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Abstract: Phytoplankton bloom phenology studies are fundamental for the understanding of marine
ecosystems. Mismatches between fish spawning and plankton peak biomass will become more
frequent with climate change, highlighting the need for thorough phenology studies in coastal
areas. This study was the first to assess phytoplankton bloom phenology in the Western Iberian
Coast (WIC), a complex coastal region in SW Europe, using a multisensor long-term ocean color
remote sensing dataset with daily resolution. Using surface chlorophyll a (chl-a) and biogeophysical
datasets, five phenoregions (i.e., areas with coherent phenology patterns) were defined. Oceanic
phytoplankton communities were seen to form long, low-biomass spring blooms, mainly influenced
by atmospheric phenomena and water column conditions. Blooms in northern waters are more akin
to the classical spring bloom, while blooms in southern waters typically initiate in late autumn and
terminate in late spring. Coastal phytoplankton are characterized by short, high-biomass, highly
heterogeneous blooms, as nutrients, sea surface height, and horizontal water transport are essential
in shaping phenology. Wind-driven upwelling and riverine input were major factors influencing
bloom phenology in the coastal areas. This work is expected to contribute to the management of the
WIC and other upwelling systems, particularly under the threat of climate change.

Keywords: phytoplankton communities; Western Iberian coast; remote sensing; phenoregions;
coastal upwelling; drivers of phenology

1. Introduction

Phytoplankton bloom phenology (i.e., the study of the annual timing and intensity of
phytoplankton blooms) is key for the understanding of marine ecosystems. The develop-
ment of phytoplankton blooms has important roles in the sequestration of CO2 [1,2] and
may strongly influence marine food chains [3]. As a result, changes in bloom timing and
intensity can have harmful consequences for the pelagic ecosystem, including mismatches
between phytoplankton blooms and fish spawning, which may have severe impacts on
pelagic fish communities and, consequently, on fisheries [4]. Moreover, with climate change
threatening to alter bloom phenology and increase the frequency of extreme mismatches
between fish reproduction and plankton peak biomass [5], changes in annual carbon se-
questration budgets may occur [6]. However, even in regions such as the North Atlantic,
where phenology studies have spanned over 60 years (e.g., [7–9]), certain aspects, such as
what triggers the spring bloom initiation, remain uncertain [10]. Given its sensibility to
exogenous forcing and different oceanographic regimes, phytoplankton phenology has
been used as a major indicator of changes in the pelagic ecosystem [11] and is a tool to
assess the ecosystem response to climate change [12,13].

Ocean color remote sensing (OCRS) has been increasingly important for the study of
phytoplankton phenology. While OCRS data have their limitations (e.g., cloud coverage
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or lower accuracy in coastal waters due to colored dissolved organic matter (CDOM) or
other seawater constituents), it enables the collection of long-term, continuous data at
large spatial scales, contributing to major advances in phenology analysis. As satellite
datasets become longer and both temporal and spatial resolution increase, the number of
studies using OCRS to assess phenology has naturally increased (e.g., [14–17]. Most studies
have a global or basin-wide focus (e.g., [14,18,19]), yet regional studies focusing on coastal
regions are scarce. The higher complexity of coastal regions shapes bloom phenology, as
the development of phytoplankton blooms is strongly influenced by variability patterns in
environmental conditions stemming either from oceanographic phenomena (e.g., currents,
upwelling, eddies; [20,21]) or anthropogenic pressure [22,23].

Several OCRS-based methods have been used to assess bloom phenology, typically
focusing on the spring bloom. Most studies focused on the timing of the initiation of the
spring bloom and/or the timing of its peak (i.e., when the maximum chl-a concentration
is reached). While there is not a standard metric, studies usually define the initiation of
the spring bloom based on thresholds set for the annual mean/median [8] or cumulative
distribution of remote-sensing chl-a [24]. Ferreira et al. [25] found that either using a
threshold of 15% of the cumulative distribution or a threshold of 5% above the yearly
median delivers precise and comparable results, stressing that the best metric is case-
dependent. Another important aspect is the temporal resolution of OCRS-based phenology
studies. While a few studies have used satellite data with a weekly resolution, most use
either fortnightly or monthly composites to avoid gaps (e.g., [15,17,19]). Using a temporal
resolution coarser than one day may be insufficient to accurately assess changes in bloom
phenology in areas where bloom-inducing conditions change rapidly [26]. Nevertheless,
while daily resolution would be considered optimal for bloom phenology, it should be used
carefully due to the potential existence of large, error-inducing gaps in time-series [25].

