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Abstract: The work aimed to discriminate among different soil management treatments in terms of
beneficial effects by high-resolution thermal and spectral vegetation imagery using an unmanned
aerial vehicle and open-source GIS software. Five soil management treatments were applied in
two organic vineyards (cv. Sangiovese) from Chianti Classico terroir (Tuscany, Italy) during two
experimental years. The treatments tested consisted of conventional tillage, spontaneous vegetation,
pigeon bean (Vicia faba var. minor Beck) incorporated in spring, mixture of barley (Hordeum vulgare
L.) and clover (Trifolium squarrosum L.) incorporated or left as dead mulch in late spring. The
images acquired remotely were analyzed through map-algebra and map-statistics in QGIS and
correlated with field ecophysiological measurements. The surface temperature, crop water stress
index (CWSI) and normalized difference vegetation index (NDVI) of each vine row under treatments
were compared based on frequency distribution functions and statistics descriptors of position. The
spectral vegetation and thermal-based indices were significantly correlated with the respective leaf
area index (R2 = 0.89) and stem water potential measurements (R2 = 0.59), and thus are an expression
of the crop vigor and water status. The gravel and active limestone soil components determined
the spatial variability of vine biophysical (e.g., canopy vigor) and physiological characteristics (e.g.,
vine chlorophyll content) in both farms. The vine canopy surface temperature, and CWSI were lower
on the spontaneous and pigeon bean treatments in both farms, thus evidencing less physiological
stress on the vine rows derived from the cover crop residual effect. In conclusion, the proposed
methodology showed the capacity to discriminate across soil management practices and map the
spatial variability within vineyards. The methodology could serve as a simple and non-invasive tool
for precision soil management in rainfed vineyards to guide producers on using the most efficient
and profitable practice.

Keywords: cover crops; crop water stress index (CWSI); spectral vegetation index; sustainable agriculture

1. Introduction

Water deficit periods are increasing in frequency and intensity in the Mediterranean
basin, due to the higher variation in the amount and distribution of rainfall [1]. Vine
trees are one of the most common cultivated woody perennial crops in the Mediterranean
region [2], which was traditionally rainfed farmed. Vine growers always seek for a certain
level of water stress in vineyards, which is known to increase wine quality [3]. Nonetheless,
excessive vine water stress can alter the vegetative growth of vine, yield, berry composition and
wine quality. In fact, water is the main constrain for yield in semiarid vineyards [3–5]. Therefore,
an effective management of the water resource is a priority to alleviate the instability
in productivity and negative socioeconomic impacts that the drought phenomena may
cause [1].
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Continuous tillage and regular soil incorporation of cover crops have been imple-
mented as the most common soil management technique in semiarid vineyards. Many case
studies have highlighted the benefits in terms of ecosystem services that an appropriate
management of cover crop brings to the vineyard agroecosystem, such as soil protection,
improving soil structure and organic matter, water purification and carbon sequestra-
tion [6–8]. Despite this beneficial effect, farmers are reluctant to grow cover crops as they
are perceived as a cause of yield reduction due to nutrients and water competition that
may occur between the vine and the cover crop [9–11].

In terms of crop water status, cover crops can modify the water balance of the vineyard
agroecosystem by increasing transpiration, reducing evaporative water loss and promoting
water infiltration, soil storage and holding capacity and crop’s capacity to access soil
water [12]. Consequently, the cover crop could increase the agroecosystem resilience to
drought phenomena and stabilize vine yield. However, most of the studies carried out
on cover crops did not have as the main objective the quantification of the relationship
cover crop–crop water supply [12]. Therefore, in order to shift farmers’ perception towards
cover crop adaptation, further research is needed, which should focus on a holistic and
multidisciplinary approach that assesses the potential ecosystem services that cover crops
may provide [5,13].

The use of the multidisciplinary and distributed approach is relevant in viticulture,
where the systems are complex with high spatial and temporal variability within and
between fields due to the heterogeneity and sparse canopy crop characteristics [14]. Chi-
anti terroir (Tuscany, Italy) is a good example of this complex system, characterized by
high variability within its agroecosystems, in terms of soil type and physical properties,
topographical aspects, microclimates and landscape complexity [15]. The vineyards are reg-
istered under the Controlled Designation of Origin (CDO) Chianti Classico. Dry farming is
practiced in Chianti region and promoted by the CDO regulation; however, the increasing
water deficit periods make necessary to adopt alternative soil management techniques
(e.g., cover crops) and supplemental irrigation, which could be necessary after prolonged
drought periods to support the functioning of the vineyard. Hence, monitoring soil and
vine water status in relation to soil alternative management practices in Chianti region can
represent an innovative practice to support their implementation.

Traditional methods for field data acquisition involve extensive sampling and time-
consuming, destructive and discrete measurements, being thus impractical for monitoring
large areas and for commercial-scale farming [16,17]. Nonetheless, vineyards are hetero-
geneous and sparse crop systems with significant intra- and inter-field variability [14].
Remote sensing technology is a valuable tool to study the significant complexity associated
to vineyards agroecosystems and more specifically in Chianti region [4]. Among the remote
sensing techniques, the unmanned aerial vehicles (UAVs) have become a technology with
affordable operational costs, non-invasive, with high spatial and temporal resolution that
can be used in commercial vineyards. UAVs are coupled with multispectral and thermal
cameras that acquire aerial images of specific spectral responses of the vegetation and
thermal infrared region of the spectrum. The images can be processed into vegetation
spectral and thermal based indexes that are related to vine biophysical and physiological
parameters [18].

