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Abstract: Lightning data assimilation (LDA) is a powerful tool to improve the weather forecast of
convective events and has been widely applied with this purpose in the past two decades. Most
of these applications refer to events hitting coastal and land areas, where people live. However, a
weather forecast over the sea has many important practical applications, and this paper focuses on
the impact of LDA on the precipitation forecast over the central Mediterranean Sea around Italy. The
3 h rapid update cycle (RUC) configuration of the weather research and forecasting (WRF) model) has
been used to simulate the whole month of November 2019. Two sets of forecasts have been considered:
CTRL, without lightning data assimilation, and LIGHT, which assimilates data from the LIghtning
detection NETwork (LINET). The 3 h precipitation forecast has been compared with observations of
the Integrated Multi-satellitE Retrievals for Global Precipitation Mission (GPM) (IMERG) dataset
and with rain gauge observations recorded in six small Italian islands. The comparison of CTRL
and LIGHT precipitation forecasts with the IMERG dataset shows a positive impact of LDA. The
correlation between predicted and observed precipitation improves over wide areas of the Ionian
and Adriatic Seas when LDA is applied. Specifically, the correlation coefficient for the whole domain
increases from 0.59 to 0.67, and the anomaly correlation (AC) improves by 5% over land and by 8%
over the sea when lightning is assimilated. The impact of LDA on the 3 h precipitation forecast over
six small islands is also positive. LDA improves the forecast by both decreasing the false alarms and
increasing the hits of the precipitation forecast, although with variability among the islands. The case
study of 12 November 2019 (time interval 00–03 UTC) has been used to show how important the
impact of LDA can be in practice. In particular, the shifting of the main precipitation pattern from
land to the sea caused by LDA gives a much better representation of the precipitation field observed
by the IMERG precipitation product.

Keywords: lightning data assimilation (LDA); IMERG; very short-term precipitation forecast;
WRF; LINET

1. Introduction

Precipitation is one of the key elements of the hydrological, cycle and it is an important
phenomenon that affects human lives. It is then critical to provide precipitation forecast
for different time horizons. A short-range precipitation forecast is fundamental for flood
forecasting, early warning, and hydrological applications [1–4].

Numerical weather prediction (NWP) models use the physical descriptions of the
many atmospheric processes and have been used for the short-term forecast of precipita-
tion [5–8]. NWP models have improved significantly in recent years both in their physical
parameterizations and in their spatial resolutions, thanks to the continuous advancement
of the knowledge and of the computational resources [9–11].
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Despite the continuous improvement of NWP, the accurate prediction of high-impact
weather is one of the challenges of state-of-the-art numerical weather prediction (NWP)
models [12–14]. The NWP models for short-range forecasting purposes require more obser-
vational data and effective assimilation methods to overcome the spin-up problems [10,11].
Thanks to the ever-increasing computing power and to the possibility of assimilating dif-
ferent types of observations, the forecast of severe weather events has improved constantly
in the past decades [15,16].

Lightning data have been widely used in the past two decades and have some advan-
tages compared to other sources of data [17,18]. For example, an important source of data to
improve effectively the precipitation forecast at short range is given by radars (reflectivity
and radial winds) [19–22]. However, compared to lightning data assimilation (LDA), the
assimilation of radar data is achieved through more sophisticated and computationally
expensive techniques, such as three-dimensional variational assimilation (3DVAR) [23,24]
and the ensemble Kalman filter [20,25,26]. Flashes are observed with a sub-kilometric
position error (this error is less than the spatial horizontal resolution of the meteorological
model used in this paper, i.e., 3 km) and time (the detection of the strokes is instantaneous
and much lower than the time step used in meteorological models). Since lightning is
associated with convective activity, a positioning of the lightning in space and time gives a
positioning of the most intense convective areas in meteorological systems [27,28]. Light-
ning data are simple to transfer and do not require a wide-band network connection. The
process of computing the lightning position from the electromagnetic signals detected by
sensors is fast, making lightning observations available in real time.

For the above reasons, LDA is suitable for improving the forecast of intense convective
weather events in rapid update cycle (RUC) data assimilation systems. Broadly speaking,
LDA can be divided into two classes: LDA in models parameterizing convection (horizontal
resolution > 3–5 km) and LDA in models explicitly resolving the convection (horizontal
resolution < 3–5 km) [18,29,30].