Thus, there is a lack of regional studies on phytoplankton bloom phenology based on
long, continuous datasets with high temporal resolution. While OCRS-based works have
become increasingly more common, most use a temporal resolution coarser than it would
be optimal for bloom phenology. As climate change threatens to change bloom phenology
globally, likely affecting regions differently, filling these gaps becomes increasingly crucial.
This study aims to fill these research gaps by using the Western Iberian Coast (WIC), a
complex coastal region located in SW Europe, as a case study. In this work, a long-term
(22-years) satellite dataset with daily resolution will be used to assess phytoplankton bloom
phenology. Using phenoregions (i.e., areas with coherent phenology patterns), this work
seeks to answer the following questions: (i) How does phytoplankton bloom phenology
vary across WIC? (ii) Has bloom phenology in the WIC changed over the past 20 years?
and, (iii) What are the main drivers of interannual changes in bloom timing and intensity
along the different areas of WIC?

2. Data and Methods
2.1. Study Area

The Western Iberian Coast (36–45◦N, 6–12◦W; Figure 1) is located in Southwestern
Europe, encompassing the Atlantic coast of both Portugal and Spain. Oceanographically,
this is considered a complex and heterogeneous region. Regional phytoplankton communi-
ties are influenced by several agents, from basin-wide agents such as the North Atlantic
Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO) pattern to mesoscale
and local ones (e.g., coastal upwelling, eddies, larger river basins drainages [27–30]. Wind-
driven coastal upwelling is a major factor shaping biological communities during the
summer [31,32], owing to WIC’s placement in the northernmost sector of the Canary Cur-
rent Upwelling System. Although several upwelling centers can be found, the main one is
located in Northwestern WIC, coinciding with an Iberian sardine recruitment hotspot [33].
Recent studies have shown that, while drivers of phytoplankton biomass vary within the
WIC, the most common include NAO, AMO, mixed layer depth (MLD), sea surface height
(SSH), and wind direction (e.g., [29,30,34,35]).
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Figure 1. Location of the Western Iberian Coast (WIC) and mean satellite chl-a concentration during 1997–2019. Black lines
correspond to isobathymetric lines at 200 m, 1000 m, 2000 m, 3000 m, 4000 m, 5000, and 6000 m depths. Note that the
background color in the left plot represents oceanic bathymetry.

2.2. Chl-a Data

Satellite-derived chl-a (mg m−3) was used as a proxy of phytoplankton biomass. Level
3 daily chl-a data, for the period 1997–2018, with a spatial resolution of 4 × 4 km, was
extracted from the ESA Ocean Color-Climate Change Initiative (OC-CCI) product (version
4.2; available online at https://esa-oceancolor-cci.org/; (accessed on 13 May 2020) [36]).
This product integrates OCRS data from four distinct ocean color sensors: the Sea-Viewing
Wide Field-of-View Sensor (SeaWiFS; 1997–2010), the medium-resolution imaging spec-
trometer (MERIS; 2002–2012), the moderate resolution imaging spectroradiometer (MODIS;
2002–present), and the visible infrared imaging radiometer suite (VIIRS; 2011–present). To
integrate data from different sensors, data were initially atmospherically corrected using
the POLYMER v4.1 algorithm (MERIS [37]) and the l2 gen tool from SeaDAS v7.5 (SeaWiFS,
MODIS, and VIIRS). Data were subsequently band-shifted to the main SeaWiFS bands,
bias-corrected, and merged. A valuable characteristic of this dataset is that it contains
information on the error and bias of its measurements, using generated optical water
classes based on remote-sensing reflectance to identify the best performing algorithms for
each water class (more information in [38,39]). The OC-CCI chl-a product is validated with
extensive in situ data with global distribution (see [40]), exhibiting a good correlation with
in situ measurements for case 1 waters (R2 = 0.73 [39]).

Nevertheless, to study coastal regions, it is essential to ensure that the algorithm
has a good regional performance due to the possible influence of case 2 waters. Case 2
waters are those whose inherent optical properties (IOPs) are not predominantly shaped
by phytoplankton. Typically, these coincide with coastal or inland waters with higher
concentrations of CDOM and mineral particles. IOPs of case 1 waters, on the contrary, are
dominated by phytoplankton, which makes it easier to derive chl-a or other ocean color
variables. Within the WIC, a regional validation has already been performed for version
1 of the OC-CCI chl-a product, using in situ data from the Portuguese Coast [41]. The
authors reported root-mean-square error (RMSE = 0.33), standard deviation, and coefficient
of determination (R2 = 0.74) comparable to other products (e.g., MODIS OC3M). For the
current study, a new validation exercise for version 4.2 of the OC-CCI product [36], using
more recent in situ data from the Portuguese Coast, confirmed these results (data not

https://esa-oceancolor-cci.org/
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shown). Among others, the determination coefficient was seen to be similar (R2 = 0.6), and
the root-mean-square and bias errors were lower, a signal of an increase in performance
from the initial version of the product (n = 113). Thus, the performance of the OC-CCI v4.2
chl-a product seems appropriate to evaluate regional phytoplankton bloom phenology in
the WIC.

