtains an obvious background-anomaly
separation map. Finally, RCRDMF requires 0.7417 s to complete detection, while the CRD
method needs 60.2825 s. Therefore, RCRDMF performs best in terms of both qualitative
and quantitative results.
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(a) GRX (b) LRX (c) CRD

(d) LSMAD (e) ERCRD (f) RCRDMF

Figure 7. Color detection maps obtained by different algorithms for the AVIRIS-II dataset. (a) GRX,
(b) LRX, (c) CRD, (d) LSMAD, (e) ERCRD, (f) RCRDMF.
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Figure 8. Detection accuracy evaluation for the AVIRIS-II dataset. (a) ROC curves. (b) Normalized
background-anomaly separation maps.

For the AVIRIS-III dataset, the color detection result maps of different approaches are
presented in Figure 9. The CRD, ERCRD, and RCRDMF methods can detect the locations
and shapes of the three airplanes, while the others are unable to do so. Figure 10, Table 1,
and Table 2 present the corresponding quantitative results. We can determine that the AUC
values obtained by the CRD and RCRDMF methods are very close. However, RCRDMF
requires only 13.8526 s to complete detection, while CRD needs 338.3894 s. Therefore,
RCRDMF can obtain a reasonable detection result with little time.
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(a) GRX (b) LRX (c) CRD

(d) LSMAD (e) ERCRD (f) RCRDMF

Figure 9. Color detection maps obtained by different algorithms for the AVIRIS-III dataset. (a) GRX,
(b) LRX, (c) CRD, (d) LSMAD, (e) ERCRD, (f) RCRDMF.
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Figure 10. Detection accuracy evaluation for the AVIRIS-III dataset. (a) ROC curves. (b) Normalized
background-anomaly separation maps.

For the Cri dataset, the color detection result maps of different approaches are pre-
sented in Figure 11. Only the LRX method is unable to find the anomaly. LSMAD, ERCRD,
and RCRDMF can clearly detect the locations and shapes of the ten rocks, while the result
obtained by the CRD method is fuzzy. The corresponding quantitative results are presented
in Figure 12, Tables 1 and 2. We can see that the ROC curve and AUC value obtained by the
RCRDMF method are much better than those of the other methods. The AUC value of the
RCRDMF method can reach 0.9943, which is 0.0707 higher than the second method LSMAD.
Moreover, the background-anomaly separation map of RCRDMF is also very clear.



Remote Sens. 2021, 13, 721 15 of 22

(a) GRX (b) LRX (c) CRD

(d) LSMAD (e) ERCRD (f) RCRDMF

Figure 11. Color detection maps obtained by different algorithms for the Cri dataset. (a) GRX, (b)
LRX, (c) CRD, (d) LSMAD, (e) ERCRD, (f) RCRDMF.
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Figure 12. Detection accuracy evaluation for the Cri dataset. (a) ROC curves. (b) Normalized
background-anomaly separation maps.

For the ABU-airport-2 dataset, the color detection result maps of different approaches
are presented in Figure 13. Although all six methods can detect the locations and shapes of
the two airplanes, the corresponding quantitative results of RCRDMF are superior overall,
as can be seen in Figure 14. The ROC curve of the RCRDMF method is far closer to the
top left. In addition, it can be seen from Table 1 that the corresponding AUC value of
the RCRDMF method is 0.9759, which is 0.0316 and 0.0539 higher than CRD and ERCRD
method, respectively. The background-anomaly separation map of RCRDMF method is
also very clear (see Figure 14b). The time cost of different methods are presented in Table 2.
RCRDMF needs 0.9319 s to complete detection, while the CRD method needs 62.4306 s.
Therefore, RCRDMF performs best in terms of the qualitative and quantitative results.
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(a) GRX (b) LRX (c) CRD

(d) LSMAD (e) ERCRD (f) RCRDMF

Figure 13. Color detection maps obtained by different algorithms for the abu-airport-2 dataset. (a)
GRX, (b) LRX, (c) CRD, (d) LSMAD, (e) ERCRD, (f) RCRDMF.

10-5 10-4 10-3 10-2 10-1 100

False Alarm Rate

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

GRX
LRX
CRD
LSMAD
ERCRD
RCRDMF

(a)

GRX LRX CRD LSMAD ERCRD RCRDMF

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 D
et

ec
tio

n 
S

ta
tis

tic
s 

R
an

ge

Background
Anomaly

(b)

Figure 14. Detection accuracy evaluation for the abu-airport-2 dataset. (a) ROC curves. (b) Normal-
ized background-anomaly separation maps.