UAV thermal infrared images have been widely used to evaluate vine water status
variability [19,20]. Canopy temperature is linked to the transpiration cooling effect, as
the immediate crop response to water stress is closure of the leaf stomata, which reduces
transpiration and consequently increases leaf temperature [21]. Therefore, canopy temper-
ature and thermal based indicators from airborne thermal imaging are used to map spatial
variability and quantify crop water status, among which the crop water stress index (CWSI)
is one of the most common water stress indices in viticulture. The CWSI was developed
as a thermal based stress indicator in herbaceous crops by [22,23] and lately have been
used in woody perennial crops [17,24,25]. Spectral vegetation indices have been much
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studied and have been proved to correlate well with biophysical and physiological vine
parameters [26].

The normalized difference vegetation index (NDVI) has been proven to represent
crop structural characteristics and vigor, which was correlated to vine water status in
environments where soil water deficit is a determinant factor for vine crop [27]. In addition,
the ratio between the transformed chlorophyll absorption in reflectance index (TCARI) and
the optimized soil-adjusted vegetation index (OSAVI) is a combined spectral index that has
been observed to represent accurately physiological vine status, concretely correlated with
the chlorophyll a+b content in vegetation. This index removes the soil background effect
and non-photosynthetic material that may produce inaccurate results [28–31].

Moreover, Geographical Information System (GIS) tools paired with UAVs allow
rigorous mapping of the variables under study within and between fields and produce
quasi-real time maps of vine water status. Therefore, coupling these two tools could assist
winegrowers in decision-making processes and in the precision management of alternative
soil management techniques.

To the best of our knowledge, few studies [26] have developed an integrated approach
to discriminate the effects of different soil management techniques on grapevine water
status using remote sensing technologies.

Therefore, the main objective of this paper is to use a combined approach of high-
resolution thermal/spectral imagery with GIS tool to discriminate how different soil
management practices affect the water status in complex rainfed vineyards from Chianti
Terroir (Tuscany, Italy). Specifically, the different soil management treatments were studied
in terms of crop water status, vegetation vigor and chlorophyll content. Finally, the cover
crop residual effect over the vine row was evaluated through the thermal-based crop water
stress index.

2. Materials and Methods
2.1. Study Site Description

The experimental activities were conducted during two seasons (2018–2019) in two
organic vineyards within the CDO of Chianti Classico (Tuscany, NW Italy), namely, Fattoria
San Giusto a Rentennano (SG) and Azienda Agricola Montevertine (MV). SG farm has an
extension of about 160 ha, of which 31 ha correspond to vineyards, while MV sizes 30 ha,
of which 18 correspond to vineyards. The experimental plots were planted with the same
vineyard variety (Vitis vinifera, L. cvs. Sangiovese R10, rootstock 420A) and same vine and
row spacing of 2.50 × 0.8 m2, respectively (5000 vines ha−1). The farms were managed ac-
cording to the organic farming standards, ordinary soil and canopy management protocols.
The vineyards were rainfed to follow the regulation of the CDO Chianti Classico for high
quality wines, which enables only supplemental irrigation when needed.

The experimental plot of San Giusto a Rentennano (SG) is localized with geographical
coordinates 43◦22′05.9”N and 11◦25′20.82”E at 233 m elevation above sea level and mean
slope of 10%. Average air temperature and annual rainfall account for 14.4 ◦C and 801 mm,
respectively. The extension of the experimental plot was 4000 m2 with North-South row
orientation. The vineyards were planted in 1991 and trained according to the guyot system.
Soils are loam-clay/loam, developed on ancient fluvial terrace.

The experimental plot of Montevertine (MV) is localized with 43◦30′06.1”N and
11◦23′28.8”E at 425 m elevation above sea level with a mean slope of 8%. Average air tem-
perature and annual rainfall account for 12.6 ◦C and 824 mm, respectively. The extension
of the plot is 3000 m2 with North-South row orientation. The vineyards were planted in
1995 and trained on spurred cordon trellis system. Soils are stony silty clay loam and clay
loam characterized by calcareous flysch of the Monte Morello formation.



Remote Sens. 2021, 13, 716 4 of 22

2.2. Experimental Design

Table 1 shows the five soil management treatments implemented in both farms, the
tillage practices applied under the trellis and inter-row as well as the cover crop manage-
ment implemented during two seasons.

Table 1. Description of the experimental treatments.