2.3. Estimating Bloom Phenology

Since the estimation of bloom phenology metrics may be highly impacted by missing
data [42], the chl-a dataset was preprocessed using two methodologies. First, a 3-step
gap-filling algorithm, as implemented by Racault et al. [42], was applied. This algorithm
consists of sequentially filling gaps with a 3-pixel-size window using the mean value of its
neighbors along the three dimensions of the dataset (i.e., longitudinally, latitudinally, and
over time; see [42] for more details). Second, a 3-week centered moving mean was used
to smooth the chl-a signal, helping fill the remaining gaps that could yet be present in the
time-series, following [25]. While there is the risk that these procedures may slightly alter
the chl-a signal linked to short enrichment events (e.g., upwelling events), it is necessary
to prevent phenology metrics from being skewed by anomalous biomass spikes that may
occur during such events. To evaluate the mean phenology metrics between 1998 and 2018
across WIC, an average of the chl-a concentration for each day of the year during 1998–2018
was calculated for each pixel. Data corresponding to 29 February was discarded since it
only occurs in leap years and would be severely under-represented. Thus, for each pixel, a
vector containing the mean annual cycle (n = 365) was obtained.

The following phenological metrics were estimated for each pixel (Table 1): (1) yearly
chl-a mean (mg m−3); (2) yearly chl-a maximum (mg m−3); (3) amplitude of the bloom
(mg m−3; BAmp); (4) day of bloom initiation (day of the year; BInit); (5) day of bloom
termination (day of the year; BTerm); (6) duration of the bloom (days; BDur); (7) day of the
peak chl-a concentration registered during the bloom (day of the year; BPeak); (8) area of
the bloom (mg m−3; BArea); (9) bloom frequency (blooms year−1; BFreq); and (10) yearly
area (mg m−3; YArea). Figure 2 shows an example of how certain metrics were derived.

Table 1. Summary of the phenology metrics used in this work, including description. DOY stands for the day of the year.

Metric Full Name Unit Description

Mean Chl a mean mg m−3 Mean Chl a concentration of the
seasonal cycle

Max Chl a maximum mg m−3 Maximum Chl a concentration of
the seasonal cycle

BAmp Bloom amplitude mg m−3 Difference between Chl a maximum
and mean

BPeak Bloom peak - DOY of Chl a Maximum

BInit Bloom initiation - DOY of initiation of the main bloom
in the seasonal cycle

BTerm Bloom termination - DOY of termination of the main
bloom in the seasonal cycle

BDur Bloom duration days Duration of the main bloom in the
seasonal cycle

BArea Bloom area mg m−3 Biomass of the main bloom in the
seasonal cycle

YArea Yearly area mg m−3 Total biomass accumulated during
the seasonal cycle

BFreq Bloom Frequency blooms year−1 Number of blooms in the
seasonal cycle
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The metrics BAmp, BInit, BTerm, BDur, BPeak, and BArea, were only calculated for
the main bloom of the year (i.e., where the maximum chl-a concentration was identified).
Blooms were identified using two criteria [24,43]: (1) chl-a must surpass a threshold of 5%
of the annual chl-a median, and (2) this condition must be maintained for a minimum of
15 days.

While this approach does exclude blooms shorter than two weeks, this approach
helps reduce noise and delivers robust results [25]. Moreover, it should be better suited for
studying blooms across the year than algorithms that focus on the cumulative distribution
of chl-a (e.g., [24,44]), which is better suited for identifying the spring bloom. Bloom
initiation (BInit) and bloom termination (BTerm) dates were defined as the day of the year
before and after the bloom, respectively (i.e., when chl-a biomass fell below 5% of the
annual median). Bloom duration (BDur) was calculated as the difference in days between
termination and initiation of the bloom, while the amplitude (BAmp) corresponds to the
difference between the yearly maximum and mean. BArea was estimated by numerically
integrating the area of the graphical representation of chl-a biomass during the period of
the bloom, using Simpson’s rule, and used as a measure of the magnitude of the bloom in
terms of phytoplankton biomass. The YArea was calculated exactly as BArea, but for the
entire yearly cycle. Note that, since these two methods integrate chl-a data, they maintain
their units and may yield a wide range of chl-a concentration depending on the chl-a and
duration of the bloom (10–1000 mg m−3).

2.4. Regional Analysis of Bloom Phenology

Subsequently, to account for its spatial heterogeneity, the WIC was partitioned into
phenoregions (i.e., regions with coherent phenology) using the phenology metrics calcu-
lated in Section 2.3. This approach has already been successfully applied (e.g., [15,45])
and enables further analysis of the annual chl-a cycles within each phenoregion. First,
autocorrelated phenology metrics were discarded from the analysis (R2 > 0.75). Second, an
agglomerative hierarchical clustering analysis was performed using the following phenol-
ogy metrics calculated for each pixel: yearly maximum, BPeak, BInit, BTerm, BDur, BArea,
and BFreq. Data were normalized before analysis. Euclidean distance was used as the
distance metric between pixels and Ward’s method [46] as the linkage criterion. Ward’s
method is considered as one of the most robust hierarchical clustering methods and has the
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advantage of being able to separate clusters surrounded by noise [47], a valuable feature
due to the complexity of WIC.