The first attempts to assimilate lightning in NWP models were based on relationships
between lightning and the rainfall rate estimated by microwave sensors on board polar-
orbiting satellites [31–34]. These studies demonstrated not only the ability of LDA to
improve the precipitation forecast but also the improvement of large-scale field forecasts,
such as sea-level pressure. Benjamin et al. [35] used rain rates as a proxy for lightning and
implemented LDA in an RUC data assimilation system. Papadopoulos et al. [36] used
lightning to locate convection, and the simulated water vapor profile was nudged toward
vertical profiles recorded during convective events. Mansell et al. [17] used lightning
data to control the triggering function within the Kain–Fritch cumulus scheme [37] as a
function of the flash rate. This method can also suppress the activation of the cumulus
parameterization scheme whenever the model simulates unobserved lightning. The same
method was also applied by Giannaros et al. [38] for eight events over Greece, showing
improvement of the precipitation forecast given by LDA up to 24 h.

Fierro et al. [29] were the first to consider LDA in a convection resolving model (the
weather research and forecasting (WRF) model at a 3 km horizontal resolution) using a
methodology that imposed incremental increases in water vapor mass in the mixed-phase
region (0 ◦C–20 ◦C layer) based on observed lightning flash density rates and simulated
graupel mixing ratio. This same nudging method was applied for over 70 days during the
2013 warm season over the contiguous United States, showing the important and positive
impact of LDA for a prolonged forecast period [39]. Fierro et al. [40] improved the forecast
of a derecho event up to 6 h with LDA and showed that LDA can be comparable to that
of three-dimensional variational assimilation (3DVAR) of radar data (radial winds and
reflectivity factor).

Qie et al. [41] adapted the nudging function of Fierro et al. [29] to adjust graupel,
snow, and ice crystal mixing ratios and applied it to a quasi-linear convective system
over northern China, showing that the assimilation of graupel, snow, and ice crystals is
important for outflow-dominated events.
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Chen et al. [42] proposed a data assimilation scheme, based on the functions of
Fierro et al. [29] and Qie et al. [41], which takes into account the dynamical and thermody-
namic conditions.

Federico et al. [8] implemented the method of Fierro et al. [29] in the regional at-
mospheric modeling system (RAMS) model and obtained a substantial improvement
of the quantitative precipitation forecast (QPF) for 20 cases over Italy that occurred
during Hydrological Mediterranean Experiment-Special Observing Period 1 (HyMeX-
SOP1) [43]. Recently, Comellas Prat et al. [30], using the WRF model, applied the method of
Fierro et al. [29] to evaluate the impact of LDA for three case studies of severe weather that
occurred over Italy. The three cases span a range of convective precipitation from a long-
lived, wide-area intense-precipitation event to a heavy and localized rainfall case. WRF
was used in an RUC data assimilation system (3 h and 6 h forecast). The LDA improved
the quantitative precipitation forecast in all cases and for both temporal ranges.

The Mediterranean area is prone to heavy precipitation, and floods and flash floods
are the most common and dangerous natural hazard in the area [44]. Several research
studies have been carried out to explore these events in the Mediterranean. The HyMeX
project [43,45] and previously the MEDEX (The Mediterranean Experiment) project [46]
considered the water cycle in the Mediterranean basin, and the study of floods and flash
floods were among the main topics of both projects.

Heavy-rainfall events over the Mediterranean occur mainly in fall and winter and
have been reported in numerous papers ([44,47–55], among many others). The role of
the Mediterranean Sea in heavy-precipitation storms has been also considered in the
literature [56–59]. Because the Mediterranean Sea is a warm sea, it feeds the cyclones with
large amounts of water vapor, reinforcing the cyclones and increasing their lifetime [60].
Often, storms form over the Mediterranean Sea [61–63], or spend most of their lifetime over
the sea, as in the case of Medicanes [64–66], and are then advected toward land, causing
floods, windstorm, and surges. For these cases, the air–sea interaction plays a major role in
the storm evolution.

A better high-impact weather forecast over the sea would result in a more realistic
simulation of its impact once it hits the coast and would be of practical importance for many
sea-related activities (fishery, navigation, tourism, etc.). LDA is particularly important for
improving the weather forecast over the Mediterranean Sea, considering that the ground-
based radar coverage is not enough for monitoring weather systems more than 100–150 km
away from the radar position and the evolution of weather systems over the Mediterranean
Sea is partially unobserved by the Italian radars. For this reason, the impact of radar data
assimilation over the Mediterranean Sea is limited and LDA plays a significant role in
improving the weather forecast.