Treatment Tillage Applied
Under Trellis

Tillage Applied in the
Inter-Row Cover Crop Species Cover Crop

Management

Conventional tillage
(CT) In-row ventral plow Three-shank grubber at 15 cm

depth (autumn, spring, summer) Spontaneous vegetation
Spontaneous vegetation

incorporated
with grubber

Barley-clover dead
mulch (CCM) In-row ventral plow

Three-shank grubber at 15 cm
depth only before cover crop

sowing (autumn)

Hordeum vulgare L.
(85 kg ha−1): Trifolium

squarrosum L. (25 kg ha−1)

Mowed in late spring
and retained as

dead mulch

Barley-clover green
manure (CCI) In-row ventral plow

Three-shank grubber at 15 cm
depth only before cover crop

sowing (autumn)

Hordeum vulgare L.
(85 kg ha−1): Trifolium

squarrosum L. (25 kg ha−1)

Soil incorporated in
late spring

Pigeon bean green
manure (F) In-row ventral plow

Three-shank grubber at 15 cm
depth only before cover crop

sowing (autumn)

Vicia faba L. var. minor Beck
(90 kg ha−1)

Soil incorporated in
late spring

Spontaneous
vegetation (S) In-row ventral plow None Spontaneous vegetation Mowed in late spring

Each treatment includes three vine rows and two inter-rows (approximately 5× 100 m),
which are separated from the contiguous treatments by one buffer row. The central row
of each treatment, used for the remote and ground measurements, was divided into three
subplots namely top, middle and bottom, which corresponded to the tophill, middle and
valley part of the slope gradient of the experimental plot, respectively (Figure 1).
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Figure 1. Experimental fields and their set-up for Montevertine (a) and San Giusto a Rentennano farm (b).

An in-row ventral plough was used to control weeds under the trellis during the
season in all the treatments. The cover crops were sown in October and terminated in
mid-June for both experimental years.

2.3. Field Measurements
2.3.1. Soil Physical Characterization

The determination of the soil particle-size distribution was carried out by combining
sieving methodology and the novel technique PARIO soil particle analyzer (METER Group,
Inc., Pullman, WA, USA). The textural distribution of the soil samples was determined
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according to USDA classification [32]. Active limestone was determined by the Drouineau
method [33].

A total of 15 undistributed soil samples were taken on each farm, which corresponded
to three sampling points per treatment, thus one per subplot. On each sampling point,
three soil depths were taken: 0–10 cm, 10–30 cm and 30–60 cm. The final results concerned
the average data for the entire profile explored (0–60 cm).

The sample positions (Universal Transverse Mercator, UTM, coordinates system) were
recorded with a differential GPS (Global Positioning System). Then, the components of
the textural analysis were geospatially analyzed using ordinary kriging in the QGIS suite
software [34].

2.3.2. Ecophysiological Measurements

The leaf area Index (LAI) was measured by a LAI-2000 optoelectronic sensor (LI-COR,
Lincoln, Nebraska, USA), using the two-azimuth protocol for a sparse crop cultivated in
rows [35]. The LAI measurements were carried out in the period of maximum vegetative
development of the vineyard and were paired with the NDVI computed on the base of the
images acquired by UAV on 03 August 2018. First, the sensor was positioned above the
vine canopy to perform an ambient light standardization (type A measurement). Seven
under-canopy measurements were taken along a diagonal transect pointed toward the
middle of the interrow of each soil management treatment, with the instrument held a
few centimeters above the soil (type B measurements). Thus, the LAI measurements were
implemented through two repetitions of the ABBBBBBB acquisition sequence on each
treatment. This procedure was repeated for a total of two transects per soil management
treatment in order to investigate both sides of the central vine row of the investigated
treatments. The localization of the transect was selected in order to cover the maximum
spatial variability of the vigor. A physical cap was used to limit the azimuthal field-of-view
to 180◦, facing away from the operator and the adjoining row of vines. The measurements
were performed when sunlight was low. in order to avoid the direct sunlight influence.

The SPAD readings were performed in both farms in June and August 2018, closed
to the day where the NDVI and TCARI/OSAVI images were acquired. To this scope,
a portable chlorophyll meter SPAD Minolta 502D has been used. Five rootstocks were
selected per subplot, thus a total of 15 plants per treatment. In each plant, three shoots were
selected, and SPAD was measured on three fully expanded median leaves. Three readings
were taken and averaged on each leaf. This protocol allowed to obtain representative
values of the chlorophyll content at canopy scale.

Measurements of midday steam water potential (MSWP) were performed in both
farms in July 2019, next to the day where the thermal images were acquired. In particular, a
delay of three days occurred between the MSWP and UAV acquisitions, and no substantial
variation in water status was observed during those days due to the stable soil drying
conditions. Practically, the measurements of MSWP were acquired with a Scholander
pressure chamber (PMS Model 600, Albany, OR, USA) according to the precautions sug-
gested by [36]. The measurements were performed between 12:00and 14:00, and two hours
previous to the measurement, the leaves were covered in aluminum foil bags to reach the
water status equilibrium between leaf and stem. The determinations were carried out in
one healthy mature leaf per vine, which was exposed to direct solar radiation. A total of
nine plants were measured per treatment (e.g., three plants per subplot), thus fourteen
plants on each farm.

2.4. Remote Sensing Measurements

The spectral and thermal radiometric measurements were addressed to acquire
the reflectance in the red and infrared bands to calculate the vegetation (i.e., NDVI,
TCARI/OSAVI) and thermal (CWSI) indexes.
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2.4.1. UAV Platform and Setting

The multispectral and thermal measurements were carried out with an unmanned
aerial vehicle (UAV) consisting of a counter-rotating coaxial bladed hexacopter Zephyr
EXOS. The UAV was mounted with a multi-spectral sensor Parrot Sequoia (Parrot SA) and
a thermal camera FlirVuePro R 640 13mm (FLIR, USA). The multi-spectral sensor acquired
four multispectral bands in the green (G), red (R), red edge (RE) and near-infrared (NIR)
domain with the respective spectral band width of 530–570 nm, 640–680 nm, 730–740 nm
and 770–810 nm. The thermal camera measurement accuracy is +/−5 ◦C or 5% of reading.