Finally, for each one of the defined phenoregions, chl-a was spatially averaged and
used to estimate the same eleven phenology metrics for each year (n = 21). To account for
blooms that span over two calendar years (e.g., a bloom that starts in November and ends in
January), a 1-year temporal window spanning 6 months before the BPeak to 6 months after
was used. Metrics were subsequently calculated for this window, following [43]. Whenever
this was not possible (e.g., at the beginning and end of the dataset), the corresponding
year was excluded from the analysis. For each of the calculated metrics, a linear trend was
calculated for the period 1998–2019 by estimating the slope of the least-squares fit.

2.5. Environmental Data Products

To investigate the drivers of phytoplankton bloom phenology for each of the phenore-
gions identified, a comprehensive suite of environmental variables were gathered (Table 2):
sea surface temperature (SST; ◦C), mixed layer depth (MLD; m), salinity (SAL; unitless),
sea surface height, a proxy of heat storage as warmer waters expand and exhibit higher
SSH (SSH; m), the zonal (V) and meridional (U) component of surface seawater direction
(m.s−1), nitrate (NO3

−; µM), ammonium (NH4
+; µM), phosphate (PO4

3−; µM), silicon (Si;
µM) and the euphotic zone depth (Zeu; m).

Table 2. Summary of the environmental variables and climate indices metrics used in this work.

Metric Full Name Unit

SST Sea surface temperature ◦C
MLD Mixed layer depth m
SAL Salinity (unitless)
SSH Sea surface height m
Vo Meridional component of water transport m s−1

Uo Zonal component of water transport m s−1

DIN Dissolved inorganic nitrogen (nitrate +
ammonium) concentration µM

PO4
3− Phosphate concentration µM

Si Silicon concentration µM
Zeu Euphotic zone depth m

NAO North Atlantic Oscillation index (unitless)
AMO Atlantic Meridional Oscillation index (unitless)

MEI Multivariate El-Niño Southern
Oscillation index (unitless)

SST (daily 4 km spatial resolution) was extracted from the ODYSSEA Level 4 re-
processed SST product over the European North West Shelf/Iberia Biscay Irish Sea [48].
Model-based MLD, SAL, SSH, U, and V were acquired from the Copernicus Marine En-
vironmental Monitoring Service (CMEMS) North Atlantic Iberian Biscay Irish Regional
Seas Ocean Physics Reanalysis Product [49], with a temporal and spatial resolution of
1 day and ≈8 km, respectively. NO3−, NH4+, PO3−4, Si, and Zeu modeled data were
retrieved from CMEM’s North Atlantic Iberian Biscay Irish Regional Seas Ocean Biogeo-
chemistry Non-Assimilative Hindcast product [50], again with a temporal and spatial
resolution of 1 day and ≈8 km. Dissolved inorganic nitrogen (DIN; µM) was calculated
as the sum of NO3

− and NH4
+. All these products are available online at CMEMS (

http:/marine.copernicus.eu/ (accessed on 13 May 2020)). Each product is specific for the
North-West Atlantic region, which encompasses the Iberian West coast. Plus, it is internally
validated using data from various sources (e.g., remote sensing, modeled, and in situ data)
prior to distribution, ensuring higher quality. Yearly datasets on the NAO, AMO, and mul-
tivariate El Niño/Southern Oscillation Index (MEI) spanning 1998–2018 were also acquired
from NOAA (available online at https://www.esrl.noaa.gov/psd/data/climateindices/
(accessed on 13 May 2020)).

http:/marine.copernicus.eu/
http:/marine.copernicus.eu/
https://www.esrl.noaa.gov/psd/data/climateindices/


Remote Sens. 2021, 13, 675 7 of 28

2.6. Random Forest Analysis

Random forest (RF) models [51] were used to identify and evaluate the main drivers
of each metric of bloom phenology. RF is one of the most popular analysis tools in
ecology for identifying predictors of a given response (e.g., [52–56]), mainly due to its
suite of advantages: (1) high flexibility and capability to detect nonlinear links between
the predictors and the response variable; (2) high robustness to overfitting; (3) ability to
successfully cope with outliers, high-dimensional data and collinearity among predictors;
(4) consistent and easily understandable results [52,57,58].

RF is based on the aggregation of multiple decision trees. Each regression tree is built
using a random sample from the input dataset. Along the tree, a random selection of
predictors is available at each decision node, where a splitting predictor is chosen based on
a criterion until a final prediction is made at the end of the tree. An important component of
the RF algorithm is the use of out-of-bag observations (i.e., a random subset of observations
not used for training the algorithm [51]) error to internally validate the trees.