Thanks to the advent of the international Global Precipitation Measurement (GPM)
mission [67,68], a new set of global precipitation products has become available for the
meteorological scientific community. The GPM satellite constellation is made up of an
ever-growing number of low-Earth-orbit (LEO) satellites equipped with cross-track and
conical passive microwave (PMW) radiometers. The main satellite of the constellation
is the NASA/JAXA (National Aeronautics and Space Administration/Japan Aerospace
Exploration Agency) GPM Core Observatory (GPM-CO), which carries the most technolog-
ically advanced radiometer, the GPM Microwave Imager (GMI), and the dual-frequency
Ku/Ka-band precipitation radar (DPR). The potential of the GPM constellation to analyze
precipitation systems over the Mediterranean region (land and sea) has been demonstrated
in several studies [69]. For instance, Panegrossi et al. [70] demonstrated the value of
using precipitation retrievals from the GPM constellation for monitoring the evolution
of different severe weather systems, in particular over sea regions or coastal areas with
complex orography. On the other hand, Marra et al. [62] showed the capabilities of a single
GPM-CO overpass over a violent hailstorm that developed offshore in front of Naples to
capture in fine detail basic characteristics of the exceptional event, which was completely
missed by numerical weather forecasting models. Furthermore, making use also of RAMS
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model forecasts, Marra et al. [64] documented how the PMW and DPR data from the GPM
constellation can be fruitful to analyze the life cycle of the tropical-like cyclone (TLC) Numa,
which developed on the Ionian Sea during 15–19 November 2017.

Apart from the insight that the information from these space-borne platforms pro-
vides for the study of individual weather events, the combination of the different sensor
measurements offers unique and consistent precipitation estimations, which, combined
with geosynchronous Earth orbit (GEO) infrared (IR) observations over the globe, provide
precipitation products of unprecedented high spatial and temporal resolutions across the
globe, such as the Integrated Multi-satellitE Retrievals for GPM (IMERG) [71].

In this paper, we focus on the impact of LDA on the short-term (3 h) precipitation
forecast over the Mediterranean Sea using the WRF model. The rainfall forecast is verified
against the IMERG dataset (Final Run) and by the rain gauge precipitation recorded at six
stations located over small islands around the Italian peninsula.

The paper is organized as follows: In Section 2, we introduce the WRF model configu-
ration and the IMERG dataset. Section 3 shows the results comparing the WRF precipitation
forecast, with or without LDA, with the data from IMERG and from the rain gauges located
in small Italian islands in the central Mediterranean Sea. Conclusions are reported in
Section 4.

2. Datasets and Methodology
2.1. Satellite Precipitation Data

To perform the evaluation of the 3 h precipitation forecast over the sea, observational
data were obtained from the IMERG Final Run (version 06B) at a horizontal resolution of
0.1◦ × 0.1◦ (about 10 × 10 km2) and a temporal resolution of 30 min from the Goddard
Earth Sciences Data and Information Services Center (GES DISC) website. We used the
complete calibrated precipitation field from the post-real-time final run product, which
is the satellite-gauge combination available ~3.5 months after the observation month. To
calculate it, first the precipitation estimates are computed using the Goddard Profiling Al-
gorithm (GPROF2017) from the various satellite passive microwave sensors comprising the
GPM constellation. These are then intercalibrated to the Combined Ku Radar-Radiometer
Algorithm (CORRA) product, forward- and backward-morphed, and combined with mi-
crowave precipitation-calibrated GEO-IR fields, to be finally adjusted with seasonal Global
Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) surface precipitation data to
provide the global half-hourly dataset [71].

2.2. Model Setup and Lightning Data Assimilation Procedure

The numerical model used in this study is the WRF model with advanced WRF
dynamic (WRF-ARW), version 4.1.3 [72]. The simulations were conducted on one single
domain, with 531 × 531 grid points and 42 vertical levels, with a model top at 50 hPa. The
model domain (Figure 1) covers the central Mediterranean and the whole Italian territory
and has a horizontal grid spacing of 3 km.

The physical schemes employed include the new Thompson microphysics scheme [73],
the Yonsei University boundary layer scheme [74], the five-layer thermal diffusion for land
surface processes scheme, the revised MM5 Monin–Obukhov scheme for surface layer
physics [75], the Dudhia scheme [76], and the rapid radiative transfer model (RRTM) [77] as
shortwave and longwave radiation schemes. No cumulus parameterization was activated.

The 3 h 0.25◦ operational analysis/forecast cycle, issued at 12 UTC on the day before
each day of forecast, from the integrated forecast system (IFS) global model of the European
Centre for Medium-Range Weather Forecasts (ECMWF) was used as initial and lateral
boundary conditions.

To assess the impact of LDA on the precipitation forecast over the sea, we selected
the period from 2 to 30 November 2019. This is because this period was characterized by
abundant precipitation over Italy, especially in the first 20 days of the month.
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For all the simulations, we employed a 3 h rapid update cycle (RUC) data assimilation
scheme. The RUC configuration was chosen because LDA impacts the weather forecast
mainly in the short range [38,39,78]. We ran two configurations for each forecast: the first,
named CTRL, without LDA, and the second, named LIGHT, with LDA. Each simulation
spanned a 9 h period after its initialization time. The first 6 h of each simulation were used
for LDA in the LIGHT simulations and to spin-up the model for both configurations, while
the last 3 h were used for the forecast. Therefore, eight simulations were needed to cover
the forecast for a full day.