The multispectral camera was equipped with a fully integrated sunshine sensor for
in situ calibration of the solar lighting conditions at the time of acquisition. The flight
survey was set at 30 m above ground level (AGL) at solar noon, thus producing a Ground
Sampling Distance (GSD) equal to 2.82 cm pixel−1 image resolution, which is considered
suitable for both thermal surface and vegetative analysis.

The waypoint route was developed to obtain 85% overlap both between photos
(forward overlap) and between flight lines (lateral overlap), in order to achieve the highest
accuracy in the mosaicking elaboration step. The images were geo-referenced using relevant
points on the image such as field corners or obvious end of row. The UAV flights were
performed during homogeneous and stable radiation conditions, under sunny, clear sky,
no wind and dry soil conditions.

Three drone flights were planned considering the periods of fruit set and full devel-
opment of the crop. The first two flights were carried out in 2018 (16 June and 27 July) to
estimate the NDVI and TCARI/OSAVI indexes, while the third flight was performed in
2019 (03 August) to estimate the surface temperature and the CWSI. In 2019, a thermal
image of the surface temperature on a small lake near MV farm was acquired in order to
calibrate the thermal image.

2.4.2. Spectral and Thermal Images Processing

The multispectral and thermal images acquired by the UAV were processed using the
Pix4D photogrammetry software to develop reflectance maps, vegetation indexes (NDVI,
TCARI/OSAVI), thermal and crop water stress index maps. All images were orthorectified,
corrected for geometric errors and calibrated radiometrically.

The visible map (RGB) allowed to frame the study area and to observe qualitatively
the vegetation density. The vegetation indices used to generate information about bio-
physical characteristic of the canopy were the NDVI [37] and the TCARI/OSAVI [28,38].
Moreover, the thermal analysis used directly the surface temperature images to compute
the CWSI [23].

The method described in [39] was used to calculate the CWSI, which uses an analytical
approach to determine Twet (i.e., temperature of the crop without water stress) and Tdry (i.e.,
temperature of the crop at maximum water stress) based on the frequency of distribution
of pure canopy vine temperatures pixels after removing the soil background effect. Twet
corresponds to the average temperature of the 0.5% values on the left side of the vine
canopy temperatures histogram (i.e., lowest canopy temperatures), and Tdry corresponds
to the average temperature of the 0.5% values on the right side of the histogram (i.e., highest
canopy temperatures).

2.5. Data Mapping and Analysis

The vegetation and thermal indexes and the georeferenced data collected in the field
(e.g., soil texture, MSWP, LAI, SPAD) were managed through open-source GIS technology:
QuantumGIS (QGis). The extraction of the vegetation and thermal indexes values that
correspond to the vine canopy pixels were performed following two ways using QGIS
software. First, the vine row pixels of the NDVI, TCARI/OSAVI and surface temperature
images were extracted by drawing a polygon mask that took into account only the central
vine row (plant + soil background) of each soil management treatment. The polygon size
and length were fixed and designed to accurately identify each vine central row, which
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was possible due to high spatial resolution of the images [40]. At the same time, each
polygon was split in three sub-polygons with the same size that correspond to the treatment
subplots (e.g., top, middle and bottom). The raster images of each spectral and thermal
indexes were clipped with the polygon and the subplots of the central vine row. Then, the
clipped raster image was transformed into a vector layer, from which the point values of
the vine canopy pixels were extracted.

In the second way, the plugin i.segment with thresholding method in QGIS was used
to extract the pixels values that corresponded solely to the vine crown [41], thus eliminating
the soil and mixed pixels. This plugin was used in the surface temperature images in order
to calculate the CWSI refereed to the vine rows.

The statistical analysis was carried out using Prism 9 (© 2020 GraphPad Software). The
spectral vegetation and thermal pixels were assessed by studying their relative distribution
frequency. The statistics descriptors of position (minimum, 1st quartile, median, 3rd
quartile and maximum) of the pixels correspondent to the central vine row were determined.
One-way ANOVA and multiple comparison pairwise test (Tukey’s test, α = 0.05) were
used in the CWSI to discriminate the treatments, whereas simple regression analysis was
carried out to determine an empirical relationship between the remote sensing data and
field measurements.

3. Results
3.1. Soil Physical Properties

Table 2 shows the content percentages of clay, silt, sand and active limestone, as well
as the gravel content (g Kg−1) in the soils of the two farms. The fine components (clay, silt
and sand) were comparable between the two farms, while the content in gravel was on
average higher in MV. The soils of SG, on the other hand, presented a higher percentage
of active limestone. According to the USDA [32], classification of soil textural class, both
for SG and MV, was distributed between the clay-loam (CL) and silty-loam (SiL) textural
classes [32].

Table 2. Average values (µ) and standard deviation (σ) of the particles size composition (percentage of clay, silt and sand),
gravel and percentage of active limestone of Azienda Agricola Montevertine (MV) and Fattoria San Giusto a Rentennano
(SG).

