
remote sensing  

Communication

Sea State from Single Optical Images: A Methodology to Derive
Wind-Generated Ocean Waves from Cameras, Drones
and Satellites

Rafael Almar 1,* , Erwin W. J. Bergsma 2 , Patricio A. Catalan 3,4 , Rodrigo Cienfuegos 5,6,7 ,
Leandro Suarez 5,7, Felipe Lucero 5,7, Alexandre Nicolae Lerma 8, Franck Desmazes 8 , Eleonora Perugini 9 ,
Margaret L. Palmsten 10 and Chris Chickadel 11

����������
�������

Citation: Almar, R.; Bergsma, E.W.J.;

Catalan, P.A.; Cienfuegos, R.; Suarez,

L.; Lucero, F.; Lerma, A.N.; Desmazes,

F.; Perugini, E.; Palmsten, M.L.; et al.

Sea State from Single Optical Images:

A Methodology to Derive

Wind-Generated Ocean Waves from

Cameras, Drones and Satellites.

Remote Sens. 2021, 13, 679. https://

doi.org/10.3390/rs13040679

Academic Editor: Kyung-Ae Park

Received: 22 January 2021

Accepted: 11 February 2021

Published: 13 February 2021

Corrected: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire d’Etudes en Géophysique et Océanographie Spatiales—LEGOS (CNRS-IRD-CNES-Université de
Toulouse), 31400 Toulouse, France

2 Earth Observation Lab, CNES (French Space Agency), 31400 Toulouse, France; Erwin.Bergsma@cnes.fr
3 Departamento de Obras Civiles, Universidad Técnica Federico Santa María, Valparaiso 2390123, Chile;

patricio.catalan@usm.cl
4 Centro Científico Tecnológico de Valparaíso (CCTVal), Valparaiso 2390123, Chile
5 Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile,

Santiago 7820436, Chile; racienfu@ing.puc.cl (R.C.); leandro.suarez@meric.cl (L.S.);
felipe.lucero@meric.cl (F.L.)

6 Research Center for Integrated Disaster Risk Management (CIGIDEN), ANID/FONDAP/15110017,
Santiago 7820436, Chile

7 Marine Energy Research and Innovation Centre (MERIC), Santiago 7550268, Chile
8 Bureau de Recherches Géologiques et Minières (BRGM), 33600 Pessac, France;

A.NicolaeLerma@brgm.fr (A.N.L.); F.Desmazes@brgm.fr (F.D.)
9 Department of DICEA, Università Politecnica delle Marche, 60131 Ancona, Italy; e.perugini@pm.univpm.it
10 St. Petersburg Coastal and Marine Science Center, USGS, St. Petersburg, FL 33701, USA;

mpalmsten@usgs.gov
11 Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA;

chickadel@apl.washington.edu
* Correspondence: rafael.almar@ird.fr

Abstract: Sea state is a key variable in ocean and coastal dynamics. The sea state is either sparsely
measured by wave buoys and satellites or modelled over large scales. Only a few attempts have been
devoted to sea state measurements covering a large domain; in particular its estimation from optical
images. With optical technologies becoming omnipresent, optical images offer incomparable spatial
resolution from diverse sensors such as shore-based cameras, airborne drones (unmanned aerial
vehicles/UAVs), or satellites. Here, we present a standalone methodology to derive the water surface
elevation anomaly induced by wind-generated ocean waves from optical imagery. The methodology
was tested on drone and satellite images and compared against ground truth. The results show a
clear dependence on the relative azimuth view angle in relation to the wave crest. A simple correction
is proposed to overcome this bias. Overall, the presented methodology offers a practical way of
estimating ocean waves for a wide range of applications.

Keywords: optical remote sensing; waves; camera; drone; satellite

1. Introduction

Sea states are generally considered unobtainable from a single remotely sensed optical
image, whereas radar and altimetry are preferred [1]. When applied to waves, optical
applications from shore-based cameras, unmanned aerial vehicles (UAVs), and satellites,
derive the spatial and dynamic characteristics of waves but generally leave their energy
and height aside, although these can be considered key information.

