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Abstract: Due to the superior spatial–spectral extraction capability of the convolutional neural net-
work (CNN), CNN shows great potential in dimensionality reduction (DR) of hyperspectral images
(HSIs). However, most CNN-based methods are supervised while the class labels of HSIs are limited
and difficult to obtain. While a few unsupervised CNN-based methods have been proposed recently,
they always focus on data reconstruction and are lacking in the exploration of discriminability which
is usually the primary goal of DR. To address these issues, we propose a deep fully convolutional
embedding network (DFCEN), which not only considers data reconstruction but also introduces the
specific learning task of enhancing feature discriminability. DFCEN has an end-to-end symmetric
network structure that is the key for unsupervised learning. Moreover, a novel objective function con-
taining two terms—the reconstruction term and the embedding term of a specific task—is established
to supervise the learning of DFCEN towards improving the completeness and discriminability of
low-dimensional data. In particular, the specific task is designed to explore and preserve relationships
among samples in HSIs. Besides, due to the limited training samples, inherent complexity and the
presence of noise in HSIs, a preprocessing where a few noise spectral bands are removed is adopted
to improve the effectiveness of unsupervised DFCEN. Experimental results on three well-known
hyperspectral datasets and two classifiers illustrate that the low dimensional features of DFCEN
are highly separable and DFCEN has promising classification performance compared with other
DR methods.

Keywords: deep fully convolutional embedding network; dimensionality reduction; hyperspectral
images; classification

1. Introduction

With the rapid development of modern technology, hyperspectral imaging technology
has been widely used in many fields, such as geology [1], ecology [2], geomorphology [3],
atmospheric science [4], forensic science [5] and so on, not just in remote sensing satellite
sensors and airborne platforms. Hyperspectral sensors can capture hundreds of narrow
continuous spectral bands from visible to infrared wavelengths that are reflected or emitted
from the scene. The 3D hyperspectral images (HSIs) have high spectral resolution and fine
spatial resolution for the taken scene. These allow us to get more information about the
object being studied. However, due to the high spectral dimensionality, the interpretation
and analysis of hyperspectral images face many challenges. (1) Radiometric noise in some
bands limits the precision of image processing [6]. (2) Some redundant bands reduce the
quality of image analysis since the adjacent spectral bands are often correlated and not all
bands are valuable for image processing [7]. (3) These redundant bands also lead to the cost
of huge computational resources and storage space [8]. (4) There is a Hughes phenomenon,
that is, the higher the data dimensionality, the poorer the classification performance because
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of the limited samples [9]. These makes dimensionality reduction (DR) become an essential
task for hyperspectral image processing.

Many classic algorithms have been used for HSIs DR, such as principal component
analysis (PCA) [10], Laplacian eigenmaps (LE) [11], locally linear embedding (LLE) [11],
Isometric feature mapping (ISOMAP) [12], linear discriminant analysis (LDA) [13]. These
classical algorithms based on different concepts all attempt to explore and maintain the
relationship among samples in HSIs, which is beneficial to improve the separability of low-
dimensional features. However, there are several problems when they are applied for HSIs
DR. Firstly, ISOMAP, LE and LLE have the out-of-sample problems. On this issue, locality
preserving projection (LPP) [14] and neighborhood preserving embedding (NPE) [15] are
proposed. Nevertheless, LPP, NPE, PCA and LAD are the linear transformations, which
are ill-suited for HSIs because HSIs derived from the complex light scattering of natural
objects are inherently nonlinear [16]. Also, spatial feature extraction is a common problem
faced by these classical algorithms for HSI DR, which has allowed for good improvements
in HSIs representation. Moreover, these algorithms focus on the shallow features of HSIs
via a single mapping but cannot extract the deep complex features iteratively.

In recent years, deep learning, as one of the most popular learning algorithms, has
been applied to various fields, which can yield more non-linear and more abstract deep
representations of data by multiple processing layers [17]. The spatial features extraction
is generally achieved by convolutional neural networks (CNN) which can exploit a set
of trainable filters to capture local spatial features from receptive fields but often needs
supervised information. Many studies have used CNN for HSIs [18]. Paoletti et al. [19] pro-
posed a new deep convolutional neural network for fast hyperspectral image classification.
Zhong et al. [20] proposed a supervised spectral-spatial residual network for HSIs on basic
of the 3D convolutional layers. Han et al. [21] proposed a different-scale two-stream convo-
lutional network for HSIs. These CNN-based methods can extract superior hyperspectral
image features for classification, but they generally require enough class label samples for
supervised learning. As a matter of fact, the task of labeling each pixel contained in HSIs is
arduous and time-consuming, which generally requires a human expert. As a result, the
class label samples of HSIs are scarce and limited, and even unavailable in some scenarios.
To address this issue, a few of unsupervised CNN-based methods have been proposed for
HSIs. Mou et al. [22] proposed a deep residual conv-deconv network for unsupervised
spectral-spatial feature learning. Zhang et al. [23] proposed a novel modified generative
adversarial network for unsupervised feature extraction in HSIs. Recently, Zhang et al. [24]
proposed a symmetric all convolutional neural-network-based unsupervised feature ex-
traction for HSIs. However, these unsupervised CNN-based approaches are usually based
on data reconstruction, but they are short of the exploration of discriminability which is
usually the primary goal of DR.

To overcome the drawbacks mentioned above, we propose an unsupervised deep
fully convolutional embedding network (DFCEN) for dimensionality reduction of HSIs.
Different from the conventional CNN-based network, DFCEN utilizes the learning pa-
rameters of convolutional (deconvolutional) layer to replace the fixed down-sampling
(up-sampling) of pooling layer to improve the validity of the representation. Meanwhile
parameter sharing of convolutional layer is conducive to the extraction of spatial features
and reduce the number of parameters compared with fully-connected layer. For the conve-
nience of explanation, DFCEN can be divided into two parts: convolutional subnetwork
that encodes high-dimensional data into a low-dimensional space and deconvolutional
subnetwork that recovers low-dimensional features to the original high-dimensional data.
Accordingly, the network structure of DFCEN lays a foundation for unsupervised learning.

To address the shortcoming of the above unsupervised CNN-based approaches, we
introduce a specific learning task of enhancing feature discriminability into DFCEN. Con-
sidering the completeness and discriminability of low-dimensional data, we particularly
design a novel objective function containing two terms: reconstruction term and embed-
ding term of the specific learning task. The former makes the low-dimensional features
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keep completeness and original intrinsic information in HSIs. How to design a specific
learning task to enhance the discriminability and separability of low-dimensional features
is the key point of the latter. The relationships among samples is of considerable value,
which are concerned in the classical DR algorithms described above and has been shown
to be conducive to HSIs DR. In this paper, the DR concepts of two classical algorithms,
LLE and LE, are used as references for the specific learning task in embedding term. Fur-
thermore, in order to balance the contribution of two terms to DR, an adjustable trade-off
parameter is added to the objective function. In addition, in order to reduce the training
time, we choose to utilize the convolutional autoencoder (CAE) for pretraining to get good
initial learning parameters of DFCEN.

Specifically, the contributions of this paper are as follows.

• An end-to-end symmetric fully convolutional network, DFCEN, is proposed for HSIs
DR, which is the foundation of unsupervised learning. In addition, owing to the
symmetry of DFCEN, the network structure of symmetry layer in convolutional sub-
network and deconvolutional subnetwork is the same. For that, these two subnetwork
can share the same pretraining parameters, which saves the pretraining time.

• A novel objective function with two terms constraining different layers respectively is
designed for DFCEN. This allows DFCEN to explore not only completeness but also
discriminability compared to the previous unsupervised CNN-based approaches

• This is the first work to introduce LLE and LE into an unsupervised fully convolutional
network, which simultaneously solved their out-of-sample, linear transformation,
and spatial feature extraction problem. In addition, other different DR concepts also
can be implemented in embedding term as long as it can be expressed in the form of
an objective function.

• Due to the limited training samples, inherent complexity and the presence of noise
bands in HSIs, DFCEN as an unsupervised network is sensitive to input data. So,
a preprocessing strategy of removing noise band is adopted, which is proved to
effectively improve the DFCEN representation of HSIs.

This paper is organized as follows. In Section 2, we introduce the background and the
related works. The proposed deep fully convolutional embedding network are described
in detail in Section 3. Section 4 presents the experimental results on three datasets that
demonstrate the superiority of the proposed DR method. A conclusion is presented in
Section 5.