For each determined phenoregion. 10 RF models were performed, one for each
phenology metric. The number of trees for the RF was set to 500, as in [55,56]. The model
performance was assessed by calculating the coefficient of determination (R2) and the
root-mean-square error (RMSE). Drop-column importance, a method that assesses the
importance (i.e., explanatory power) of each predictor by comparing the performance
gained or lost when dropping each predictor to the performance of a baseline model with
all predictors [59], was used. A summary of the workflow of the methodology is presented
in Figure 3.
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cal metrics.

3. Results
3.1. Phytoplankton biomass off Western Iberia

Chl-a concentration off Western Iberia (Figure 1) range from <0.5 mg m−3 (low pro-
ductive oceanic regions) to >3 mg m−3 (productive coastal patches). The most productive
areas are located in the northern and central sections of the WIC and the Gulf of Cádiz
(SW Spain). Moreover, for offshore waters, there is a gradient from low to high biomass
towards northern latitudes on oceanic water, a consequence of the stronger spring blooms
observed in northern waters.

Seasonality in phytoplankton biomass in the WIC (see Supplementary Figure S1) is
evident, particularly in offshore waters. Overall, spring is the most productive season
of the year, as mean oceanic chl-a concentration increase to over 1 mg m−3. Onshore-
wise, a clear chl-a maximum in spring can also be seen in the waters enclosed by the
Gulf of Cádiz (>3 mg m−3). The decrease in oceanic chl-a from spring to summer is clear,
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while biomass increases near upwelling centers (e.g., NW Portugal and Spain). Autumn
exhibits a similar pattern to summer, although results suggest oceanic phytoplankton
biomass slightly increases in the northernmost latitudes. Winter chl-a biomass reveals
a transition towards spring, as oceanic chl-a concentration increases, while chl-a near
upwelling zones diminishes.

3.2. Bloom Phenology Metrics

Estimated bloom phenology metrics along WIC highlight its complexity (Figure 4).
Results show that yearly maximum chl-a concentration exceeds 1 mg m−3 in most oceanic
waters and 2 mg m−3 in coastal waters (Figure 4a). As with mean chl-a concentration,
Bloom amplitude (BAmp; Figure 4b) is also higher towards northern latitudes offshore.
Coastal waters also tend to have higher BAmp, reaching amplitudes over 2 mg m−3

in several biomass-rich areas (e.g., NW coast, Gulf of Cádiz). While the bloom peak
date (BPeak; Figure 4c) is rather homogeneous offshore (March–April), blooms in higher
latitudes (>41◦N) tend to peak later (April). Coastal-wise, there is more variability. Blooms
in some regions (e.g., Gulf of Cádiz) appear to peak during the early spring, while blooms
in upwelling centers peak later.
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Figure 4. (a) Max yearly chl-a (mg m−3); (b) mean bloom amplitude (mg m−3); and (c) mean bloom peak date (i.e., peak
chl-a concentration) calculated for the period 1998–2018.

Bloom timing was also seen to vary across latitude and between oceanic and coastal
waters (Figure 5). Offshore, bloom initiation (BInit; Figure 5a) ranged between November–
February, with spring blooms off SW Iberia typically starting and ending (Figure 5b) earlier,
i.e., compared to a typical North Atlantic spring bloom, and lasting longer (2 months;
Figure 5c) than blooms north of 39◦N. Onshore, clear differences were observed along the
West and South coast, with Sagres acting as a transition zone. While blooms along the
eastern sector of the South coast (8–6◦W) initiate between December–February, blooms off
the remaining coast appear to start later (June–August). Overall, coastal blooms typically
lasted under 80 days, generally terminating between October–November. Bloom area
(BArea; Figure 5d) was higher onshore, in some areas exceeding 300 mg m−3. The less
productive blooms (<50 mg m−3) appear to be located in the SW oceanic waters and in a
coastal patch along the continental shelf break off the Western coast.
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Overall, the most productive areas are coastal, mostly overlapping with the areas
characterized by higher YArea (>500 mg m−3) and BFreq (>3 blooms year−1; Figure 5e). Off-
shore, the annual cumulative production is, as expected, significantly lower (50–200 mg m−3).
Bloom frequency (BFreq; Figure 5f) was also seen to be higher onshore (2–5 blooms year−1).
Blooms were especially frequent in NW Iberia, with several pixels being characterized by
4–5 blooms year−1. Again, a distinction in bloom phenology between oceanic phytoplank-
ton communities can be seen, as communities below 39◦N, excluding those in the Gulf of
Cádiz, are characterized by a single yearly bloom, while communities further north already
display an additional bloom apart from the spring bloom.