Farm Clay (%) Silt (%) Sand (%) Gravel (g kg−1) Active Limestone (%)

µ σ µ σ µ σ µ σ µ σ

Montevertine 0.28 0.04 0.49 0.05 0.23 0.05 218.53 29.76 4.53 0.96
San Giusto 0.25 0.03 0.43 0.08 0.32 0.05 116.23 25.42 6.86 4.83

The thematic maps for active limestone and gravel (Figure 2), respectively for MV and
SG farms, show that for SG, there was a gradient both for the gravel and active limestone,
which are more concentrated in the North-West zone and then degrade towards the South-
East. On the other hand, MV did not present homogeneous gradients, but rather a wider
variability of the distribution of the gravel, which was more concentrated in the middle
(reaching contents of 227–250 g kg−1) and less on the upper part of the experimental field.
Moreover, the percentage of active limestone was higher in the upper part and diminishing
in the lower part of the field.
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3.2. Structure of the Vegetation Spectral Variability

Figure 3 shows the correlation between the NDVI and the corresponding LAI mea-
surements in each farm. There is a strong correlation between the NDVI and the LAI
measurements (R2 = 0.89) at the veraison vine stage in both farms. The vertical bars repre-
sent the variability of the LAI measurement expressed in terms of standard deviation. The
LAI values and its variability were higher in the vineyards of SG (1.8 ± 0.25 m2 m−2) than
in MV (0.55 ± 0.12 m2 m−2).
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The LAI and NDVI measurements of the two farms were aligned on the same regres-
sion line, which means that the NDVI was influenced by the structure of the vineyard
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surface, such as the canopy architecture and leaf orientation. Moreover, the alignment in
the same line confirms that the vineyards surface characteristics were similar in the two
farms: same vine variety, canopy and soil management.

Figure 4 shows the NDVI spatial distribution recognized for the two farms. The
NDVI maps evidenced a different structure of the canopy vigor for each flight in each
experimental farm. First, the different vigor structure of the two flights was likely related to
the different degree of development of the vine crop. In June, the vineyard was at the fruit
setting, while in August the vineyard can be considered mature with a fully developed
foliage at the veraison stage.
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On the other hand, the NDVI did not present a homogeneous gradient in MV but a
widespread variability also linked to the distribution of the gravel content. Therefore, the
rows appeared more vigorous in the north-corner area of the plot, where a lower gravel
content was concentrated. Conversely, the higher gravel content (227−250 g kg−1) at the
central part of the plot induced less vigorous canopies.

Referring the two UAV flights, Figures 5 and 6 depict the distribution frequency of
the NDVI pixels, which are referred to the central vine row of the treatment and for the
three subplots (e.g., top, middle and bottom) localized along the slope gradient. The same
Figures also show the boxplots that allow a quick encoding of the distribution frequency.
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The bimodal shape of the distribution frequency is typical of sparse crops such as
vineyards. The bimodal behavior of NDVI, as described in [42], is related to the soil
background effect always present in heterogeneous sparse crops, which do not cover
completely the soil. The first mode was located at about NDVI ≈ 0.3, in both farms, and
reflects the soil contribution, while the values higher than 0.3 concern soil-vegetation mixed
pixels (i.e., transition zone) and crop vegetation. Therefore, the target corresponding solely
to the vine vegetation had higher NDVI values, which were situated on the second mode
of the distribution frequency.

In MV, the bottom part of the vine row appeared on average more vigorous than in the
middle and top slope gradient. The S treatment depicted more vigor compared to the other
treatments, both in the June and August flight (NDVI ≈ 0.5). There was a decrease in the
vine vigor on August, except for the S treatment. Hence, the first mode of the distribution
frequency was smoother for F, followed by CCM, CCI and CT treatments.

Regarding SG farm, the vine vigor followed the slope gradient, though this trend
was weaker with respect to MV. As discussed for MV, in August the vines depicted lower
vigor values than in June in all treatments. Specifically, the CT treatment exhibited a more
marked pick of the first mode in June; thus, there was higher soil incidence, which could
be caused by lower canopy vigor.

Figure 7 shows the TCARI/OSAVI spatial distribution acquired with the two flights.
The same vigor spatial patterns that were observed previously for the NDVI images could
be appreciated in the TCARI/OSAVI spatial distribution at the veraison stage in both farms.
Thus, the NDVI and TCARI/OSAVI indexes could depict an analogous gradient in terms
of vegetative vigor, chlorophyll concentration and efficiency of the photosynthesis, which
were correlated to the gravel and active limestone concentrations in the soil.Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 25 
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The SPAD measurements were plotted against the correspondent TCARI/OSAVI
values acquired in both flights (Figure 8). Moreover, the graph includes gravel content,
which is proportional to the size of the bubble. There was a negative linear correlation
(R2 = 0.60) between the two variables. The values of TCARI/OSAVI were higher in June
than in August for both farms, probably due to the mature condition of the leaf structure at
the veraison stage. However, the relationship represents the TCARI/OSAVI patterns in
time but not in space, which could be related to the limited number of measurements at
leaf level that did not allow a good interpretation of the intra-field variability of the SPAD.
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3.3. Structure of the Surface Temperature Variability

The thermal analysis used the surface temperature images provided by the drone
flight on the 27 of July 2019, when we hypothesized that a cover crop residual effect of the
different soil management treatments can be observed over the vineyards water status.