Lightning data used for assimilation were provided by the LIghtning detection NET-
work (LINET) [79]). LINET includes more than 500 stations worldwide, more than 200 of
which are in Europe. This network covers the Italian territory and the western Mediter-
ranean Sea. LINET sensors detect very low frequency (VLF) and low-frequency (LF) waves
emitted during the flash. LINET is a total lightning system since it is able to measure
both intra-cloud (IC) and cloud-to-ground (CG) discharges. The data processing technique
follows a 3D method (TOA, Time of Arrival, method, [80]), by which the height of IC light-
ning is also calculated. Position accuracy is about 75 m for CG lightning. All discharges
recorded within a 1 s period and within a 10 km radius are considered as a single flash for
data assimilation [81].

For LDA, we followed the method of Fierro et al. [29], based on nudging. The modeled
water vapor is compared with that calculated by the following equation:

qv = Aqs + Bqstanh(CX)
(

1− tanh
(

Dqα
g

))
(1)

In this experiment, the coefficients were set to A = 0.95, B = 0.07, C = 0.25, D = 0.25, and
α = 2.2. The term qs represents the saturation water vapor content at model atmospheric
temperature, while qg is the graupel mixing ratio (g kg−1). X is the number of total
flashes per grid cell in each assimilation interval (10 min). The water vapor mixing ratio
of Equation (1) increases with the flash rate (X) and decreases with the graupel mixing
ratio (qg). Simulated water vapor is nudged to the water vapor calculated by Equation (1)
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when the latter is higher than the modeled one. The physical meaning of Equation (1) and
nudging is that (a) the mixing ratio nudged by WRF increases as the flash rate increases,
and (b) a convective environment is already represented in the model when graupel is
simulated and the nudging term must decrease as the WRF graupel mixing ratio increases.

Setting A = 0.95 in Equation (1) gives a water vapor mixing ratio saturated or close
to saturation, depending on the flash rate and graupel mixing ratio. When lightning is
observed, the atmospheric column is saturated or close to saturation between the lifting
condensation level (LCL) and −20 ◦C, the latter being the top of the charging zone [29].
For this reason, we change the modeled mixing ratio only when it is necessary to bring it
close to saturation. In Fierro et al. [29], this substitution is done between 0 ◦C and −20◦C.
However, in recent studies [18,82], a vertical level below 0 ◦C has been employed as the
lower level for LDA. In particular, in Fierro et al. [18], the LCL is employed as the lower
level for assimilation. When using 0 ◦C, the level at which water vapor adjustment starts
can be too high, resulting in worse performance compared to the LCL height. In this study,
the assimilation is performed between the LCL and −20 ◦C and LDA is performed every
10 min within the assimilation period (first 6 h of each run).

The idea behind this setting is to maximize the impact of LDA on the forecast. Comel-
las Prat et al. [30], using a similar WRF setting, showed that choosing A = 0.85 (B = 0.17,
i.e., A + B = 1.02) resulted in worse performance compared to A = 0.95 (B = 0.07), the latter
giving more weight to LDA. We performed similar tests for some cases of November 2019
(not shown), and the results reveal that A = 0.95 (B = 0.0.7) gives a better precipitation
forecast compared to A = 0.85 (B = 0.17). Using values of A greater than 0.95 gives more
weight to LDA, but the model becomes computationally unstable for some cases. For these
reasons, A = 0.95 (B = 0.07) has been used in this study. The coefficients C, D, and α were set
in Fierro et al. [29] after careful research. A different setting of these values would require a
large number of simulations and is out of the scope of this paper.

In this work, WRF was set up with 42 vertical levels, while in a similar study [30], we
used 60 vertical levels. Increasing the number of levels would likely lead to a better forecast
but would also increase the computational cost. In this work, the number of vertical levels
is a compromise between forecast accuracy and computational resources. In addition, to
have an idea of the distribution of WRF vertical levels, we note that there are between 7
and 15 vertical levels in the layer 0/−20 ◦C, depending on the date.

3. Results
3.1. Pearson Correlation Coefficient, Anomaly Correlation, and Taylor Diagram

In this section, we consider the comparison between the WRF 3 h forecast and the
corresponding IMERG precipitation. For this purpose, the WRF 3 h forecasts for the whole
period were regridded onto the IMERG 0.1◦ × 0.1◦ grid by a remapping procedure that
conserves, to a desired degree of accuracy, the total precipitation forecast of the WRF native
grid [83,84].