The color detection result maps of different approaches on the Salinas dataset are
presented in Figure 15. The corresponding ROC curve is shown in Figure 16a. As the
figures show, the ROC curve of the proposed RCRDMF method is much closer to the top
left. Table 1 shows that the AUC value achieved by RCRDMF is 0.9607, which is much
higher than that of the others. Figure 16b presents the background-anomaly separation
maps of different methods; among them, RCRDMF can achieve a larger gap than the others.
Table 2 further shows the time cost of each method. RCRDMF needs 36.6195 s to complete
detection, while the CRD method needs 191.2008 s. Therefore, RCRDMF achieves a better
detection result.
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(a) GRX (b) LRX (c) CRD

(d) LSMAD (e) ERCRD (f) RCRDMF

Figure 15. Color detection maps obtained by different algorithms for the Salinas dataset. (a) GRX,
(b) LRX, (c) CRD, (d) LSMAD, (e) ERCRD, (f) RCRDMF.
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Figure 16. Detection accuracy evaluation for the Salinas dataset. (a) ROC curves. (b) Normalized
background-anomaly separation maps.

3.2. Parameter Analysis

In this subsection, we conduct experiments to determine the influence of parameters
referred to in the ERCRD and RCRDMF methods. We select a small dataset (AVIRIS-I) and
a large dataset (Cri) for these specific experiments. In the ERCRD and RCRDMF methods,
there are two major parameters: the number of random samples r and the ensemble size T.
In addition, the quantitative index (AUC value) is adopted to assess the performance of
the ERCRD and RCRDMF methods.

On the AVIRIS-I dataset, the relationships between the number of random samples r
and the AUC value are plotted in Figure 17a. Compared with the ERCRD model, the pro-
posed RCRDMF method is much more robust. The AUC value obtained by the RCRDMF
method is also higher than that of the ERCRD method for different number of random
samples r. The relationship curves between the ensemble size T and the AUC value are
further plotted in Figure 17b. RCRDMF method always outperforms the ERCRD method.
As the ensemble size T increases, the detection results become more stable.
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Figure 17. Parameter effect of (a)the number of random sampling r and (b) the ensemble size T on
the AVIRIS-I dataset.

On the Cri dataset, the parameter effect of the number of random samples r and the
ensemble size T are presented in Figure 18. From Figure 18a, we can see that RCRDMF still
performs better than ERCRD in different situations. Figure 18b also presents the superiority
of the RCRDMF method.
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Figure 18. Parameter effect of (a) the number of random sampling r and (b) the ensemble size T on
the Cri dataset.

3.3. Feature Weight

The proposed RCRDMF use four types of features for anomaly detection. There will
be one group of weight for these features generated after each run of Algorithm 1, line
2∼8. Since the T was set as 20 on each dataset in our experiment, Table 3 lists ten of the
twenty groups of weight on AVIRIS-I and Cri datasets, respectively. From the Table 3, we
can see that the weights are similar on a certain dataset and are quite different between the
two datasets.
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Table 3. Ten groups of weight for the four features on AVIRIS-I and Cri datasets.

AVIRIS-I Cri

Spectral Gabor EMP EMAP Spectral Gabor EMP EMAP

0.1522 0.4298 0.1404 0.2776 0.2499 0.0001 0.2167 0.5333
0.1539 0.4495 0.1394 0.2572 0.2538 0.0001 0.2019 0.5443
0.1514 0.4508 0.1465 0.2513 0.2438 0.0001 0.2080 0.5481
0.1461 0.4835 0.1265 0.2439 0.2493 0.0002 0.2092 0.5414
0.1415 0.4584 0.1404 0.2596 0.2389 0.0001 0.2062 0.5548
0.1878 0.3575 0.1630 0.2916 0.2546 0.0001 0.2233 0.5221
0.1418 0.4335 0.1511 0.2736 0.2411 0.0001 0.2105 0.5484
0.1708 0.4344 0.1358 0.2591 0.2557 0.0001 0.2152 0.5290
0.1728 0.4466 0.1394 0.2413 0.2595 0.0001 0.2162 0.5242
0.1593 0.4072 0.1515 0.2821 0.2519 0.0001 0.2247 0.5233

4. Discussion

In this paper, we propose a novel anomaly detection approach named Random Collec-
tive Representation-Based Detector with Multiple Feature (RCRDMF). The main motivation
of our approach is to make full use of the information provided by HSI images in the field
of anomaly detection, which is different with the classic methods only use the spectral
features, e.g., RX, CRD, etc. Fortunately, there are several widely used features can be
applied for HSI images, such as Gabor, EMP, and EMAP features. We extract these features
and find the approach to utilize the correlative information for anomaly detection. In
spite of the different generation methods and different dimensions, all the features can be
corresponded to the pixels of the original image one by one. Therefore, it is more appropri-
ate to achieve our purpose based on a representation-based method. As it is known that
CRD operates on pixels, thus, it can benefit a lot with our approach. On the other hand,
CRD consumes a lot of time; thus, the use of multiple features will lead to unacceptable
complexity. To solve this problem, we refer to another method named ERCRD. The ERCRD
uses random background points to replace the sliding dual window model, which greatly
improves the running time. As can be seen from Table 2, the running time of the ERCRD is
particularly fast. In our method, the same strategy of the ERCRD is utilized on each selected
feature and these results are combined together in the final expression. The experiment
results show that our RCRDMF method can obtain better AUC than the others in most
situation. These results verifies that the use of multiple features does improve the anomaly
detection accuracy because of the more affluent information. One exception is that the
AUC of our method is not better but close to the CRD on the AVIRIS-III dataset, but our
method has the obvious advantage on running time. In fact, from Figure 4c,f, it can be
found that some backgrounds in the image are more special than the anomalies. It can be
seen from Figure 9f that our method can clearly detect the anomalies. The reason for the
unsatisfactory result is that the special backgrounds were also detected as the anomalies.
Since these special backgrounds are mostly fixed buildings, the most possible solution is to
remove these fixed pixels in practical application.