2. Background and the Related Works
2.1. Mutual Information

Mutual information (MI) has the capacity of measuring the statistical dependence
between two random variables [25]. Treating spectral bands and Ground Truth map G
shown in Figures 7b, 8b and 9b as random variables, MI can be used to evaluate the relative
utility of each band to classification [8]. Given two random variables a and b with marginal
probability distributions p(a) and p(b) and joint probability distribution p(a, b), the MI is
defined as below

MI(a, b) = ∑
a∈a,b∈b

p(a, b) log
p(a, b)

p(a) · p(b) . (1)

The higher the MI value between a band and G, the greater the contribution of this
band to classification. In practical application, G usually cannot be obtained. The work [8]
used an estimated ground truth map Ĝ = 1

|E| ∑
Ij∈E

Ij to evaluate the contribution of each

band to classification. Ij is a spectral band and E is a set of bands with the highest entropy.
Let random variable a take values in the set a with the probability distribution p(a),
the entropy is defined by H(a) = − ∑

a∈a
p(a) log p(a) [26].
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2.2. Locally Linear Embedding

Locally linear embedding (LLE) is an unsupervised learning algorithm that computes
low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs [27].
The local geometry is characterized by linear coefficients that reconstruct the data point
using its neighbors [28]. For a data set X = {x1, x2, ..., xi, ..., xm}, assuming that xi can
be reconstructed by a linear combination of neighborhood samples xk, xl , xs, that is xi =
wikxk + wil xl + wisxs, the low-dimensional data also maintains the same linear relationship
which is zi = wikzk + wilzl + wiszs. The linear reconstruction coefficients are obtained by
the following optimization

min
wij

∑m
i=1 ‖xi −∑j∈Qi

wijxj‖2
2

s.t. ∑j∈Qi
wij = 1

, (2)

where Qi is a sample set consisting of the nearest k neighbor samples of xi based on the
Euclidean distance. The coefficient wij has a closed solution

wij =
∑h∈Qi

C−1
jh

∑l,s∈Qi
C−1

ls

, (3)

where Cij =
(

xi − xj
)T

(xi − xk). wij summarizes the contribution of xj to the reconstruction
of xi. According to LLE, the extracted features should preserve neighborhood geometric
manifold [29], therefore the embedding cost function is{

min
z1,...,zm

∑m
i=1 zi −∑j∈Qi

wijzj
2
2

s.t. Z = ATX, ∑n
i=1 zi = 0, 1

n AAT = I
(4)

where zi is the low-dimensional data point corresponds to xi. Z = {z1, z2, ..., zm} is the
low-dimensional representation. LLE maps its inputs into a single global coordinate system
of lower dimensionality. LLE explores the reconstructed relationship between each sample
and its nearest neighbors, preserving the manifold structure of the data.

2.3. Laplacian Eigenmaps

Laplacian Eigenmaps [11] (LE) has remarkable properties of preserving local neighbor-
hood structure of data. LE is to construct the relationship between data with local angles
and reconstruct the local structure and features of the data by constructing adjacency
graph [30]. If two data instances xi and xj are very similar, i and j should be as close as
possible in the target subspace after dimensionality reduction. Its intuitive concept is to
hope that the points that are related to each other (the points connected in the graph) are as
close as possible in the low-dimensional space.

A k-nearest neighborhood graph or an ε-ball neighborhood graph is constructed and
weights of edges (between vertices) are assigned using the Gaussian kernel function or 0–1
weighting method [31]. Given a dataset X = {x1, x2, ..., xn} with n samples, each sample
xi ∈ X has m features. Let y1, y2, ..., yn be the d dimensional representations of X. That is,
each yi is a d dimensional row vector. With LE, the lower dimensional representation of X
can be achieved by solving the following optimization problem

min
y1,y2,...,yn

∑n
i ∑n

j ‖yi − yj‖2Mij, (5)
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where M =
(

Mij
)

n×n is the weight matrix of the k-nearest neighborhood graph. The weight
matrix M is calculated based on the Euclidean distance between samples, which is de-
fined as

Mij =

 e−
‖xi−xj‖

2

t , xj ∈ Qi
0, xj /∈ Qi

, (6)

where Qi is a sample set consisting of the nearest k neighbor samples of xi based on the
Euclidean distance. t is an adjustable parameter. LE explores and preserves the relationship
between each sample and its nearest neighbors.

2.4. Convolutional Autoencoder

Convolutional autoencoder adopts the convolutional layer instead of the full-connected
layer, of which the principle is the same as the autoencoder [32]. Figure 1 shows the struc-
ture of the 2D convolutional autoencoder which comprises an encoder and a decoder.
The encoder encodes the input data and maps the features to the hidden layer space,
and then the decoder decodes the features of the hidden layer space (the process of re-
construction) to obtain the reconstructed samples of the input [33]. For a input data
X ∈ <s1×s1×d1, the encoder is defined as

h = s(conv2(X, θ)), h ∈ <s2×s2×d2, (7)

where conv2() represents the 2D convolution and θ is the learning parameter in the encoder.
h is the output of the hidden layer in the 2D convolutional autoencoder and s() is the
activation function. Based on h, the decoder is defined as

X′ = s
(
dconv2

(
h, θ′

))
, X′ ∈ <s1×s1×d1, (8)

where dconv2() represents the 2D deconvolution and θ′ is the learning parameter in the
decoder. X′ stands for the output of the reconstruction layer and has the same structure as
the input data X. The cost function can be defined as

L(X; θ, θ′) =
∥∥X− X′

∥∥2. (9)

Compared with the traditional autoencoder, the convolutional encoder is more advanta-
geous in extracting spatial features from images [34].

x
h

x'

encoder decoder

Figure 1. The structure of the 2D convolutional autoencoder.

3. The Proposed Method

In this section, we will introduce our proposed method in detail. The flowchart is
shown in Figure 2. Usually due to changes in atmospheric conditions, occlusion caused by
the presence of clouds, changes in lighting, and other environmental disturbances, some
noise bands in HSIs increase the difficulty in feature extraction and classification. As an
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unsupervised network, DFCEN is sensitive to these noise spectral bands because of the
limited training samples and complex intrinsic features of HSIs. For this reason, a simple
band selection based on mutual information is adopted for selecting and removing the
noise bands at first. Then the relationships among samples is obtained for the specific
learning task, which is specially based on LLE and LE in this paper. Next, training samples
specifically applied to DFCEN are generated through a data preprocessing. Afterwards,
DFCEN is learning from the training samples and relationship among samples. Eventually,
the low-dimensional features from DFCEN is classified by classifiers.

3.1. Data Preprocessing

Data preprocessing includes data standardization, data denoising and data expansion.
Data standardization is to standardize the pixel values of each spectral band to 0∼1 since it
is not appropriate to directly process the raw HSIs data with large pixel values. Data denois-
ing is to select and remove the noise spectral band that may disturb feature extraction and
classification. MI can evaluate the contribution of each band to classification [8], Besides,
due to the simplicity of calculation, MI is adopted to search for bands that contribute little
to the classification as the noise spectral band. Each band Ij in HSIs is considered as a

random variable. Its probability distribution function can be estimated as p(Ij) =
h(Ij)
m×n ,

where h
(

Ij
)

represents the gray-level histogram of the jth band with m× n pixels. The joint

probability distributions of any two bands in HSIs is estimated by p(Ii, Ij) =
H(Ii ,Ij)

m×n , where
H(Ii, Ij) is the joint gray-level histogram of the ith and jth band.

xM× N× D1

xM× N× D2

0.73 0 0.21 0

0 0.60 0 0.77

0 0.23 0 0

0.33 0 0 0.41

MN 

samples

M
N

 

sa
m

p
le

s

MN samples

The relationship matrix among 

MN samples

MN training samples ts×s×D2 for 

DFCEN

 DFCEN

Classifier
Input training 

samples

Input relationship matrix

Removing 

noise 

bands

Classification 

Map

Raw HSI data
De-noising 

HSI data

MN 

samples

Figure 2. Flowchart of the proposed method.

Figure 3 shows the MI values of each band in three datasets. As we can see, the two
lines fluctuate almost identically. For this reason, we can find and remove noise bands
with low MI in an unsupervised way according to the red dotted line. For a raw HSIs
data X ∈ <M×N×D1, where M and N is the spatial size and D1 is the raw number of the
spectral bands, the corresponding de-noising data can be expressed as X ∈ <M×N×D2,
where D2 is the number of bands after removing the noise bands and D2 < D1. Actually,
we only removed 30 noise bands for Indian Pines dataset, 0 band for Pavia University
dataset, 8 bands for Salinas dataset. In order to further prove the validity of removing the
noise bands before DFCEN, we take the Indian Pines dataset as an example to compare
the classification accuracy of different dimensionality reduction algorithms before and
after removing the noise bands. From Table 1, NBS means that the algorithm directly
acts on the raw data while BS represents removing the noise bands before dimensionality
reduction algorithm. It can be seen from Table 1 that for two unsupervised methods based
on neural network, DFCEN and SAE, removing the noise bands is conducive to improving
classification accuracy. In the meantime, it also slightly improves other dimensionality
reduction algorithms.
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(a) Indian Pines (b) Pavia University (c) Salinas

Figure 3. MI values of each spectral band with the Ground Truth map and the estimated ground map on three datasets.