The average precipitation over the whole period is shown in Figure 2. Comparing the
results for CTRL and LIGHT, the precipitation increase given by LDA both over the sea and
over land is apparent. This increase is larger over the Tyrrhenian Sea, especially close to the
Italian mainland, and over northern and southern Adriatic Sea. The IMERG dataset shows
higher precipitation values over the sea compared to CTRL and LIGHT, revealing rainfall
underestimation for both model configurations. This underestimation is reduced in LIGHT,
showing the positive contribution of LDA to the short-term precipitation forecast. Even if
better than CTRL, LIGHT substantially underestimates the rainfall compared to IMERG,
especially over the Tyrrhenian Sea (west of Sardinia) and over the Ionian Sea. An opposite
behavior is observed over land, where CTRL and LIGHT show larger precipitation than
IMERG. In particular, the IMERG dataset is not able to represent the impact of orography
on the precipitation (western and north-eastern Italian mainland), which is evident in both
CTRL and LIGHT.
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The Pearson correlation coefficient for each grid point of the domain was computed:

r = ∑N
i=1(yi − y)(oi − o)(

∑N
i=1(yi − y)2 ∑N

i=1(oi − o)2
)1/2 (2)

In Equation (2), yi is the precipitation 3 h forecast, oi is the corresponding observation
given by IMERG dataset, N is the total number of data for each grid point (N = 232), and y
and o are, respectively, the forecast and observed averages for each grid point.

The correlation results are shown in Figure 3.
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The result for CTRL (Figure 3a) shows a good performance of the WRF forecast over
Italy and the central Mediterranean because for most of the grid points (more than 98%,
both for CTRL and LIGHT, on a total of 27,602 grid points), the correlation between the
forecast and the observed precipitation is positive. About 1.5% of the grid points have a
negative correlation coefficient for both LIGHT and CTRL.

Performance is improved by LDA (Figure 3b). A comparison of Figure 3a,b shows that
LIGHT performs better, especially over the Adriatic and Ionian Seas. Differences between
LIGHT and CTRL Pearson correlations (Figure 3c) help to visualize these results. From
Figure 3c, the improvement of LIGHT forecast over CTRL is apparent both over sea and
over land.
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To highlight the added value of the LIGHT forecast compared to CTRL, we considered
the correlation coefficient values over a reference threshold of 0.5. For the CTRL forecast,
the correlation coefficient is above 0.5 for 5476 grid points, while for the LIGHT forecast,
the correlation coefficient is over the 0.5 threshold for 8067 grid points. The same behavior
is shown for different correlation thresholds (Table 1). In addition, the average of the
correlation coefficient over the domain of Figure 3 is 0.59 for CTRL and 0.67 for LIGHT.

Table 1. Number of grid points out of a total of 27,602 grid points where the CTRL or LIGHT
correlation coefficient is greater than a selected threshold.

Correlation Coefficient Threshold

R 0.1 0.3 0.5 0.7

CTRL 24,783 16,237 5476 731
LIGHT 24,908 18,327 8067 1242

The anomaly correlation (AC) [85] is a measure of the association that operates on
pairs of grid-point values in the forecast and observed fields, and it is designed to reward
good forecasts of the pattern of the observed field, with less sensitivity to the correct
magnitudes of the field variable.

The centered difference of the AC was computed:

AC =
∑M

m=1

(
y′m − y′

)(
o′m − o′

)
[

∑M
m=1

(
y′m − y′

)2
∑M

m=1

(
o′m − o′

)2
] 1

2
(3)

y’ = y − cm

o’ = o − cm

where cm is the monthly average of the 3 h precipitation of the IMERG dataset for each
grid point, y’m and o’m are the anomalies of the 3 h precipitation of the WRF forecast and
IMERG with respect to cm, and M is the total number of land or sea grid points, depending
on whether the AC is computed for land or for sea. Overbars are averages over the M
grid-points.

The averages of the AC for CTRL and LIGHT for the whole period for the 3 h precipi-
tation forecast are shown in Table 2.

Table 2. Average of the anomaly correlation (AC) for the whole period for the 3 h precipitation,
for the CTRL forecast, the LIGHT forecast, and the improvement of LIGHT compared to CTRL in
percentage (variation).

AC CTRL LIGHT Variation (%)

LAND_3 h 0.50 0.53 5%
SEA_3 h 0.44 0.49 8%

Positive values of the AC show the ability of WRF to represent the observed precipi-
tation spatial pattern. LDA improves the WRF performance for both sea and land, with
an increase in the AC of 8% and 5%, respectively. The AC is higher for land grid points,
showing a better performance of WRF over land. The performance gap between land and
sea is reduced when LDA is applied, because LDA has a greater impact over the sea.