According to the strategy of selecting the background points randomly in our algo-
rithm, the number of the random selected points r should be chosen carefully. Similar to
ERCRD, we assume that the pixels in the background can be approximately represented
by the randomly selected pixels in the HSI image, while this is not the case for anomalies.
As the number r should be depended on the size of the dataset, we tried to use a fixed
ratio of data size to select the r in the design at the begining. It seems that no need to
adjust the number is a great strategy for our algorithm. However, when the dataset is
large enough, the r becomes larger at the same time since the number of pixels is quadratic
growth, which consumes much time. So, it is improper to use a fixed ratio. In Section 3.2,
we use experiments to illustrate the effect of different r on the AUC. It can be seen from
Figures 17a and 18a that on a small dataset, like AVIRIS-I, a small r can achieve a good
result, and the result does not change significantly with the change of r; and on a large



Remote Sens. 2021, 13, 721 20 of 22

dataset, like Cri, the larger r, the better result. Nevertheless, r = 100 can achieve a good
result for Cri dataset. Based on the above discussion, we empirically set r = 10 for small
datasets (AVIRIS-I and AVIRIS-II); r = 50 for medium datasets (AVIRIS-III, Salinas); and
r = 100 for the large dataset (Cri), which can achieve a significant accuracy with satisfied
time consumption. Specially, for the small dataset ABU-airport-2, there is a worse result
when r = 10. It mainly because the background of ABU-airport-2 is quite complex, as is
seen from Figure 4h. In this situation, the background pixels also need more random points
to be represented, which is in line with our initial assumption. In our experiment, the AUC
of ABU-airport-2 becomes the highest among the all methods when r = 100.

Because of the randomness of the algorithm, it is definitely unstable to choose random
background points only once for detection. Inspired by the ensemble method of the ERCRD,
we repeat the process of randomly selecting points and calculating the anomaly score for T
times and then ensemble the results. This strategy can eliminate the random effects and
make the algorithm more stable. In Section 3.2, we use experiments to illustrate the effect
of T on the AUC. It can be seen from Figures 17b and 18b that, with T increases, the result
becomes more stable. We set T = 20 in practice.

In this paper, we use the machine learning method to learn a suitable weight for
multiple features adaptively. This model achieve the effect that the more important feature
weight the larger automatically. As can be seen from the Table 3, the weights are similar
on a certain dataset and are quite different between different datasets. This illustrates that
the importance of one feature is similar on the same data and is distinguishing between
different datasets, as well as further illustrates that our method makes full use of the
information of these features.

In related literature, the performance of an anomaly detection approach is usually
evaluated by the ROC curve, AUC, and the separation between the anomalies and the
background, which does the same as this article. It is easy to understand that a larger
of the anomaly score, the more likely the corresponding pixel is an anomaly. However,
these evaluation indicators do not tell us how to appropriately set a threshold to determine
whether a pixel is an anomaly in practice. In fact, setting a appropriate threshold need to
comprehensively consider the relationship between the requirements of false alarm rate
and accuracy, and combine the effective prior knowledge. In more general situation, it is
reasonable to apply a certain method, e.g., histogram method, to divide the scores into two
patterns; thus, the threshold is the dividing line between the two parts.

5. Conclusions

In this paper, we propose a novel anomaly detection approach named Random Collec-
tive Representation-Based Detector with Multiple Feature (RCRDMF). The spectral feature,
Gabor feature, EMP feature, and EMAP feature are utilized to construct the corresponding
ERCRD detector. Next, the adaptive weight approach is adopted to calculate the weight
of each feature. The advantages of RCRDMF are as follows: First, the combination of
multiple spectral and spatial features can improve the detection accuracy. Secondly, the
detection speed can be accelerated with the help of random background modeling. Finally,
the adaptive weight approach is proposed to calculate the weight for each feature, which
removes the need to tune the weight parameter. Experiments on six real hyperspectral
images illustrate the superiority of our proposed RCRDMF in terms of detection accuracy
and speed. In addition, the parameter sensitivity experiments also prove the robustness of
the RCRDMF model.
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