The relationship between the sea surface anomaly from still level and the pixel in-
tensity signal is described by a modulation transfer function [2,3]. With clear blue sky,
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the reflected light seen by a sensor looking at the sea is not uniform and depends on the
vertical view angle (or pitch) (Figure 1, see also [4]). A flat water surface reflects the sky
half-dome coloring from dark at nadir to bright at the horizon. A spatio-temporal deforma-
tion of the surface, such as induced by waves, is seen as a change in location pointed in the
sky dome with the specular reflection, the departure from still water conditions depending
on the slope of the deformation. These optical considerations imply that: (1) short and
relative steep waves dominate signal, which is consistent with the observation that short
waves "clutter" optical wave measurements ([5,6]); and (2) waves propagating in the view
angle direction dominate those with a perpendicular direction [7].
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Figure 1. (a) Illustration of the sky half-dome coloring from dark at nadir to bright at the horizon
along the view angle cross-section, (b) how the specular reflection on the ocean surface looks like
and how wave appear, and (c) when looking down with avoiding specular reflection and favoring
penetration. (d) Sketch of the method principle.

In the surf zone, there have been several successful attempts to use stereoscopic
imaging to derive the sea surface using the wave-breaking induced foam texture for
homologous points [8–10]. Wave heights were also derived from shore-based single
cameras [11,12], using the optical signature of the wave roller and camera geometries.
The consideration of the link between optical signal and the actual wave energy has
generally remained outside the scope of nearshore studies using optical methods, with the
exception of a few applications ([4,7,13] which were dedicated to bathymetry inversion.
Several studies [14,15] underlined, using drone data, that optical signal is a proxy of the
slope of the free surface and not the free surface itself, implying that one should integrate
the intensity signal to get proper physical characteristics.

A recent satellite study [16] derives sea state from high-resolution optical images
(Sentinel 2). In [17], a sequence of images taken from space using the Pleiades satellite
shows that the optimal viewing angle is in the direction of wave propagation and that
wave contrast decreases as the azimuth approaches the orientation of the wave crests.
As the pitch remains almost constant, the wave signal remains visible throughout the
image sequence on the orbit trajectory (changing the horizontal view angle, or azimuth),
highlighting the importance of the integration of the signal within the view angle of the
sensor to maintain constant wave characteristics over the orbit trajectory in a sequence.
The present study is motivated by these studies that contributed to unlocking the possibility
to reconstruct the sea surface anomaly; previously considered out of reach.

This paper is about how sea surface elevation anomaly (wind waves, or sea state) can
be derived from optical sensors from basic and standalone optical geometry. The method
is first introduced using model-derived synthetic images, then is applied to drone and
satellite images. Finally, a correction for a bias of wave energy with view angle is proposed.
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2. Datasets

Our methodology was tested over three datasets to allow us to test the method with a
wide range of view and sensor conditions which extend and strengthen the applicability of
the method.

The method was first tested against synthetic data, in a controlled environment.
Free surface was first computed using the FUNWAVE wave model. Free surface was
afterwards converted into intensity following the methodology described in [4]. Different
view angles were tested, similarly as in [7]. The conditions were designed to mimic satellite
resolution (1 m), with the free surface extracted every 0.5 s over 1-min duration for the
purpose of this study. The bathymetry covered 1500 points alongshore and 1000 points
cross-shore. It represents an idealized case with a rhythmic sandbar over a typical sloping
beach. Random JONSWAP wave conditions are forced at the offshore boundary with
Hs = 1.5 m, Tp = 10 s and Dir = 15◦. This complex bathymetry leads to a complex free
surface pattern [18].

The second source of data to be used in this paper was acquired at Las Cruces in
Chile in November 2018. The acquisitions consist of 11 flights of an UAV equipped with
an optical camera (DJI Mavic Pro) revolving around an Acoustic Doppler Current Profiler
(ADCP) device deployed in reasonably deep water conditions (no breaking). Azimuth
and pitch values covered a wide range of observation conditions. The acquisition was
completed in less than one hour. The metadata of the images contain the location of the
UAV (X,Y,Z) and the angles (roll, pitch, azimuth). This information was used to rectify the
images endogenously.