The air temperature and humidity at the time of the drone flight were 29 ◦C and 30%
in MV and 32 ◦C and 40% in SG, respectively. The water body temperature measured
with a handheld infrared thermometer was equal to 30◦C, which was the same to the
one registered by the UAV thermal image. Therefore, this process allowed validating the
thermal image acquired by the UAV [24,43,44]. MV and SG farms are situated in the same
latitude and presented similar atmospheric conditions at the time of the image acquisition;
hence, we can consider that water body temperatures could be a reference value of the
minimum thermal status of the two agro-environments.

Figure 9a,b shows the spatial distribution of the surface temperatures referred to the
whole experimental plots. Analyzing the images, we could identify a similar visual pattern
of the spatial variability to the one described above for the NDVI and TCARI/OSAVI
indexes at the veraison stage. Consequently, the surface temperature was affected by the
surface radiative properties (i.e., albedo and emissivity), which were linked to the canopy
surface and the soil background distributions. MV did not present a homogeneous gradient
of the spatial distribution of temperatures, but lower temperatures can be found in the
bottom part of the plot, which corresponds to the valley part, where the soil water content
would be higher than in the upper part.
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As discussed for the NDVI, the distribution frequencies of the surface temperatures
were bimodal, in which two modes represented the vegetation and soil effects (Figure 10).
The first mode was positioned in the lower part of the graph and hence lower temperatures
corresponding to the vine canopy and the second mode in the upper part with higher
temperatures, which refers to the soil background.
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In both farms, the CT treatment presented more marked bimodal distribution with
the first mode around 33.5◦ and the second one at 48.7◦ in SG, whereas in MV were 35.0 ◦C
and 46.0 ◦C, respectively. Therefore, there was a soil background effect that imposes a
higher incidence of the soil thermal contribution on CT compared to the other treatments.
Contrarily, the second mode was not present in the S treatment, which suggests that the
S treatment was more vigorous compared to the others. Moreover, the presence of the
spontaneous vegetation during the entire season could reduce the sensible heat flux (H)
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that would affect the nearest vine row [45], which was the opposite in the other treatments
where the cover crop vegetation was removed at specific times.

In MV, the soil background effect was more important according to these series:
CT > CCM > CCI > F > S. This is shown by the sharpest peak of the second mode; thus, the
more marked the peak, the more incidence of the soil in the treatment studied. The lower
soil incidence in the soil management techniques was verified with the highest values of
the NDVI. The soil modes identified among the treatments were more marked in SG than
MV farm.

The median and quartiles of every distribution frequency in both farms follow the
slope gradient. Hence, the bottom part had a lower temperature in all treatments in both
farms, which is in line with [40], a study that highlighted vine water status dependent on
the plot slope. As a consequence, there is a combined slope-soil properties effect which
could affect the crop thermal status.

3.4. Mapping CWSI and Discrimination of Treatments

Table 3 shows the Twet and Tdry temperatures for all the treatments extracted from
the unimodal histograms by considering the average of the lowest and the highest 0.5%
canopy temperatures to compute Twet and Tdry reference, respectively [36].

Table 3. Twet and Tdry temperatures (◦C) of the two farms divided by treatment.

Farm Temperature CT CCM CCI F S

Montevertine
Twet 32.50 33.00 29.00 30.13 31.63
Tdry 44.25 45.88 44.75 44.38 43.75

San Giusto a
Rentennano

Twet 30.50 28.25 27.00 26.88 28.25
Tdry 44.63 44.25 44.38 43.25 44.25

The CWSI spatial distribution displayed the same pattern as the surface temperature
spectral images maps (Figure 11a,b). Therefore, the CWSI maps evidenced a gradient of the
stress in SG from the less stressed area in the North-West to the most stressed area in the
South-East part of the plot. On the other hand, in MV, the most stressed area was around
the center of the field, and the less stressed ones were found at the top and bottom end of
the map, confirming what was seen with the map of surface temperature.
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The relationship between CWSI vs. MSWP is shown in Figure 12a,b. The size of the
bubble is proportional to the slope gradient, whereas the value next to the bubble indicates
the NDVI value.
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The vineyards of SG experienced no to mild stress levels regarding MSWP, while MV
vineyards presented values of mild to high water stress, according to the water stress range
proposed by [46].

There is a positive correlation between MSWP and CWSI for both farms, which was
significant only in MV (R2 = 0.59). At the same time, this correlation is linked to the NDVI
in both farms, which showed lower values of NDVI with higher water stress values. The
effect of the slope gradient was correlated in MV, which relationship depicted that as the
altitude was lower, the stress values were lower. On the other hand, the crop water status
response to the slope gradient was not confirmed in SG, which effect could have been
masked by the transversal gradient of the soil chemical-physical properties: combined
effect of active limestone and gravel. In addition, we acknowledge that water stress domain
of SG was null to mild (e.g., below 8 bar) and narrow, with small variability among the
MSWP measurements. Therefore, the crop water status would present a homogeneous
condition, which would not be depicted in the correlation between MSWP and CWSI.

Figure 13a,b shows the CWSI multiple comparison among soil management treatments
using violin data encoding and the pairwise comparison according to the Tukey’s test. The
S and F treatments were not statistically different in both farms, whereas the other paired
wise combination of soil management treatments depicted significant statistical differences.