Table 1. Classification accuracy of different dimensionality reduction (DR) algorithms with or without band selection for
Indian Pines dataset.

RAW LE LLE SAE LPNPE SSRLDE SSMRPE SSLDP DFCEN_LE DFCEN_LLE

SVM NBS 76.1 78.0 61.3 75.0 86.2 83.1 78.9 74.1 88.4 89.9
BS 83.1 78.1 60.5 81.6 85.3 84.6 81.1 75.7 90.3 91.7

KNN NBS 68.7 77.5 57.6 61.4 85.4 81.6 77.7 72.5 85.0 87.5
BS 72.4 77.2 68.8 70.5 80.5 78.9 74.7 67.1 86.9 89.3

Spatial features have been proven to be beneficial to improve the representation of
HSIs and increase interpretation accuracy [35,36]. For each pixel, the neighborhood pixel
is one of the most important spatial information which is fed to DFCEN in the form of
neighborhood window centered around each pixel. With this in mind, the input data size
of DFCEN is designed as s× s× D2, where s is the size of the neighborhood window and
D2 is the number of bands. However, the problem is that the neighborhood window of the
pixels at the image boundary is incomplete. These boundary pixels cannot be ignored since
our goal is to reduce the dimensions of each pixel in HSIs. It is also inappropriate to simply
fill the neighborhood window of boundary pixels with 0. In order to deal with this problem
better, we implement a data expansion strategy based on the Manhattan distance to fill the
neighborhood window of the boundary pixels. Figure 4 shows the process of expanding
the data by two layers, where the dark color is the original data and the light color is the
filling data. For a pixel p1×D2 in a de-noising HSI xMN×D2 (MN is the number of pixels),
its neighborhood window is a training sample ts×s×D2 that is fed to the proposed DFCEN.
As a result, a training sample set Ts×s×D2×MN with MN samples can be generated from a
de-noising HSI xM×N×D2.
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Figure 4. Data expansion strategy. This is the data expansion process when the size of neighborhood
window is 5.

3.2. Structure of DFCEN

DFCEN is composed of convolutional layer and deconvolutional layer, excluding
pooling layer and full-connected layer. Accordingly, DFCEN can be divided into two parts:
convolutional subnetwork and deconvolutional subnetwork. In the convolutional subnet-
work, the input data is propagated through multiple convolutional layers to a perception
layer, while this perception layer is propagated through multiple deconvolutional layers to
a output layer (whose size is same as the input layer) in the deconvolutional subnetwork.

Figure 5 shows the network structure of DFCEN. The introduction in the red box is the
name and structure of each layer, while the name of the learning parameter and the filter
size is in the green box. It is worth emphasizing that DFCEN is a symmetric and end-to-end
network where the number of layers can be set or changed based on specific data or tasks.
For the sake of explanation, we take a 7-layer DFCEN shown in Figure 5 as an example to
introduce the network structure characteristics of DFCEN in detail. The following is the
description of a 7-layer DFCEN shown in Figure 5.

Input: 

D2@s×s C1 /p1 : 

d1@s1×s1 C2 /p2 : 

d2@s2×s2

(CT/pc)

C3 /p3 : 

d@1×1

DC1 /p4 : 

d2@s2×s2

DC2 /p5 : 

d1@s1×s1

Output /DC3 /q : 

D2@s×s

θ1 :f1×f1 

Embedding term Reconstruction term 

Convolutional subnetwork Deconvolutional subnetwork

Low-dimensional output

θ2 :f2×f2 θ6 :f1×f1 θ5 :f2×f2 
θ3 :s2×s2 θ4 :s2×s2 

Figure 5. The structure of the proposed deep fully convolutional embedding network.

In the convolutional subnetwork, firstly, a training sample ts×s×D2 is fed to DFCEN,
where D2 is also the number of channels of the input layer. Secondly, the output of input
layer is sent to the first convolutional layer C1 through d1 filters of size f 1× f 1. The out-

put of C1 contains d1 feature maps
(

p1)s1×s1×d1 that are then transmitted to the second

convolutional layer C2 via d2 filters of size f 2× f 2. Next, d2 feature maps
(

p2)s2×s2×d2 are
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obtained after C2 is activated, which are then send to the last convolutional layer C3 by d
filters of size s2× s2. The last convolutional layer in the convolutional subnetwork is also
the central layer CT of the whole DFCEN. Eventually, a low-dimensional feature pc1×1×d

of concern is generated after applying the activation function to CT.
In the deconvolutional subnetwork, the low-dimensional feature pc1×1×d (which is

also the output of the convolutional subnetwork) from CT is up-sampled layer by layer
through multiple deconvolutional layers. At first, pc1×1×d is sent to the first deconvolu-

tional layer DC1 with d2 filters of size s2× s2. Then, d2 feature maps
(

p4)s2×s2×d2 are
gained after the activation function and then transfered to the second deconvolutional
layer DC2 through d1 filters of size f 2× f 2. Next, after activating DC2, d1 feature maps(

p5)s1×s1×d1 are obtain and transfered to the last deconvolutional layer DC3 (which is also
the output layer of the whole DFCEN) with D2 filters size of f 1× f 1. In the end, the output
qs×s×D of the whole DFCEN is generated after DC3 is activated, whose size is the same as
the input of DFCEN.

In fact, the characteristics of DFCEN are the size and number of filters (learning
parameters), which are identical for the symmetrical layer in the convolutional and decon-
volutional subnetwork. This rule also applies to the number and size of feature maps per
layer. In particular, the number of feature maps per layer exists: D2 ≥ d1 ≥ d2 ≥ d where
d is target dimension of dimensionality reduction and D2 is the dimension of input data.
Meanwhile, the relationship of the size of feature maps per layer is s ≥ s1 ≥ s2 ≥ 1 where s
is the size of input data and the size of CT must be 1 since it represents the low-dimensional
features of one pixel. For this reason, the size of the filter between CT and its preceding
layer must be the same as the size of its preceding layer. In Figure 5, the preceding layer of
CT is C2. In brief, DFCEN is a symmetric full convolutional network with a central layer
of size 1, where the convolutional subnetwork reduce the dimensionality and size of data
layer by layer while the deconvolutional subnetwork restores the data dimensionality and
size layer by layer. Therefore, the network structure determines that feature extraction of
DFCEN is an unsupervised process as long as the embedding term in objective function
does not require any class label information.

3.3. Objective Function of DFCEN

As discussed in Section 1, DFCEN supports not only unsupervised feature extraction
based on data reconstruction, but also task-specific learning which is conducive to dimen-
sionality reduction and classification. The objective function of DFCEN consists of two
terms: embedding term for the specific learning task and reconstruction term. The em-
bedding term can be changed or designed according to specific concept or task, which is
dedicated to improving the discriminant ability of the low-dimensional features. As shown
in Figure 5, the embedding term is to constrain the low-dimensional output of the central
layer CT. So it only acts on the parameter update of the convolutional subnetwork. For a
training sample set Ts×s×D2×MN = {t1, t2, ..., ti, ..., tMN}, ti ∈ <s×s×D2, the output of CT in
Figure 5 is expressed as follows

pc(ti, Θd) = s(conv2(s(conv2(s(conv2(ti, θ1)), θ2)), θ3)), (10)

where Θd = {θ1, θ2, θ3} is the learning parameters in the convolutional subnetwork.
conv2() denotes the 2D convolution and s() is the activation function s(x) = log(1 + ex).
pc(ti, Θd) is also the low-dimensional representation of DFCEN.