The AC is positive and shows a good performance of WRF for most of the considered
days, both for CTRL and for LIGHT. Values vary considerably among different times, being
in some cases low and sometimes negative over land.
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The AC is improved by LDA, as shown by its larger values for LIGHT with respect to
CTRL. This improvement is larger until 20 November. From 20 to 30 November, a lower
number of convective events occurred over Italy and, therefore, the impact of LDA is lower.

The impact of LDA is larger over the sea than over land. This result is partially
determined by the lower performance of the WRF forecast over the sea, as confirmed
by the average values of the AC over land and sea (Table 2 and Figure 4). Other factors,
however, could contribute to this result. The smoothing of the precipitation field given
by the regridding applied to the WRF forecast can penalize the impact of LDA over land,
where, because of the complex orography of Italy, small-scale thunderstorms develop due
to local forcing conditions. These thunderstorms are likely smaller than those developing
over the sea, and regridding can impact unevenly the performance of LDA over land
and sea.

The time series of the AC over land and sea are shown in Figure 4.
The Taylor diagram was computed for the whole period for land and sea grid points,

and it is shown in Figure 5.
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The correlation between IMERG observations and the WRF forecast is improved by
LDA both over land and over the sea. Moreover, the precipitation error is reduced when
flashes are assimilated, because the points referring to LDA are closer to the observed point
along the x axis (point of coordinates (1,0)). This improvement is larger over the sea than
over land.

Figure 5 shows that the observation standard deviation is well represented by WRF
over land, while it is underestimated over the sea. This result can be determined not only
by an underestimation of the precipitation field standard deviation of WRF but also by
an overestimation of the precipitation standard deviation given by the IMERG dataset.
The IMERG Final Run dataset is calibrated using the GPCC (https://www.dwd.de/EN/
ourservices/gpcc/gpcc.html; last access on 12 February 2021) monthly gauge analysis

https://www.dwd.de/EN/ourservices/gpcc/gpcc.html
https://www.dwd.de/EN/ourservices/gpcc/gpcc.html
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available (mostly) over land. The presence of intense precipitation gradients across the
coastline (see Figure 2 or Section 3.3) reveals a possible overestimation of the IMERG
precipitation over the sea because the values over land are corrected by the calibration
with rain gauge measurements. As a matter of fact, other studies [86] have reported the
overestimation of the uncalibrated IMERG product with respect to the calibrated product.
Larger values of rainfall give, usually, larger values of precipitation standard deviation,
and this could partially explain the WRF underestimation of the precipitation standard
deviation over the sea.
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The intense precipitation gradients across the coastline are not present if the Early
Run of IMERG (uncalibrated) is considered, and we noticed this difference also for other
case studies. In this regard, we plan to perform a comparison with other precipitation
products (e.g., MW-based products provided within the EUMETSAT H SAF project,
http://hsaf.meteoam.it; last access on 12 February 2021) that will become operational in
the near future and that will provide daily precipitation rate over a regular grid.

Overall, the above results indicate that LDA improves the representation of the rainfall
field over both land and sea.

3.2. Impact on Small Islands

To further explore the impact of LDA over the sea, we consider the performance of
WRF, both with and without lightning data assimilation, over six Italian small islands in
the central Mediterranean Sea, with available rain gauges. Rain gauge data come from
the Italian Department of Civil Protection (DPC) precipitation database, which accounts
for more than 3000 rain gauges over Italy [8]. The selected islands are Elba, Giglio, Lipari,
Montecristo, Pantelleria, and Ponza, and their locations are shown in Figure 1.

The performance of the 3 h precipitation forecast of the model is evaluated using
RMSE (Root Mean Square Error) and the Pearson correlation coefficient (r).

To calculate the WRF rainfall corresponding to a rain gauge, the nearest-neighborhood
method is used. More specifically, we consider the four grid points surrounding the rain
gauge and we select the one among them with a predicted value in better agreement with

http://hsaf.meteoam.it
http://hsaf.meteoam.it
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the observation. This method allows a spatial error of the predicted precipitation field of
∆x
√

2 ' 4.2 km, where ∆x = 3 km is the WRF grid spacing. The nearest-neighborhood
method is often used in the literature [61,87]. This method gives higher values of the model
scores but tolerates a spatial error of the precipitation forecast (4.2 km in our case).

Statistics are presented for the 3 h precipitation forecast for the whole period. For
clearer visualization, daily rainfall forecast time series at Lipari and Elba islands are also
shown. For the daily (24 h) case, precipitation is obtained as the summation of the eight 3 h
rainfall values belonging to the same day.