3.3. Regional Patterns of Bloom Phenology

Five phenoregions were defined in the WIC, based on the dendrogram extracted from
the hierarchical clustering analysis (Figure 6a, Supplemental Figure S2). Oceanic waters in
the WIC were separated into two phenoregions: one limited to waters north of 39◦N (OcN;
Figure 6b) and another limited to waters in the southern part of WIC, from 11◦W to 6◦W
(OcSW; Figure 6c). A transitional region, encompassing waters of both coastal and oceanic
characteristics along the continental shelf margin of the Western coast (CoMa; Figure 6d),
was also defined. Finally, two coastal phenoregions were also established. CoUp (Figure 6e)
included pixels along of two main upwelling centers—Center and NW Iberia and Sagres,
while CoBa (Figure 6f) appears to be limited to the Gulf of Cádiz and small areas within the
vicinities of major river basins (e.g., Sado, Tagus, Ria de Aveiro, Douro, Ría de Vigo, and
Ría de Pontevedra). For each phenoregion identified, statistical metrics and intercorrelation
results are presented in Table 3. Yearly bloom information (Figure 7) and bloom phenology
metrics anomalies (Figure 8) for each phenoregion are also exhibited.

Oceanic North (OcN) was the largest identified phenoregion. Being a largely oceanic
region, OcN displays low productivity (mean chl-a of 0.34 mg m−3). Blooms occurring in
this region are clearly defined as spring blooms, typically spanning February–May. On
average, two blooms occur per year. Linear trend analysis results indicate that blooms
are starting (p-value < 0.1) and peaking (p-value < 0.05) later over the past 22 years.
Nevertheless, no significant decline was observed in bloom duration. Correlation-wise,
later BInit was negatively correlated with bloom duration. In addition, blooms with a
longer duration and with a later BTerm were associated with higher bloom area.

Oceanic Southwest (OcSW), the other purely oceanic phenoregion delineated, was
the least productive one, with low mean chl-a (0.25 mg m−3). While OcSW also exhibits
spring blooms, these initiate much earlier (early December) than blooms observed in OcN.
Despite its much longer blooms, their total biomass is also low (50.88 mg m−3). Plus, there
is usually only one bloom per year, with a mean duration of 5 months. Contrary to OcN,
blooms in OcSW with later peaks were linked with earlier bloom termination dates. At the
same time, the spring blooms starting in December were seen to match longer blooms and
higher biomass.

Coastal Continental Margin (CoMa) shared characteristics with the oceanic and coastal
phenoregions identified, exhibiting intermediary productivity. In terms of timing, blooms
were seen to frequently initiate in February, peak in early–spring and end in May. Blooms
were more frequent (~3 blooms year−1) and of higher biomass than in the oceanic phenore-
gions (65.16 mg m−3). Over the dataset period, rising trends were detected for the BPeak,
indicating blooms have been peaking increasingly later in the year (p-value < 0.1). Years
with high maximum chl-a were linked with fewer, high biomass blooms.
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Table 3. Phenoregions statistical metrics and intercorrelation results calculated for phenology metrics (see Table 1 for full names and description). For each phenoregion, mean, minimum
(Min), maximum (Max), standard deviation (Stdev), 10th and 90th percentiles (P10 and P90), and mode are presented for the phenology metrics for the 1998–2018 period. The linear trend
(Trend) is the slope of the least-squares regression for each metric. Correlation results between phenology metrics are shown in red (positive correlation) or blue (negative correlation).
Only statistically significant correlations and trends are displayed. *, ** and *** equals p-value < 0.1, p-value < 0.05 and p-value < 0.01.

OcN

Mean Max BAmp BPeak Binit BTerm BDur BArea YArea BFreq

Mean 0.34 0.73 0.39 90 (March) 47 (February) 146 (May) 100 51.64 123.97 2.19
Min 0.3 0.49 0.19 52 (February) 9 (January) 87 (March) 73 34.25 111.18 1
Max 0.39 1.11 0.73 122 (May) 77 (March) 194 (July) 132 78.05 144 4

Stdev 0.02 0.18 0.16 17 19 18 18 11.18 8.98 0.73
P10 0.31 0.53 0.21 - - - 75 39.98 114.89 1
P90 0.38 1.01 0.62 - - - 122 61.83 139.29 3

Mode - - - March February May - - - -
Trend - - - 1.32** 1.20* - - - - -

Mean Max BAmp BPeak BInit BTerm BDur BArea YArea BFreq
Mean 0.76 0.69 0.6 0.98
Max 1 0.66 0.79

BAmp 0.64 0.73
BPeak 0.59 0.54
Binit 0.55 −0.48 0.49

BTerm 0.47 0.53
BDur 0.62 −0.69
Barea 0.67
YArea
BFreq
OcSW

Mean Max BAmp BPeak BInit BTerm BDur BArea YArea BFreq

Mean 0.25 0.51 0.26 74 (March) 339
(December) 127 (May) 152 50.88 92.53 1.24

Min 0.22 0.34 0.09 1 (January) 1 (January) 79 (March) 91 35.54 80.93 1

Max 0.3 0.99 0.69 102 (April) 362
(December) 154 (June) 174 72.27 110.66 3

Stdev 0.02 0.14 0.13 20 24 16 22 7.73 6.49 0.53
P10 0.23 0.4 0.16 - - - 121 43.82 84.27 1
P90 0.27 0.64 0.38 - - - 172 58.99 98.58 2

Mode - - - Mar Nov May - - - -
Trend - - - - - - - - - -
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Table 3. Cont.