In order to enhance the separability and discriminability of low-dimensional features,
we explore and maintain the relationship among samples as a specific learning task. In this
paper, LLE and LE, two classical manifold learning algorithms are introduced into the
embedding term of DFCEN.
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3.3.1. LLE-Based Embedding Term

LLE aims at preserving the original reconstruction relationship between each sample
and its neighbors in the mapping space, which assumes that a sample data can be recon-
structed by a linear combination of its neighborhood samples. The linear reconstruction
is described in Equation (2). The original reconstruction coefficient W can be calculated
according to Equation (3). For a HSI dataset xM×N×D2, the relationship coefficient W can
be expressed as: WMN×MN =

{
w11, w12, ..., wij, ..., wMN×MN

}
. Since the coefficient W only

characterizes the relationship between the sample and its nearest k neighbor samples, it
can also be described as

wij =


∑

h∈Qi

[
(xi−xj)

T
(xi−xh)

]−1

∑
l,s∈Qi

[
(xi−xl)

T(xi−xs)
]−1 , xj ∈ Qi

0, xj /∈ Q i

. (11)

Qi is the nearest k neighbor samples of xi. The number of selected neighbor samples k
is much smaller than the total number of samples MN, namely, k � MN. Therefore,
the relationship coefficient matrix W is a sparse matrix.

Referring to LLE, the embedding term should constrain the low-dimensional repre-
sentation to maintain the original reconstruction relationship. Hence, for a training sample
set Ts×s×D2×MN , the LLE-based embedding term can be defined as follow

LED_LLE(T, Θd) = min
Θd

1
MN ∑MN

i=1 ‖pc(ti, Θd)−∑MN
j=1 wij pc(tj, Θd)‖2

F, (12)

where wij is the original reconstruction coefficient that is calculated according to
Equation (11), which is a constant for the LLE-based embedding term. pc(ti, Θd) is the
output of CT in DFCEN. Θd is the learning parameters in the convolutional subnetwork.
MN is the number of training samples in T. ‖·‖2

F is the square of the F norm, which is to
calculate the sum of the squares of all the elements inside.

3.3.2. LE-Based Embedding Term

LE is to construct the relationship among samples with local angels and reconstruct
the local structure and features in the low-dimensional space. An adjacency graph based
on the Euclidean distance is constructed to characterize the relationship among samples,
which is also called the weight matrix and defined in Equation (6). When the sample xj
does not belong to the nearest k neighbor samples of the sample xi , the weight coefficient
Mij between the samples xj and xi is 0. In fact, for a HSI dataset xM×N×D2, due to k� MN,
the adjacency graph matrix M is also a sparse matrix. In practice, LE hopes that samples
that are related to each other (the points connected in the adjacency graph) are as close as
possible in the low-dimensional space, which is described in a formula in Equation (5).

Referring to LE, for samples that are related in the original space, the embedding term
should constrain their low-dimensional representation as close as possible. As a result, for a
training sample set Ts×s×D2×MN , the LE-based embedding term can be defined as follow

LED_LE(T, Θd) = min
Θd

1
MN ∑MN

i=1 ∑MN
j=1 ‖pc(ti, Θd)− pc

(
tj, Θd

)
‖2

F Mij, (13)

where Mij is the adjacency graph coefficient in the original space, which also is a constant.

3.3.3. Reconstruction Term

As shown in Figure 5, the reconstruction term is to constrain the output of the whole
DFCEN. So it acts on all learning parameter updates. The reconstruction term ensures
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that low-dimensional features can be restored as input data. For a training sample set
Ts×s×D×MN , the output of DFCEN in Figure 5 is expressed as follow

q(ti, Θ) = s(dconv2(s(dconv2(s(dconv2(pc(ti, Θd), θ4)), θ5)), θ6)), (14)

where Θ = {Θd, θ4, θ5, θ6} represents all learning parameters in DFCEN and {θ4, θ5, θ6} is
the parameters in the deconvolutional subnetwork. dconv2() denotes the 2D deconvolution
and s() is the activation function. pc(ti, Θd) is the output of the convolutional subnetwork.

The reconstruction term aims at maintaining original intrinsic information, which
restores the low-dimensional features to the original input data. After the low-dimensional
representation pc is propagated by the multiple deconvolutional layers, the reconstructed
data q is obtained. The reconstruction term minimizes the error between the reconstructed
data and the original input data. For a training sample set Ts×s×D2×MN , the reconstruction
term can be described as follow

LRT(T, Θ) = min
Θ

1
MN ∑MN

i=1 ‖ti − q(ti, Θ)‖2
F, (15)

where q(ti, Θ) is the output of DFCEN and Θ denotes all learning parameter.

3.3.4. Objective Function

The embedding and reconstruction term have been introduced above. The embedding
term constrains the low-dimensional output of the central layer to maintain the original
sample relationship, while the reconstruction term ensures that the low-dimensional feature
is reconstructed back to the high-dimensional input data. To balance the effects of these two
terms on dimensionality reduction, a trade-off parameter is added to the objective function.
As a result, for a training sample set Ts×s×D2×MN , the objective function of DFCEN can be
described as

L(T, Θ) = LRT(T, Θ) + λLED(T, Θd), (16)

where λ is a adjustable trade-off parameter. LRT(T, Θ) is the reconstruction term and
LED(T, Θd) is the embedding term.

3.4. Learning of DFCEN

The learning of DFCEN is to optimize the network parameters Θ according to the
objective function which is formulated in Equation (16). In this paper, we adopt the gradient
descent method to optimize learning parameters. The update formula for Θ is expressed
as Θ = Θ− ∆Θ, where ∆Θ is the partial derivative of the objective function with respect
to Θ, which has the form

∆Θ =
∂LRT(T, Θ)

∂Θ
+ λ

∂LED(T, Θd)

∂Θ
. (17)

In the following, we calculate these two partial derivatives separately. For a training
sample ti, the partial derivative from the reconstruction term can be formulated as

∂

∂Θ
LRT(ti, Θ) =

∂

∂Θ
‖ti − q(ti, Θ)‖2

F =
∂

∂Θ
tr((ti − q(ti, Θ))T(ti − q(ti, Θ))) = 2(q(ti, Θ)− ti)

∂q(ti, Θ)

∂Θ
, (18)

Here ∂q(ti ,Θ)
∂Θ is the partial derivative of the output layer (also last layer) with respect

to all network parameters Θ = {θ1, θ2, θ3, θ4, θ5, θ6}. For the 7-layer DFCEN shown in
Figure 5, {θ1, θ2, θ3} is the parameters in the convolutional subnetwork while {θ4, θ5, θ6} is
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in the deconvolutional subnetwork. For {θ1, θ2, θ3}, the partial derivative with respect to
the lth layer parameters θl can be calculated as

∂q(ti, θl)

∂θl
= rot180(conv2(pl−1, rot180(s′(Ll)))), (19)

where pl−1 is the feature maps in the (l − 1)th layer and Ll is the lth layer of DFCEN. When
l = 1, pl−1 is the input data ti. The derivation process can be consulted in [37]. rot180()
represents a rotation of 180 degrees. conv2() is a 2D convolution. s′ is the derivative
function of the activation function, which is described as s′(x) = ex

1+ex . For {θ4, θ5, θ6},
the partial derivative is calculated as

∂q(ti, θl)

∂θl
= rot180(dconv2(pl−1, rot180(s′(Ll)))), (20)

where dconv2() is a 2D deconvolution.
The embedding term is only responsible for updating the parameters Θd = {θ1, θ2, θ3}

in the convolutional subnetwork. For a training sample ti, the partial derivative of the
LLE-based embedding term with respect to Θd can be formulated as

∂
∂Θ LED_LLE(ti, Θd)=

∂
∂Θ‖pc(ti, Θd)−∑MN

j=1 wij pc(tj, Θd)‖2
F

= 2(pc(ti, Θd)−∑MN
j=1 wij pc(tj, Θd))·(

∂pc(ti ,Θd)
∂Θ −∑MN

j=1 wij
∂pc(tj ,Θd)

∂Θ ),
(21)

Here wij is a constant. ∂pc(ti ,Θd)
∂Θ is the partial derivative of the central layer CT with

to the parameters Θd in the convolutional subnetwork. It can be expressed in the form of
Equation (19). The partial derivative of the LE-based embedding term can be formulated as

∂
∂Θ LED_LE(ti, Θd) =

∂
∂Θ‖pc(ti, Θd)− pc(tj, Θd)‖2

2Mij

= 2(pc(ti, Θd)− pc(tj, Θd))(
∂pc(ti ,Θd)

∂Θ − ∂pc(tj ,Θd)

∂Θ )Mij,
(22)

where Mij is also a constant.
In order to reduce the training time, we choose to use the convolutional autoencoder

(CAE) to pretrain network to obtain good initial parameters. Owing to the symmetry of
DFCEN, the parameter structure between the layers in the convolutional subnetwork is the
same as that between the corresponding layers in the deconvolutional subnetwork. For this
reason, symmetrical layers of two subnetworks can be initialized with the same parameters.
So, a 7-layer DFCEN shown in Figure 5 only requires 3 CAEs for pretraining parameters,
which saves the pretraining time. Figure 6 shows the pretraining process, where only after
the first CAE has been trained can the second CAE be trained, and so on. The parameters
in Figure 6, corresponding to the parameters in Figure 5, initializes DFCEN. The activation
function of CAE is the same as that of DFCEN.