The violin plot analysis showed that on average S and F are the treatments with lower
stress values in terms of CWSI for MV. In particular, the violin plot depicts an asymmetric
distribution for the S and F compared to the other three soil management treatments. The
asymmetric distributions present the median of S and F localized towards the lower values
of CWSI.

The lowest stress values evidenced in the S and F treatments in MV could be associated
to the beneficial gain due to the cover crop residual fertility effect (e.g., residual N from
symbiotic N2–fixation) in F or to the long-lasting presence of spontaneous plant-soil cover
in S.
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On the other hand, this gain due to the cover crop residual effect could not be perceived
in SG, which may be due to the low variability of the MSWP among the treatments and
to the disturbance associated to the gravel–active limestone combination covering the
difference in terms of crop thermal status.

4. Discussion

The results presented in this study highlight the advantages of using an integrated
methodology to discretize among soil management treatments in vineyards from complex
territories using GIS tools, aerial thermal and spectral imaging. The methodology suggested
presents several advantages compared to traditional techniques, which are time-consuming,
discrete and with lower capability to characterize a whole vineyard plot [40].

The outcomes obtained using remotely sensed numerical data have demonstrated that
surface temperature and the simplified CWSI, with the support of VIs, would be competent
for the discrimination of the most appropriate soil management practices in vineyards.

4.1. Variability within the Vineyard Systems

The vineyards in Chianti terroir are complex agroecological systems much variable in
terms of soil texture, topography, and microclimates, which could have an effect on how
the soil management techniques influence the crop performance and functional status. In
fact, the variability of soil characteristics was one of the main factors explaining the spatial
variability of vine biophysical and physiological status (e.g., vigor and water status), which
was verified in previous studies on vineyards [4,16,47,48].

The analysis of the particle size composition and chemical components of the soil high-
lighted, respectively, high content in gravel and active limestone in both farms. The gravel
component was the main soil component determining differences on vine performance
when was analyzed together with the spatial variability of spectral and thermal indexes.
Consequently, our study evidenced a strong influence of the gravel content on the vine
vigor. The gravel component is composed of lithoid fragments with low specific surface
area, which diminishes the soil water retention properties [49]. Therefore, the lower water
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retention in the soil during the dry season due to the presence of gravel could lead to a
higher incidence of the soil water deficit on the vine growth. In a similar study [10], which
was focused on diverse soil management treatments in vineyards, the masking effect of the
calcareous content and stony soils did not allow to discriminate the performance among
permanent, temporary cover crops and weed management. Consequently, the ranges of
active limestone (3.4 ± 4.3 g kg−1) and gravel content (17.8 ±14.9 %), which were lower
than the one determined in our study, masked the effects derived from the treatments on
the vines’ status [10].

4.2. Spectral Vegetation and Thermal Indexes to Discriminate among Treatments

The NDVI and TCARI/OSAVI indexes served as a supporting tool for the thermal-
based indexes. The maps of vine vigor and chlorophyll concentration followed the same
spatial patterns as gravel and active limestone concentrations, which confirmed the crop
response to these soil components [4,50,51].

Rey-Caramés et al. (2015) [52] has shown an NDVI range (0.57–0.73) similar to ours in
vineyards from Navarra (Spain), as well as, [53] with a range of NDVI values (0.765 ± 1.82)
within Pinot Noir vineyards fields in Canada. The authors associated the NDVI spatial
variability to environmental biophysical constraints, such as low soil water availability,
and therefore lower vine size.

The NDVI and the LAI measurements were significantly correlated (R2 = 0.89) at
the veraison vine stage in both farms. Therefore, this relationship made possible to con-
sider the NDVI variability as an expression of the crop vigor [54–56]. Additionally, the
TCARI/OSAVI was linearly correlated to SPAD measurements considering the same time
target. Thus, the index is a good indicator of the photosynthetically active part of the vine
crop, specifically the leaf chlorophyll a+b content in the plant. The results are consistent
with previously published studies on vineyards, which confirmed TCARI/OSAVI as the
most consistent indicator of vineyard pigment content [4,30,50,57].

The NDVI statistic indicators individuated which treatment developed more vigorous
vine canopies. The frequency distributions of the NDVI were bimodal, representing
vine vegetation and soil background due to the different reflectance values of these two
features [42]. In both farms, the S treatment presented the highest second mode of the
bimodal frequency distribution (e.g., higher NDVI values), which corresponded to the crop
vegetation, while the CT depicted the opposite behavior. The first mode of the frequency
distribution, thus the soil background effect, was more pronounced in the CT treatment.
Hence, the vine growing conditions derived from the S treatment could be more favorable
for the vineyard in terms of available soil moisture. In addition, the less vigorous canopies
of the CT would present minor water conservation and higher depletion of the available
moisture within the vine root zone. This fact could be related to the higher sensible heat
in the CT treatment, which leads to higher transpiration of the vine tree and higher soil
evaporation, thus causing higher soil water depletion.

Moreover, the crop growth could have been mainly affected by soil water deficit at
the veraison stage in August, which was reflected in a lower IR reflectance of chlorophylls
that turned into lower plant vigor and thus lower NDVI values [16,18].