Table 3 shows the RMSE and correlation coefficient for the six islands for the WRF
3 h rainfall forecast. An improvement of the RMSE and r is seen for all islands except
Ponza. The improvement given by LDA is larger for Elba and Lipari, while it is smaller
for Giglio, showing a notable variability from one island to another. An inspection of the
forecast for Ponza shows that the LIGHT forecast overestimates the precipitation on 11
November. In particular, about 55 mm/day (20 mm/day) is forecast by LIGHT (CTRL),
while the observation is 10 mm/day. This determines a worse performance of the LIGHT
forecast compared to CTRL for Ponza.

Table 3. RMSE (Root Mean Square Error) and Pearson correlation coefficients for six islands in the
central Mediterranean basin around Italy. The statistics are computed considering all the 3 h rainfall
forecasts for November 2019 (C is for CTRL; L is for LIGHT).

Elba Giglio Lipari Montecristo Pantelleria Ponza

C L C L C L C L C L C L

RMSE
(mm) 1.76 1.36 4.36 4.22 2.34 1.50 2.26 2.15 1.39 1.32 2.46 2.60

r 0.70 0.83 0.45 0.49 0.58 0.78 0.40 0.47 0.49 0.54 0.66 0.60

The time series of observed and forecast daily precipitation for CTRL and LIGHT
simulations are shown in Figure 6, and the corresponding statistics are shown in Table 4.
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Table 4. RMSE and Pearson correlation coefficients for six islands in the Central Mediterranean basin
around Italy. The statistics are computed considering the daily rainfall forecasts. The daily rainfall
forecast is the summation of the eight 3 h forecasts within a day.

Elba Giglio Lipari Montecristo Pantelleria Ponza

C L C L C L C L C L C L

RMSE
(mm) 7.09 5.28 13.33 11.64 6.19 4.65 8.20 8.19 4.45 3.78 9.93 11.61

r 0.71 0.85 0.50 0.60 0.85 0.92 0.48 0.48 0.81 0.91 0.62 0.58

A comparison with 3 h results reveals that daily analysis produces higher RMSE
values and larger correlation coefficients.

Considering the time series for Lipari (Figure 6a), it is noted that LIGHT produces
fewer false alarms than CTRL. This is especially evident on 6 and 11 November, when
the LIGHT precipitation forecast is closer to the observed amount (about 15 mm/day and
28 mm/day, respectively). For Elba, there are days when LDA increases the rainfall forecast,
matching better the observations (03, 09, 24), and days when LDA reduces the false alarms
(12, 15, 17).

3.3. A Case Study: 12 November 2019

The purpose of this section is to point out the impact of LDA on the 3 h precipitation
forecast over the sea for a specific case. The event occurred on 12 November 2019, and
we focus on the 3 h precipitation between 00 and 03 UTC. For the scope of this case study,
the WRF model native grid is considered, with a horizontal grid spacing of 3 km, and no
remapping on the IMERG grid is performed.

In this time period, precipitation is located mainly on the southern part of the Apulia
region (around 17.5◦ E–40.35◦ N), especially on the Salentine Peninsula, as recorded by
rain gauges managed by DPC (Figure 7a). The precipitation intensity is moderate, reaching
maxima of 30 mm/3 h.
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GPM-IMERG precipitation (Figure 7b) is intense in some regions, in particular over
the Ionian Sea. Moderate to intense precipitation is observed over the Adriatic Sea, and
the IMERG estimation is in good agreement with rain gauge records on the Adriatic coast.
As noted in Section 3.1, when discussing the Taylor diagram (Figure 5), the rainfall of
IMERG shows an important change from sea to land, with smaller values over land (due
to calibration). This precipitation gradient is sometimes observed in the IMERG dataset
for the period considered in this paper and suggests that the rainfall over the central
Mediterranean Sea can be overestimated by IMERG.

The CTRL run (Figure 7c) simulates an intense precipitation over eastern Calabria
region (about 16.5–17◦ E and 38–40◦ N) and on the central part of the Apulia region, north
of Salento. This intense precipitation over Calabria is not observed by rain gauges and
satellites. Furthermore, the CTRL run gives an intense precipitation forecast over land,
while the IMERG dataset shows a heavy precipitation over the Ionian Sea. Overall, for
this 3 h time period, the CTRL run simulates the precipitation pattern to the west of the
observed rainfall.

Results for the LIGHT run (Figure 7d) show a significant improvement in the precipi-
tation forecast: the precipitation pattern over Calabria is shifted eastward, over the Ionian
Sea. This precipitation shift reduces the rainfall amount over Calabria, in better agreement
with both rain gauge and satellite observations, and increases the precipitation over the
Ionian Sea, in better agreement with the IMERG dataset (although IMERG precipitation is
likely overestimated).