Encoder

CONV:θ1 

Decoder

DCONV:θ6 

Encoder

CONV:θ2 

Encoder

CONV:θ3 

Decoder

DCONV:θ5 

Decoder

DCONV:θ4 

Figure 6. Pretraining process. Each dashed box represents a convolutional autoencoder.
{θ1, θ2, θ3, θ4, θ5, θ6} correspond to the parameters in Figure 5.
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4. Experimental Study
4.1. Description of Data Sets

The first dataset, Indian Pines Dataset, covering the Indian Pines region, northwest In-
diana, USA, was acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor in 1992. The spatial resolution of this image is 20 m. It has 220 original spectral
bands in the 0.4–2.5 µm spectral region and each band contains 145× 145 pixels. Owing
to the noise and water absorption, 20 spectral bands are abandoned and the remaining
200 bands are used in this data set. This dataset contains background with 10,776 pixels and
16 ground-truth classes with 10,249 pixels. The number of pixels in each class is range from
20 to 2455. The color image and the labeled image with 16 classes are shown in Figure 7.

(a)
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Hay-windrowed
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Woods
Bldg-Grass-Tress-Drives
Stone-Streel-Towers

111
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6
7
8
9
10
11
12
13
14
15
16

(b)

Figure 7. Indian Pines dataset: (a) the color image, (b) the Ground Truth map.

The second dataset covers the University of Pavia, Northern Italy, which was acquired
by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor and called Pavia
University Dataset. Its spectral range is 0.4–0.82 µm. After removing 12 noise bands
from the original dataset with 115 spectral bands, 103 bands are employed in this paper.
The spatial resolution is 1.3 m and each band has 610× 340 pixels. This dataset consists
of 9 ground-truth classes with 42,776 pixels and background with 164,624 pixels. Figure 8
shows the color image and the labeled image with 9 classes.

(a)
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Figure 8. Pavia University dataset: (a) the color image, (b) the Ground Truth map.
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The third dataset, Salinas Dataset, covering Salinas Vally, CA, was acquired by AVIRIS
sensor in 1998, whose spatial resolution is 3.7 m. There are 224 original bands with spectral
ranging from 0.4 to 2.45 µm. Each band has 512× 217 pixels including 16 ground-truth
classes with 56,975 pixels and background with 54,129 pixels. After removing 20 bands
that are severely affected by noise, the remaining 204 bands are used for the experiments.
The color image and the labeled image with 16 classes are shown in Figure 9.

(a)

Brocoli-green-weeds-1

Brocoli-green-weeds-2

Fallow

Fallow-rough-plow

Fallow-smooth

Stubble

Celery

Grapes-untrained

Soil-vinyard-develop

Corn-senesced-green

Lettuce-romaine-4wk

Lettuce-romaine-5wk

Lettuce-romaine-6wk

Lettuce-romaine-7wk

Vinyard-untrained

Vinyard-vertical

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(b)

Figure 9. Salinas dataset: (a) the color image, (b) the Ground Truth map.

4.2. Experimental Setup

For the sake of clarity, the proposed DFCEN with LLE-based embedding term is named
DFCEN_LLE below while that with LE-based embedding term is written as DFCEN_LE.
The network structure of DFCEN for three datasets is experientially designed on the
basis of the structure of DFCEN described in Section 3.2. In this paper, DFCEN_LLE and
DFCEN_LE have the same network structure for experimental convenience. The following
is the network structure with a target dimensionality of 30. For the Indian Pines dataset,
the network structure is 170–100–50–30–50–30–170 and the size of filter per layer is 3 ×
3–2 × 2–2 × 2–2 × 2–2 × 2–3 × 3. For the Pavia University dataset, the network structure
is 103–70–30–70–30–103 and the size of filer in all layers is 3× 3. For the Salinas dataset,
the network structure is 196–110–60–30–60–110–196 and the size of filer per layer is also
3× 3.

To prove the effectiveness, DFCEN is compared with several dimensionality reduction
algorithms, such as LE [11], LLE [11], SAE, spatial-domain local pixel NPE (LPNPE) [38],
spatial and spectral regularized local discriminant embedding (SSRLDE) [38], SSMRPE [39],
spatial–spectral local discriminant projection (SSLDP) [40]. The former three methods are
spectral-based methods while the latter four approaches make use of both spatial and
spectral information for dimensionality reduction of HSIs. Besides, the raw HSIs is also
used for comparison. SAE is a algorithm based on neural network, and its network struc-
tures are 170–100–50–30–170 for Indian Pines dataset, 103–70–30–103 for Pavia University
dataset, and 196–110–60–30–196 for Salinas dataset. LPNPE [38] minimizes the distance
of the spatial local pixel neighborhood. SSRLDE [38] preserves not only the spectral-
domain local Euclidean neighborhood class relations but also the spatial-domain local pixel
neighborhood structures. SSMRPE [39] shares the same DR concept as LLE. SSLDP [40]
designs a weighted within neighborhood scatter to reveal the similarity of spatial neigh-
bors. Among them, SSRLDE [38] and SSLDP [40] are supervised and require class labels to
implement dimensionality reduction, while others are unsupervised.



Remote Sens. 2021, 13, 706 15 of 24

For the fairness of the experimental comparison, the numbers of the nearest neighbor
samples k of LE and LLE are the same as that of DFCEN_LE and DFCEN_LLE in the
following experiments. We also choose the optimal parameters of their source literature
for LPNPE [38], SSRLDE [38], SSMRPE [39], SSLDP [40]. In all the experiments below, all
algorithms including DFCEN use raw data (that is not filtered to de-noise and smoothen
pixels). For this reason, the results of the comparative experiments in this paper are different
from those in the source literature (they usually use de-noising and smooth pixels).

Moreover, two classifiers support vector machines (SVM) and k nearest neighbor
(KNN) are employed for classifying dimensionality reduction results. In fact, the number
of the nearest neighbor of KNN is equal to 1. In all experiments, we randomly divide
each HSI dataset into training and test sets. It should be emphasized that the training
set is used to train the dimensionality reduction models and classifiers for supervised
algorithms while that is only used to train classifiers for unsupervised algorithms. Actually,
all samples in a HSI dataset are utilized to train the dimensionality reduction models
for unsupervised methods. Overall classification accuracy (OA), average classification
accuracy (AA), and the kappa coefficient κ are used to evaluate classification performance.
To robustly evaluate the results with different dimensionality reduction algorithms, we
repeat 10 times for each experiment.

4.3. Parameters Analysis

Both DFCEN_LE and DFCEN_LLE have three parameters that need to be set manually,
including nearest neighbor number k, spatial window size s and trade-off parameter λ.
In order to analyze the influence of three parameters on dimensionality reduction, we
conduct parameter tuning experiments on three HSI datasets. 10% in each class are
randomly selected as the training set and the remaining samples are the testing set for
two classifiers. Figure 10 shows the classification accuracy from DFCEN with different
parameters on Indian Pines dataset, where the parameter range is set to: k = {1, 3, ..., 29},
s = {1, 3, ..., 9}, λ = {0, 0.1, 0.2, ..., 1} and the fixed values are set to k = 19, s = 5, λ = 0.4
to analyze the other two parameters.

From Figure 10, the effects of the three parameters on DFCEN_LE and DFCEN_LLE
are almost the same. The classification accuracy increases significantly with the increase of
s when k or λ is fixed, which means that spatial information is important for DR. But the
classification accuracy tends to decline when s continues to increase, because the large
spatial window may contain heterogeneous samples which interfere with the extraction of
spatial homogeneous information. Meanwhile, the classification accuracy increases with
the increase of λ and k when s is fixed. In particular, the change of λ from zero has led to a
significant improvement in classification, which proves that the specific learning task (this
is embodied in the embedding term) of exploring and preserving the relationships among
samples can effectively enhance the discriminability and separability of low-dimensional
features and the proposed DFCEN is meaningful. Through a simple parameter tuning
experiment, the three parameters of DFCEN_LE and DFCEN_LLE on the three datasets are
set as shown in Table 2.

Table 2. Three parameter Settings for DFCEN_LE and DFCEN_LLE on three datasets.