The third and final data sources to be used in this paper was very high resolution
satellite Pleaides (CNES/Airbus) optical imagery from the 12-frame sequence (less than
2 min) acquired in November 2017 at Capbreton, South West France to test the ability to
inverse bathymetry from the derived wave information [17,18]. An ADCP was deployed
in 20 m water depth by BRGM and serves as ground truth for wave height. Metadata of
each image contains satellite (X,Y,Z) and rectified pixel coordinates in the real world.

3. Method

Deriving wave-induced variations of free surface from pixel intensity requires several
steps: the gathering of required geometrical information; the generation of transfer function
between intensity and surface slope through a regression model; and lastly the integration
in polar space from surface slope to elevation within the validity range of waves.

Required information are the sensor view location (x0, y0, z0) and angles, azimuth
γ (horizontal) and pitch τ (vertical) (and roll but was not taken into account here as it is
generally small in most of cases) or/and the location of the area of interest (X,Y), together
with image intensity I. I is projected into polar coordinates with the sensor as origin. This is
conducted setting beams originating from the sensor of given angular resolution ∆γ and
radius resolution ∆ρ (see Figure 2).

γvec = γmin:∆γ:γmax (1)

ρvec = ρmin:∆ρ:ρmax (2)
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Figure 2. Synthetic wave-model and radiance model data. (a) Illustration of system change from cartesian (black) to polar
coordinates (red) centered on the sensor (blue filled circle). (b) free surface along the blue transect in (a,c,d) are signal
reconstruction in sensor view for original and estimated data respectively. The number of beams and beam length depend
on polar resolution.

I is then converted into surface slope S. To do so, most of the existing methods make
assumptions on the sky dome illumination and ocean surface radiance. We aim here at
feeding the transfer function from endogenous information. Here, we make use of known
geometry of the still water surface, when wind waves are spatially or temporally averaged.
A linear regression model is used to reconstruct this transfer function between slopestill and
Istill, and coefficients are computed from:

Sstill = a + b(Istill) (3)

The application of the model to the departure of raw I from still water Istill allows the
surface slope to be estimated.

S = a + b(I − Istill) (4)

The last step is the conversion from S to elevation η. This is done by integrating S
along ρ in polar beams. The optical signal is noisy by nature. As a post-processing step,
the non-pertinent signal is removed by band-pass filtering the data over a given wave
range (typically 2 s to 20 s, transposed to 6 m to 600 m assuming deep water dispersion
L = 1.56T2).

Z γ = max
η(ρ, γ) = δρ S(ρ, γ)

(5)

γ = min η in polar space (Figure 2), can be back-projected in cartesian space for further
analyses.

4. Results

Concerning the drone images, rectification is done using endogenous drone gimbal
metadata. Figure 3b shows the viewfield covered by the different acquisitions all around
the ADCP mooring location. All the steps described in Section 3 are then conducted.
Figure 3c shows I to build the regression model, where gradient is clearly visible.
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Figure 3. (a) A view of the study site for the drone (UAV) case, off the coast in deep water, Las Cruces,
Chile. (b) View fields for the flights in Cartesian coordinates. (c) Raw normalized image intensity,
and (d) the resulting free surface anomaly showing waves. (c,d) correspond to black flight in (b).

Figure 3d shows the resulting free surface anomaly η, after estimating S, applying the
model to I departure from Istill, and the integration of S along sensor view radial beams.
Wave pattern is revealed in elevation.

Figure 4 illustrates the free surface reconstruction from the Pleiades optical satellite
at regional scale. Wave train is clearly discernible in Figure 4 and wave groups can be
seen. A thorough validation of the free surface spatial field would be important for real
data, similarly to what is made possible by the use of synthetic data in Figure 2. However,
such as validation is currently almost impossible due to the lack of other observation tool
covering such an area in an instantaneous way. To go beyond qualitative assessments,
we have therefore decided, in the following paragraphs, to quantitatively compare our
estimates of the bulk significant wave height (Hs) with wave gauges.