Mean Max BAmp BPeak BInit BTerm BDur BArea YArea BFreq
Mean 0.79 0.74 0.47 0.96
Max 1 0.58 0.84

BAmp 0.58 0.79
BPeak 0.69
Binit 0.54 0.51

BTerm
BDur 0.7 −0.54
Barea 0.63
YArea
BFreq
CoMa

Mean Max BAmp BPeak BInit BTerm BDur BArea YArea BFreq

Mean 0.57 0.99 0.41 90 (March) 48 (February) 137 (May) 86 65.16 207.83 2.71
Min 0.46 0.76 0.23 40 (February) 3 (January) 75 (March) 51 38.39 167.73 2

Max 0.64 1.46 0.83 227 (August) 363
(December) 290 (October) 131 113.54 231.82 4

Stdev 0.05 0.17 0.15 44 44 40 22 20.67 17.01 0.7
P10 0.5 0.78 0.26 - - - 59 45.28 182.63 2
P90 0.63 1.17 0.61 - - - 119 93.27 228.91 4

Mode - - - Mar Feb May - - - -
Trend - - - 3.00* - - - - - -

Mean Max BAmp BPeak BInit BTerm BDur BArea YArea BFreq
Mean 0.64 0.99
Max 0.97 0.67 0.67 −0.45

BAmp 0.66 0.47 −0.51
BPeak 0.87
Binit

BTerm
BDur 0.93 −0.51
Barea −0.55
YArea
BFreq
CoUp
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Table 3. Cont.

Mean Max BAmp BPeak BInit BTerm BDur BArea YArea BFreq

Mean 1.11 1.62 0.51 274 (October) 242 (August) 292 (October) 47 66.61 405.09 3.14
Min 0.9 1.11 0.09 1 (January) 1 (January) 25 (January) 19 19.05 327.99 2

Max 1.27 2.2 0.99 365
(December)

360
(December)

354
(December) 86 122.84 463.26 5

Stdev 0.11 0.28 0.22 106 106 126 21 32.12 39.51 0.94
P10 0.95 1.25 0.25 - - - 21 23.48 345.57 2
P90 1.21 2 0.81 - - - 76 117.59 442.96 5

Mode - - - September August October - - - -
Trend - - - - −6.88 * - - - - -

Mean Max BAmp BPeak BInit BTerm BDur BArea YArea BFreq
Mean 0.65 1
Max 0.93 0.45 0.63 0.65

BAmp −0.45 0.45 0.6
BPeak 0.46 0.75
Binit

BTerm
BDur 0.97 −0.59
Barea −0.54
YArea
BFreq
CoBa

Mean Max BAmp BPeak BInit BTerm BDur BArea YArea BFreq

Mean 2.15 3.61 1.46 49 (February) 19 (January) 110 (April) 78 228.66 781.85 2.57
Min 1.29 2.21 0.33 1 (January) 26 (January) 7 (January) 21 44.9 472.94 1

Max 2.83 5.67 2.83 365
(December)

355
(December)

363
(December) 151 592.12 1035.39 4

Stdev 0.51 1.03 0.68 50 48 55 41 151.6 183.3 0.79
P10 1.43 2.25 0.81 - - - 33 85.73 522.32 2
P90 2.7 5.35 2.68 - - - 147 496.57 987.45 3

Mode - - - April Feb May - - - -
Trend −0.05 *** - - - - - 3.17 ** - −16.66 *** -
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Table 3. Cont.

Mean Max BAmp BPeak BInit BTerm BDur BArea YArea BFreq
Mean 0.81 0.48 0.48 0.49 1
Max 0.9 0.51 0.81 0.82