DFCEN_LLE DFCEN_LE

Parameters λ s k λ s k

Indian Pines 0.5 5 20 0.3 5 15
Pavia U 0.5 5 90 1 5 400
Salinas 0.3 7 120 0.5 7 600
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(a) DFCEN_LE_SVM (b) DFCEN_LE_KNN (c) DFCEN_LLE_SVM (d) DFCEN_LLE_KNN

Figure 10. Classification overall accuracy with respect to different parameters of deep fully convolutional embedding
network (DFCEN) on Indian Pines dataset from two classifiers.

4.4. Convergence and Discriminant Analysis

To illustrate the convergence of DFCEN, the learning curves of the embedding and
reconstruction terms of DFCEN_LLE and DFCEN_LE on three datasets are present in
Figure 11, in which the parameters have been initialized by CAEs. The x-axis represents
the number of learning parameter updates that are performed after learning each batch
of samples (a batch contains 50 samples). The curve represents the error values of two
terms in objective function after one iteration (namely, all samples have been learned).
(a)–(c) and (g)–(i) is about DFCEN_LLE, where two terms on three datasets all can remain
convergent and obtain small error values after repeated iterations. (d)–(f) and (j)–(l) is
about DFCEN_LE. From that, the error values of two terms on the Indian Pines and
Salinas datasets can remain consistently convergent as the number of iterations increases.
However, the error values of the reconstruction term in the early learning stage on the Pavia
University dataset does not converge but increases. The reason is probably high trade-off
parameter λ (λ = 1 shown in Table 2) and overfitting occurred in pretraining where the
objective function of CAEs is consistent with the reconstruction term. Nevertheless, two
terms on the Pavia University dataset eventually converge to a small error value as the
number of iterations increases. Accordingly, DFCEN_LLE and DFCEN_LE can achieve
a good convergence, from which the low-dimensional features not only preserves the
original relationship among samples, but also retains the original intrinsic information
in HSIs.

To analyze the discriminability and separability of the low-dimensional features from
DFCEN, t-SNE is used to visualize the low-dimensional data of DFCEN comparing the
raw data. The 2-dimensional features obtained by t-SNE on three datasets are shown
in Figure 12 where different colors stand for different classes. Figure 12 shows all class
samples for the Indian Pines and Pavia University datasets and randomly 80% for the
Salinas dataset due to the large number of the class samples. As we can observe from
these visualizations, the dimensionality reduction results from DFCEN are more discrimi-
native than the raw HSIs data. Owing to DFCEN, the separability among different classes
in the low-dimensional space is significantly improved compared to the original space.
The reason is that DFCEN not only maintains the original intrinsic information but also
preserves the original relationship among samples. In particular, DFCEN_LLE preserves
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the original reconstructed relationship between each sample and its k nearest neighbors,
while DFCEN_LE keeps each sample as close as possible to its k nearest neighbors, since
there is a high probability that each sample and its neighbor belong to the same class.
As a result, from Figure 12, the same classes from DFCEN are clustered together and the
different classes are effectively separated.

(a) Indian (b) Pavia (c) Salinas (d) Indian (e) Pavia (f) Salinas

(g) Indian (h) Pavia (i) Salinas (j) Indian (k) Pavia (l) Salinas

Figure 11. The learning curves of the embedding and reconstruction terms of DFCEN_LLE and DFCEN_LE on three datasets.

(a) RAW (b) DFCEN_LE (c) DFCEN_LLE (d) RAW

(e) DFCEN_LE (f) DFCEN_LLE (g) RAW (h) DFCEN_LE

(i) DFCEN_LLE

Figure 12. The two-dimensional features obtained by t-SNE from the raw data and the low-
dimensional features of DFCEN on three datasets: (a–c) Indian Pines, (d–f) Pavia University, (g–i)
Salinas.
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4.5. Classification Performance

In this subsection, we examine the classification performance of dimensionality reduc-
tion results on three datasets. SVM and KNN are used to classify dimensionality reduction
results to reduce the influence of classifiers. Firstly, in order to analyze the classification
performance under different classification conditions, we randomly selected 5%, 10% and
15% of samples from each class as training set, and other samples are tested. The training
set and test set are applied to all algorithms in the manner described in Section 4.2.

Table 3 shows the overall classification accuracy of the dimensionality reduction
results (dim = 30) from different algorithms on three datasets, where the OA values is
the average of 10 experiments under the same classification conditions. From Table 3,
we can see that the classification OA values of all dimensionality reduction algorithms
improve as the proportion of training samples increases since more training data can
provide more class information for classifiers and supervised dimensionality reduction
algorithms. The highest OA value under the same classification condition has been marked
in bold.

As we have seen, the spatial–spectral combined algorithm, LPNPE [38], SSRLDE [38],
SSMRPE [39], SSLDP [40] and DFCEN, are superior to the spectral-based algorithm, LE,
LLE and SAE, which indicates that spatial features are beneficial to the dimensionality
reduction of HSIs. Neural network based methods, SAE and DFCEN, are superior to
traditional dimensionality reduction algorithms, which testifies that neural network is suit-
able for dimensionality reduction of HSIs. Compared with other algorithms in this paper,
the dimensionality reduction results of DFCEN has the best classification performance for
three datasets under two classifiers. In particular, DFCEN achieves superior classification
accuracy even with only 5% of the training samples of classifiers.

Table 3. Classification accuracy of dimensionality reduction results (dim = 30) of different algorithms using SVM and KNN
classifiers with different proportions of training samples on three datasets.

Dataset RAW LE LLE SAE LPNPE SSRLDE SSMRPE SSLDP DFCEN_LE DFCEN_LLE

Indian

5% SVM 75.40 74.68 59.29 77.81 82.47 78.26 73.78 70.58 84.55 86.30
KNN 65.00 73.48 56.08 66.59 81.71 80.45 74.97 70.41 81.01 81.85

10% SVM 76.06 77.99 61.26 81.64 86.24 83.11 78.93 74.07 90.25 91.18
KNN 68.70 77.48 57.85 70.52 85.39 81.56 77.66 72.45 86.74 88.52

15% SVM 83.90 78.88 62.03 83.58 88.13 85.81 81.48 75.01 92.60 93.28
KNN 70.63 79.04 58.91 72.25 87.11 82.62 79.66 72.96 89.89 91.81

Pavia U

5% SVM 93.56 80.20 89.33 92.72 89.63 89.10 88.05 78.55 96.09 96.32
KNN 84.96 73.95 81.22 82.88 91.69 90.35 86.05 77.74 94.00 93.45

10% SVM 94.49 81.09 90.40 93.49 91.13 90.57 89.70 80.03 97.25 97.05
KNN 86.63 74.60 82.49 84.02 92.41 91.43 87.11 77.95 95.73 95.37

15% SVM 94.82 81.31 90.99 93.80 92.11 91.37 90.69 80.81 97.76 97.57
KNN 87.37 74.84 83.41 84.72 92.84 92.01 87.66 78.86 96.39 96.26

Salinas

5% SVM 93.37 85.85 90.14 92.32 92.82 91.82 93.51 92.54 96.12 96.87
KNN 86.93 81.95 86.01 88.15 94.13 91.74 90.96 93.58 95.53 97.11

10% SVM 94.04 86.23 90.82 93 93.88 93.23 94.12 93.01 96.82 97.64
KNN 88.13 82.84 86.76 89.18 94.51 92.14 91.85 93.96 96.84 98.29

15% SVM 94.58 86.48 91.11 93.2 94.42 93.94 94.46 93.24 97.09 98.02
KNN 88.66 83.36 87.37 89.74 94.85 92.41 92.00 94.22 97.53 98.69

Secondly, in order to analyze the classification performances per class of different
algorithms, 10% of samples per class are randomly selected as training samples and others
are as test samples. The individual class classification accuracy, OA, AA, and κ on three
datasets are shown in Tables 4–6. The highest value of each item has been marked in
bold. Figures 13–15 show the corresponding classification maps of different algorithms
on three datasets. From Tables 4–6, the supervised algorithms, SSRLDE and SSLDP, give
unsatisfactory classification results in Indian Pines and Pavia University datasets due to
the absence of pixel filtering, which indicates that SSRLDE and SSLDP are very sensitive to
noise pixels. Meanwhile, as two unsupervised algorithms, DFCEN_LLE and DFCEN_LE
achieved the highest classification accuracy in most classes, even with OA, AA and κ
achieving the best. Especially for class 9 in Indian Pines, class 3 in Pavia and class 15 in
Salinas, DFCEN obtain high classification accuracy while other algorithms are poor because
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of the difficulty in classifying these classes. In terms of OA, DFCEN is approximately 4%
better than that of the second best algorithm.