Thermal based indices were the core method in this study to assess the physiological
condition of the vineyards associated with the application of several soil management
treatments. Thermal based indices have been proposed as indicators of plant water stress
since the 1960s [19,21,48]. Furthermore, our study goes further and introduced them as a
tool to differentiate the best soil management technique in complex territories. To support
the validity of the CWSI, a strong linear correlation with MSWP has been found in MV,
which was higher than the one in [4] and in accordance with [47,58].

These relationships are confirmed by those reported in annual crops, fruit trees and
grapevines, in which CWSI was the indicator that better reflected the crop water status
and the root zone moisture content [20,24,39,47,48,58]. In addition, the correlation found
between the effect of the slope gradient and the CWSI in MV was in line with previous
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findings, which confirmed that lower parts of the field slope present higher soil water
contents [59].

The correlation between NDVI and CWSI evidenced the chronic or cumulative water
stress because is affected by long-term scarce water supply from rainfall. As demonstrated
in [58], the authors found a significant inverse correlation between the CWSI and vigor
measurements, which evidenced the link between the level of stress of the crop and the
vine vigor in semi-arid climates. Hence, CWSI would be a feasible indicator that reflects
both immediate and long-term exposure to stress in grapevines.

The surface temperature and CWSI maps displayed similar visual patterns as the ones
developed for the spectral vegetation indices, which demonstrated the link between all
these variables and the use of VIs as a supporting tool for thermal imaging. Previously, [4]
evidenced the relationship among thermal and spectral indices on detecting vine water
status and proposed them as a decision support tool.

The frequency distribution of the surface temperatures enabled the more accurate
discrimination of the soil management treatments in both farms. Several studies demon-
strated the ability of canopy temperature to discriminate among irrigation treatments and
thus represent different water status conditions [39,47,58]. As highlighted by the NDVI
statistical indicators, the mode that describes the effect of the soil was flattened and difficult
to discriminate in the S treatment, followed by the F treatment. This fact suggests that the
vine vigor was maximum in the S and F treatments, which canopies covered wider areas
diminishing the warmer soil temperatures. There would be an effect of the S vegetation and
F cover crop on the vine water status, since these kinds of combinations keep more water
in the soil available to the vine, as has been shown in several studies on cover cropped
vineyards [7,60]. The vegetation of the cover crop could increase soil water availability by
enhancing water infiltration and conservation, and then lower the average canopy surface
temperature, which is correlated to a higher canopy transpiration process. This fact was
pointed out in diverse studies in which soil management strategies induced changes in the
vine canopy microclimate [18,45].

Regarding the S treatment, our results are in agreement with previous studies that
reported spontaneous native vegetation as the most adequate cover to increase soil water
availability in Mediterranean vineyards [61,62].

According to these outcomes, the agroecosystem under study can be seen as composed
by three buckets, which are formed by the vine roots, the cover crop roots and a bucket
where there is neither one nor the other [63]. The cover crop bucket played a conservative
role, which means that it kept more water in the soil and built a reservoir that increased
water availability to the vine row, as observed also in other studies [12,62]. Consequently,
the cover crop/grassing bucket increased the soil water availability for the vine row, while
the same bucket modified the microclimate conditions of the vine row by lowering its
sensible heat [64,65].

From an agroecological point of view, it can be hypothesized that the S treatment
has shown lower competition for soil resources. Thus, the S treatment showed higher
conservation capacity of water and soil nutrients from the early vegetative growth stage
in spring to post-harvest in autumn. On the other hand, the positive effect of the F
treatment on the thermal status of the vine may have been due to an improvement of the
soil nutritional conditions, e.g., through higher N availability in the vine root zone as a
result of N2–fixation of pigeon bean.

On the other hand, the CT treatment was frequently tilled and did not have a soil
cover and the vine row thermal status might have been affected by the higher contribute
of sensible heat. This is confirmed by a more marked soil mode and at the same time the
vegetation mode situated towards higher temperature values. Reference [65] evidenced
higher soil temperatures on tillage when compared to cover cropped soil, especially during
the warmer months.
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5. Conclusions

This study used a simplified and non-invasive methodology to discriminate how
different soil management practices affect the water status in rainfed vineyards. High-
resolution spectral imagery acquired from UAV and GIS tools allowed to investigate the
whole spatial variability of the vineyard water status within the field and distinguish the
effect of the soil chemical and physical properties.

This approach was able to discriminate the spontaneous grass vegetation (S) and
pigeon bean (F) cover crop as the optimal management treatments for both experimental
farms. The results showed, on average, that surface temperature of the vine’s canopy was
lower for the S and F treatments, and the same results were found in terms of CWSI and
vegetation spectral indexes. In addition, it was found that gravel and active limestone
content determined the spatial patterns of vine biophysical and physiological characteristics.
Hence, soil properties could influence the efficiency of the soil practices implemented.

The combined approach would be further applied to assess the best combination of
cover crop species/mixtures and management techniques (e.g., mowing, green manure,
mulching) in diverse pedoclimatic conditions, which would reflect the spatial soil vari-
ability present in the vineyards from the Mediterranean regions. Specifically, Chianti’s
winegrowers could use the integrated methodology to adopt the best soil management in
their specific territory, due to the complexity of Chianti terroir.

The territory understudy is suffering from acute drought periods that are affecting
vineyards performance. Thus, further research would be focused on combining soil man-
agement by applying supplemental irrigation while monitoring productive and quality
parameters, which could help wine growers alleviate the water stress periods.
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