A sensitivity of the free surface reconstruction amplitude to the relative view angle is
conducted here. In the synthetic wave-model controlled conditions, the sensor can virtually
fly over a wide range of locations. Figure 5a shows the resulting Hs from a 360◦ (15◦ step)
flight around the region of interest. The actual (model input) and retrieved free surface
energy are shown. Together with lower panels, this sensitivity analysis quantifies the
underestimation of energy when the view angle tends to the wave crests angle. The differ-
ence of energy is greatly correlated (0.81, significantly correlated at the 95% level) to the
relative view angle to wave crests. When considering the real drone flights in Figure 5b
with different view angles covering 360◦ (11 flights), a scatter is observed in the estimates
of Hs when compared with the in-situ device. The agility of Pleiades sensor also makes it
possible to observe the same scene from different view angles, although the range of view
angle is narrower than with the drone flights.
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the synthetic dataset (wave model), (b) UAV (drone) flights and (c) satellite (Pleiades) sequence. 
Significant wave height Hsest is computed from spatial variance of free surface, while Hsobs is com-
puted from in-situ sensors for real data cases or from variance of free surface for the model case. 

Figure 4. Reconstruction from the Pleiades satellite from image number 5 in the 11 images sequence.
The upper left panel shows the satellite trajectory and region of interest, the upper right panel shows
the reconstructed free surface superimposed with true color Pleiades image, where the wave train
is clearly discernible, and the lower panel shows free surface along the transect showed above.
Wave groups can be seen.
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Figure 5. Sensitivity of the wave energy estimation to the relative view angle to wave crest for (a)
the synthetic dataset (wave model), (b) UAV (drone) flights and (c) satellite (Pleiades) sequence.
Significant wave height Hsest is computed from spatial variance of free surface, while Hsobs is
computed from in-situ sensors for real data cases or from variance of free surface for the model case.
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Free surface at regional scale is estimated over 12 images with azimuth changing
from 61 to 68◦ (Figure 5c). As observed in [17], wave signature and its amplitude decrease
over the sequence. Similarly to the synthetic data, a bias can also be attributed to the
relative view angle to waves when considering these drone and satellite applications.
This underestimation effect is known (refs) and make signal perpendicular (90◦) to view
angle beam invisible to optical (but also others) sensors. An analytical solution exists in
a form cos(α), α being the relative angle from view angle direction to wave crests (α = 0
along crest). We propose a standalone wave to do so. Dominant wave crests direction in
the view field is estimated using a Radon transform [19,20], and the relative angle α is
derived. When applying this correction term, RMS error is reduced by 64% in our dataset.
The correction proposed here assumes that waves do not propagate strictly perpendicularly
to sensor view angle. Overall, the correction of the bulk estimate of wave energy Hs seems
to be the best solution.

5. Conclusions and Way Forward

We have developed a standalone regression model able to extract water free surface
anomaly from single optical images. The approach uses the endogenous information
contained in the background of optical observation of the water surface and geometrical
considerations. This background information was used to feed a regressive model applied
to determine the slope along view beams from the sensor, which was further integrated
along with the latter arrays. The methodology was tested on UAV (drone) and optical very
high resolution satellite, and the resulting significant wave height was compared against
co-located in-situ measurements. We found that the bias is dependent on the relative
azimuth view angle from the sensor to the wave crests. The resulting bulk underestimation
in wave height can be mostly corrected. The linear transfer function model employed
here in pitch and in the azimuth correction might be too simple to describe the non-linear
wave characteristics, in particular in shallow waters where waves become skewed and
asymmetric. Our method is not applicable in the surf zone where diffusive effects of foam
dominate. Overall, with this stand-alone first-pass methodology, we establish the basis for
deriving free surface and wave energy from a single optical imagery, which opens up a
wide range of developments and applications.
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