Table 4. Classification accuracy of each class (DIM = 30) for Indian Pines datasets via SVM and KNN classifiers.

Class RAW LE LLE SAE LPNPE SSRLDE SSMRPE SSLDP DFCEN_LE DFCEN_LLE

C1 SVM 19.5 19.5 34.1 75.6 68.3 90.0 58.5 62.5 56.1 85.4
KNN 43.9 48.8 22.0 29.3 80.5 70.0 53.7 62.5 46.3 73.2

C2 SVM 77.7 72.8 40.5 80.4 86.4 78.1 74.6 76.0 89.6 85.9
KNN 56.0 70.6 43.3 66.5 80.2 75.2 69.3 69.9 81.2 83.1

C3 SVM 68.3 43.8 9.9 67.3 80.1 69.3 62.8 63.5 90.2 87.3
KNN 53.7 62.1 33.1 52.3 76.0 67.2 62.5 53.7 76.2 79.1

C4 SVM 56.8 21.1 24.9 62.0 73.2 79.3 57.7 45.5 77.9 78.9
KNN 41.3 30.0 35.2 41.8 73.7 62.0 64.3 54.9 52.6 67.6

C5 SVM 90.3 77.2 73.1 88.7 93.8 94.3 89.7 86.4 97.0 98.2
KNN 79.1 81.6 72.4 77.2 94.9 90.8 90.6 79.5 94.9 96.1

C6 SVM 93.6 98.0 95.9 93.6 98.2 93.9 94.5 94.1 96.8 99.1
KNN 93.8 91.5 80.8 93.3 97.9 96.5 94.5 89.8 98.9 98.3

C7 SVM 88.0 92.0 68.0 64.0 100 90.9 84.0 72.7 88.0 96.0
KNN 88.0 92.0 44.0 80.0 92.0 81.8 92.0 86.4 88.0 100

C8 SVM 97.9 97.7 90.2 98.4 99.8 98.6 99.3 99.3 98.1 99.3
KNN 94.0 93.0 89.5 95.1 100 99.3 97.0 99.8 99.3 100

C9 SVM 5.6 11.1 0 50.0 88.9 85.7 44.4 21.4 100 83.3
KNN 16.7 22.2 44.4 33.3 66.7 100 38.9 35.7 100 100

C10 SVM 71.3 72.2 25.5 71.5 81.9 74.9 74.6 58.7 85.4 91.0
KNN 61.6 74.6 40.8 58.9 81.8 78.5 73.6 58.1 90.1 92.1

C11 SVM 83.9 86.3 87.5 85.8 83.0 82.1 78.1 78.2 87.5 89.7
KNN 71.5 81.8 60.3 72.7 85.8 86.9 79.6 83.8 88.0 87.9

C12 SVM 71.9 56.6 21.5 70.6 83.5 81.1 59.9 67.8 86.3 88.8
KNN 40.8 50.6 27.2 57.7 85.2 70.0 63.9 69.9 70.4 73.2

C13 SVM 93.5 85.3 90.2 96.7 99.5 95.1 96.7 96.7 99.5 100
KNN 95.1 96.2 85.3 88.0 98.9 96.2 96.2 97.8 98.9 98.9

C14 SVM 95.7 94.5 94.4 89.6 95.0 92.9 93.3 96.1 96.9 96.1
KNN 85.4 92.0 90.9 86.9 94.3 91.3 90.9 95.3 95.9 97.1

C15 SVM 61.1 78.4 15.9 53.3 78.1 69.2 56.8 43.8 83.0 83.0
KNN 36.6 69.7 33.7 34.0 74.1 67.1 55.9 36.0 70.9 83.6

C16 SVM 83.3 97.6 85.7 81.0 86.9 91.7 85.7 84.5 86.9 97.6
KNN 85.7 98.8 88.1 83.3 88.1 92.9 90.5 84.5 94.0 92.9

OA SVM 80.5 77.7 61.3 81.3 87.0 83.1 78.6 77.2 90.3 91.1
KNN 67.5 77.2 58.0 70.5 86.3 82.7 78.1 76.2 86.5 88.5

AA SVM 72.4 69.0 53.6 76.8 87.3 85.4 75.7 71.7 88.7 91.2
KNN 65.2 72.2 55.7 65.7 85.6 82.9 75.8 72.3 84.1 88.9

κ
SVM 78.5 74.4 54.3 78.6 85.2 80.8 75.5 73.8 88.9 89.9
KNN 63.7 74.0 52.0 66.3 84.4 80.3 75.0 72.5 84.6 86.9

Table 5. Classification accuracy of each class (DIM = 30) for Pavia University datasets via SVM and KNN classifiers.

Class RAW LE LLE SAE LPNPE SSRLDE SSMRPE SSLDP DFCEN_LE DFCEN_LLE

C1 SVM 94.9 84.8 90.7 93.9 91.5 90.1 91.3 79.5 97.5 97.5
KNN 87.4 80.1 80.2 85.4 91.7 89.5 84.5 78.4 93.9 94.5

C2 SVM 98.4 97.0 97.2 97.6 96.9 96.1 96.4 93.1 99.2 99.0
KNN 94.4 83.4 94.7 92.1 97.4 97.7 95.9 94.5 99.6 99.6

C3 SVM 80.7 31.1 71.7 75.9 71.6 71.9 70.2 56.4 92.3 90.8
KNN 65.2 40.4 56.5 60.5 78.3 78.1 63.5 59.4 87.8 86.7

C4 SVM 95.3 77.9 91.1 93.1 92.2 92.8 90.4 69.1 98.5 97.1
KNN 84.0 74.8 74.7 84.0 92.5 87.2 85.6 64.9 92.7 92.5

C5 SVM 99.7 98.6 99.8 99.3 99.8 99.9 99.8 99.8 100 100
KNN 98.8 99.1 99.5 99.5 99.6 99.8 99.8 99.8 100 99.9

C6 SVM 87.3 31.2 77.3 84.0 85.6 83.0 81.0 73.2 93.0 93.6
KNN 66.1 46.0 63.7 59.7 88.0 80.7 77.6 72.6 87.7 86.3

C7 SVM 87.5 70.7 72.5 82.6 72.3 71.4 67.3 44.9 90.6 87.5
KNN 81.5 58.4 69.4 80.7 88.6 88.1 74.7 51.5 94.0 92.3

C8 SVM 88.1 86.0 87.2 89.4 79.2 79.4 77.5 55.8 94.0 96.1
KNN 81.9 68.2 71.6 81.9 80.2 85.1 72.5 54.7 93.5 92.4
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Table 5. Cont.

Class RAW LE LLE SAE LPNPE SSRLDE SSMRPE SSLDP DFCEN_LE DFCEN_LLE

C9 SVM 99.9 99.6 99.6 99.8 99.8 99.8 99.9 74.9 99.9 99.9
KNN 99.6 99.6 99.8 100 100 99.9 98.1 89.4 99.8 99.3

OA SVM 94.2 81.1 90.7 93.0 91.0 90.2 89.8 80.2 97.1 97.0
KNN 86.3 74.5 83.0 84.3 92.5 91.4 87.1 80.9 95.6 95.2

AA SVM 92.4 75.2 87.5 90.6 87.7 87.2 86.0 71.8 96.1 95.7
KNN 84.3 72.2 78.9 82.6 90.7 89.6 83.6 73.9 94.3 93.7

κ
SVM 92.4 74.0 87.5 90.6 88.0 87.0 86.3 73.5 96.2 96.1
KNN 82.0 66.1 77.1 79.0 90.0 88.6 82.8 74.3 94.1 93.7

Table 6. Classification accuracy of each class (DIM = 30) for Salinas datasets via SVM and KNN classifiers.