Both CTRL and LIGHT runs give a reasonable representation of the precipitation
maximum between northern Sardinia and the Italian peninsula (about 11◦ E–41.5◦ N). It is
interesting to note that the LIGHT forecast shows a second maximum over the Tyrrhenian
Sea, at about 14.5◦ E and 39.5◦ N, which is not forecast by the CTRL run. This maximum is
evident in the IMERG precipitation.

In summary, the IMERG dataset (Figure 7b) shows a precipitation maximum over
the Ionian Sea. The rainfall pattern corresponding to this maximum is better depicted
by the LIGHT run compared to CTRL. In addition, LDA gives improvements over the
Tyrrhenian Sea.

4. Conclusions

In this paper, we considered the impact of lightning data assimilation on the 3 h
precipitation forecast over the central Mediterranean Sea. To achieve this goal, rapid update
cycle (3 h) lightning data assimilation of the WRF model for the month of November 2019
was set up. This month was chosen because it was characterized by several precipitation
events over Italy and the central Mediterranean area. A total of 232 three-hour-rainfall
forecasts were considered for two different configurations of the WRF model, CTRL and
LIGHT, the latter assimilating lightning data from the LINET network. To verify the model’s
performance, two different datasets were used: an IMERG gridded dataset at 0.1◦ horizontal
resolution and six rain gauges in six Italian islands in the central Mediterranean Sea.

LDA improves the precipitation forecast over the sea for the analyzed period. A
comparison of the WRF forecast with the IMERG dataset clearly shows the positive impact
of LDA, especially on the Ionian and Adriatic Seas.

The anomaly correlation shows a good ability of WRF to predict rainfall both over
land and sea, with few exceptions. LDA improves the forecast, especially for the first
20 days of the month, when convective events occurred more frequently compared to the
last part of the month. The impact of LDA is larger over the sea than over land. This is
confirmed by the analysis of the Taylor diagram.

This diagram analysis, however, shows an underestimation of the precipitation stan-
dard deviation of the WRF model over the sea, which could be partially explained by
a possible overestimation of the rainfall given by the IMERG dataset over the central
Mediterranean Sea for the period selected in this paper.
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The comparison between the WRF forecast and the rainfall recorded over small islands
reveals a positive impact of LDA for all cases except Ponza. Both the reduction in the false
alarms and the increase in correct forecasts contribute to overall performance improvement.

The case study of 12 November for the period 00–03 UTC shows how important LDA
can be for specific cases. The CTRL forecast predicted the precipitation patterns a few tens
of kilometers west of the real occurrence. This shift, however, has a notable impact on
the precipitation forecast (double penalty error) because heavy precipitation is predicted
over Calabria, where small amounts are recorded by rain gauges (false alarm), while the
precipitation over the Ionian Sea is missed by the CTRL forecast (miss). Both errors are
considerably reduced by LDA.

While the aim of the paper is to show the impact of LDA over the sea, the forecast was
also verified over land with the IMERG dataset. Results show a positive impact of LDA
over the Italian peninsula, in agreement with the results already found by the same authors
in past studies with WRF and RAMS@ISAC numerical weather prediction models [8,30,55].

The findings of this paper are of practical importance for two main reasons: First, the
rainfall forecast over the sea is important for navigation, fishing, and many sea-related
activities; second, over Italy, and more in general over the Mediterranean region, convection
can be generated or can evolve over the sea and is then advected over land, causing,
sometimes, high-impact weather. Having a better representation of the convection over the
sea can help to improve the forecast of these events and better predict their effect over the
coastal regions, which can be often devastating.

While the results of this paper are encouraging, the seasonal variability of the Mediter-
ranean climate requires further analysis to show the impact of LDA over the sea in different
seasons. A dedicated study to evaluate the impact of LDA for convective events originating
over the sea and advected over land is also necessary. These events are partially observed by
radars, and LDA can contribute significantly to the improvement of precipitation forecast.

It is important to note that this paper limits its analysis to LDA. This likely causes an
overestimation of the impact of LDA on the precipitation forecast, because no additional
observations are considered in this study. The assimilation of other observations (e.g., radar,
GNSS-ZTD (Global Navigation Satellite System – Zenit Total Delay), SYNOP) over land
would be propagated over the sea by the model, while the assimilation of observations over
the sea (e.g., SAR (Synthetic Aperture Radar), water vapor maps) would contribute directly
to the precipitation forecast over the sea. Future studies, considering the assimilation of
other observations in addition to LDA, will quantify more precisely the contribution of
LDA to the improvement of the precipitation forecast over the central Mediterranean Sea.
Another limitation of this study is that the impact of LDA is evaluated only for precipitation.
The positive impact of LDA in predicting other surface parameters has been shown in some
papers [17,21,88] and will be considered in future studies.
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