Class RAW LE LLE SAE LPNPE SSRLDE SSMRPE SSLDP DFCEN_LE DFCEN_LLE

C1 SVM 99.8 97.5 98.6 99.0 99.9 99.4 99.4 99.9 100 100
KNN 98.3 97.1 98.4 98.6 99.9 99.2 99.5 99.9 99.5 100

C2 SVM 99.9 98.8 99.2 99.8 99.9 99.8 99.9 99.9 100 100
KNN 99.7 98.3 99.5 99.7 100 99.8 100 100 99.9 99.9

C3 SVM 99.9 96.9 97.8 99.6 99.7 99.2 99.7 99.8 99.7 99.7
KNN 98.8 95.7 85.2 99.0 99.9 99.7 99.8 100 99.9 99.7

C4 SVM 99.4 98.6 99.4 99.5 97.4 98.7 99.8 99.2 100 100
KNN 99.0 97.5 98.3 99.5 99.2 99.3 99.9 99.8 99.8 99.5

C5 SVM 99.2 96.6 98.7 98.2 98.7 99.3 99.2 98.8 100 99.9
KNN 98.5 97.3 95.9 98.0 99.1 99.2 99.5 98.5 99.4 100

C6 SVM 99.8 99.5 100 99.8 99.9 100 100 99.9 100 100
KNN 99.8 99.2 99.9 99.7 99.9 100 99.9 99.9 100 100

C7 SVM 99.8 99.3 99.8 99.9 99.9 99.8 100 99.9 99.9 100
KNN 99.6 98.0 99.9 99.3 99.9 99.9 100 99.9 100 100

C8 SVM 90.3 81.1 86.2 89.7 90.9 87.5 88.4 88.7 93.1 95.0
KNN 75.1 66.3 72.0 76.2 87.7 82.1 80.9 88.7 92.6 94.3

C9 SVM 99.9 98.6 99.8 100 99.6 99.1 99.7 100 99.9 99.8
KNN 99.4 98.3 99.2 99.5 99.9 99.8 99.9 100 99.9 99.8

C10 SVM 96.9 86.8 90.7 94.7 98.3 97.7 98.8 97.9 99.4 99.3
KNN 90.6 81.6 89.6 90.9 98.3 97.1 98.0 97.6 98.5 99.2

C11 SVM 98.9 87.2 96.1 96.0 98.9 98.4 99.7 99.4 98.1 99.9
KNN 94.9 87.3 91.1 97.5 97.8 99.6 99.8 99.5 100 100

C12 SVM 99.3 98.1 99.2 99.9 99.6 98.6 99.9 100 100 100
KNN 99.3 95.2 97.1 99.9 100 99.9 100 100 100 100

C13 SVM 97.9 97.5 98.4 99.0 95.8 98.7 99.6 99.5 100 100
KNN 97.6 96.1 97.5 96.1 99.2 98.8 99.0 99.5 100 100

C14 SVM 97.0 91.4 92.7 95.1 96.1 96.4 97.6 97.0 99.7 99.9
KNN 93.8 91.3 94.1 95.6 98.2 96.7 98.4 96.7 99.6 99.3

C15 SVM 73.5 44.1 61.6 63.9 73.2 74.8 76.4 67.3 85.3 91.5
KNN 60.5 47.4 60.3 64.1 81.4 73.0 68.6 77.8 87.7 95.3

C16 SVM 98.8 92.7 99.2 98.5 99.0 99.0 99.6 98.6 98.8 100
KNN 98.2 91.5 99.0 96.9 99.8 99.5 99.5 98.6 99.4 99.9

OA SVM 93.7 86.2 90.8 92.2 94.0 93.4 94.1 92.9 96.5 97.7
KNN 87.9 82.9 86.7 89.0 94.7 92.2 91.6 94.3 96.6 98.1

AA SVM 96.9 91.5 94.8 95.8 96.7 96.6 97.4 96.6 98.4 99.1
KNN 93.9 89.9 92.3 94.4 97.5 96.5 96.4 97.3 98.5 99.2

κ
SVM 93.3 84.6 89.7 91.4 93.3 92.6 93.5 92.1 96.1 97.5
KNN 86.9 80.9 85.2 87.8 94.0 91.3 90.6 93.6 96.2 97.8

Figures 13–15 visually show the classification maps of the DR results (DIM = 30) of
different algorithms. From that, it can be observed that DFCEN has significant regional
classification uniformity because DFCEN not only guarantees the intrinsic information of
HSIs but also explores and maintains the relationship among samples and their nearest
neighbors. Especially for classes 3, 9, 10, 12, and 15 of the Indian Pines dataset, classes 6
and 7 of the Pavia University dataset, and classes 8 and 15 of the Salinas dataset (these
classes have been circled in white in Figures 13–15, DFCEN performs much better than the
other methods under two classifiers.
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Thirdly, to analyze the influence of different dimensions on each algorithm, Figure 16
shows the changes of OA with two classifiers on three datasets when the dimensionality
ranges from 5 to 50 with the step length of 5. From that, the OAs of most algorithms improve
with the increase of dimensions and tend to be stable when the dimension increases to a
certain degree. The reason is that the higher the feature dimension is, the more information
it can provide for the classification, but it will reach saturation when the feature dimension
continues to increase. Moreover, in Figure 16, spatial–spectral DR methods, LPNPE,
SSRLDE, SSMRPE, SSRLDE and DFCEN, are generally superior to spectral-based methods,
LE, LLE and SAE. In particular, DFCEN achieves almost the best classification on the results
of different dimensions compared with other algorithms.

Figure 16 also shows that the classification OAs of LE and LLE are relatively poor.
However, DFCEN_LE and DFCEN_LLE have satisfactory classification performance when
the concepts of LE and LLE are introduced to DFCEN. The reason may be summarized as
follows: (1) the fully convolutional network of DFCEN can effectively obtain the spatial–
spectral information of HSIs by layer-by-layer feature extraction, (2) the reconstruction
term, as a regularization term corresponding to the embedding term, can constrain low-
dimensional features to retain the intrinsic information.

(a) RAW (b) LE (c) LLE (d) SAE (e) LPNPE (f) SSRLDE (g) SSMRPE (h) SSLDP (i) DFCEN_LE (j) DFCEN_LLE

(k) RAW (l) LE (m) LLE (n) SAE (o) LPNPE (p) SSRLDE (q) SSMRPE (r) SSLDP (s) DFCEN_LE (t) DFCEN_LLE

Figure 13. Classification maps with two classifiers of different methods on the University of Pavia dataset (dim = 30). (a–j)
are for KNN and (k–t) are for SVM. (i,j) and (s,t) are the classification result of DFCEN.

(a) RAW (b) LE (c) LLE (d) SAE (e) LPNPE (f) SSRLDE (g) SSMRPE (h) SSLDP (i) DFCEN_LE (j) DFCEN_LLE

Figure 14. Cont.
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(k) RAW (l) LE (m) LLE (n) SAE (o) LPNPE (p) SSRLDE (q) SSMRPE (r) SSLDP (s) DFCEN_LE (t) DFCEN_LLE

Figure 14. Classification maps with two classifier of different methods on Salinas data set (dim = 30). (a–j) are for KNN and
(k–t) are for SVM. (i,j) and (s,t) are the classification result of the proposed DFCEN.

(a) RAW (b) LE (c) LLE (d) SAE (e) LPNPE (f) SSRLDE (g) SSMRPE (h) SSLDP (i) DFCEN_LE (j) DFCEN_LLE

(k) RAW (l) LE (m) LLE (n) SAE (o) LPNPE (p) SSRLDE (q) SSMRPE (r) SSLDP (s) DFCEN_LE (t) DFCEN_LLE

Figure 15. Classification maps of different methods on Indian Pines dataset (dim = 30) via two classifiers. (a–j) are for
k nearest neighbor (KNN) and (k–t) are for support vector machines (SVM). (i,j) and (s,t) are the classification result of
DFCEN.

(a) Indian_KNN (b) PaviaU_KNN (c) Salinas_KNN

(d) Indian_SVM (e) PaviaU_SVM (f) Salinas_SVM

Figure 16. Classification overall accuracy of reduced dimensionality (DIM = 5∼50) on three datasets with SVM and
KNN classifiers.
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5. Conclusions

In this paper, a novel unsupervised DFCEN was proposed for HSIs dimensionality
reduction. Different from the existing unsupervised CNN-based method which only fo-
cuses on data reconstruction, DFCEN was designed to not only ensure data reconstruction
but also realize the learning of specific tasks. In DFCEN, convolutional subnetwork is for
dimensionality reduction and specific task learning while deconvolutional subnetwork is
for data reconstruction. A novel objective function was proposed, including two terms:
embedding term of the specific task and reconstruction term of data reconstruction. The for-
mer enhance the discriminant ability of low-dimensional features and the latter maintain
the original intrinsic information. In this paper, exploring and maintaining relationships
between samples as a specific task to improve dimensionality reduction performance, while
the dimensionality reduction concepts of LLE and LE are introduced into DFCEN. Experi-
mental results on three hyperspectral datasets prove the superior classification performance
of the dimensionality reduction results from DFCEN_LLE and DFCEN_LE.

In our future work, different dimensionality reduction concepts and objective func-
tions designed according to specific requirements will be applied to DFCEN to achieve DR
and the idea of the combination of LE and LLE will be tried. In addition, we will try to
apply DFCEN to other areas.
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