BAmp 0.69 0.85 0.5 −0.44
BPeak 0.5
Binit

BTerm
BDur 0.89 −0.46
Barea 0.52
YArea
BFreq
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Figure 6. (a) Phenoregions identified from the clustering analysis (see the color code): OcN (Oceanic North; (b)), OcSW
(Oceanic Southwest; (c)), CoMa (Coastal Continental Margin; (d)), CoUp (Coastal Upwelling; (e)), and CoBa (Coastal River
Basins; (f)). For each phenoregion, the chl-a (mg m−3) annual cycle between 1998 and 2019 is plotted (black solid line), along
with the 1998–2004 (dashed), 2005–2011 (dotted), and 2012–2018 (dash-dotted) mean cycles.
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Figure 7. Yearly main bloom statistics between 1998 and 2018 for each phenoregion: (a) Oceanic
North (OcN), (b) Oceanic Southwest (OcSW), (c) Coastal Continental Margin (CoMa), (d) Coastal
Upwelling (CoUp), (e) Coastal River Basins (CoBa). Main axis: each box represents the period of the
main bloom during the corresponding year, with bloom initiation (BI), termination (BT), and peak
(black horizontal line within each box) signaled. Secondary axis: bars in the background are the area
(mg m−3) corresponding to each bloom.
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Figure 8. Yearly phenology metrics anomalies between 1998 and 2018 for each phenoregion: (a)
OcN, (b) OcSW, (c) CoMa, (d) CoUp, (e) CoBa (normalized between −1 and 1). Asterisks represent
significant positive linear trends, as seen in Table 3. ***, **, and * correspond to the degree of statistical
significance (p-value < 0.1, p-value < 0.05, p-value < 0.01, respectively).
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Coastal Upwelling (CoUp) is a productive and variable coastal region (mean chl-a
concentration of 1.11 mg m−3). The main bloom of the year is typically short (47 days),
starting in late August, peaking in early October and ending in late October. Blooms in
CoUp were frequent and exhibited higher biomass (66.61 mg m−3). A trend can be seen
towards earlier bloom initiation dates (−6.88 days year−1; p-value<0.1). CoUp, along with
CoMa, were the only regions where BArea was not correlated to mean or YArea, suggesting
that the biomass associated with the main bloom is independent of the yearly productivity.

Coastal River Basins (CoBa) was the most productive phenoregion delineated. Blooms
in this region started in January/February and usually ended in April/March. Blooms in
CoBa were also the richest in biomass in the WIC (228.66 mg m−3). Nevertheless, similarly
to CoUp, the biomass amassed by these blooms were only a small fraction of the YArea.
Trend-wise, over the past 20 years, statistically significant declines were identified for mean
chl-a (p-value < 0.01), YArea (p-value < 0.05) and BDur (p-value < 0.01). Nevertheless, it
should be noted these results should be carefully regarded as they may be largely influenced
by a recent sequence of negative anomalies in mean chl-a, YArea, and BDur (2012–2018)
that followed three years with high biomass (2009–2011). Correlation analysis results show
that earlier blooms (i.e., lower BInit) corresponded to higher bloom area, higher mean chl-a,
and yearly cumulative area.

3.4. Drivers of Bloom Phenology

The explanatory power of the random forest models (RF) ranged between 43% and
87% (as seen by the calculated in-sample R2), depending on the region and the metrics
considered (Table 4). Table 4 also contains information on each metric’s response to the
main predictors (i.e., with above-average importance) identified by the RF. The partial
response of each metric to an increase in its main predictors (bold) is represented as +, − or
0, based on the partial dependence plots (Supplemental Figure S3). For a given metric and
predictor, if above-average values of the predictor lead to a constant increase or decrease of
the metric, the response is represented as + or −, respectively. Else, if no constant response
is observed, the response is considered neutral (0). For further clarification on the effect of
each main predictor, consult Supplemental Figure S3.

Table 4. Random forest models result for each phenoregion. For each phenology metric, the coefficient of determination
(R2), the root-mean-squared error (RMSE) and the predictors are presented in order of importance. The partial response of
each metric to an increase in its main predictors (*) is also represented as plus (increase), minus (decrease) or 0 (neutral),
following the order of the predictors.

OcN

Metric R2 RMSE Model Predictors Response to main
predictors increase

Mean 0.75 0.01 DIN *, AMO, Uo, MEI, Fe, NAO +
Max 0.75 0.09 Si *, MLD, NAO, DIN, Sal, MEI, SSH −

BAmp 0.76 0.08 Si *, NAO, MLD, DIN, Sal −
BPeak 0.71 9.2 MLD *, Fe, Vo +
BInit 0.63 11.45 DIN *, Vo +

BTerm 0.8 8.39 AMO *, Fe, NAO, DIN, Sal, Vo −
BDur 0.73 9.33 AMO *, Si, Uo, MLD −
BArea 0.87 4.09 Si *, Uo −
YArea 0.77 4.3 DIN *, AMO, Uo +
BFreq 0.61 0.45 AMO *, MEI *, Vo * + 0 −
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Table 4. Cont.

OcSW

Metric R2 RMSE Model Predictors Response to main
predictors increase

Mean 0.63 0.01 MEI *, NAO *, Si + −
Max 0.69 0.08 DIN *, Si, SST, NAO, Sal, Vo, Fe, Uo, SSH +

BAmp 0.7 0.07 DIN *, SST, Si, Vo, Sal, NAO, SSH, Uo, Fe +
BPeak 0.8 9.07 Sal *, Si *, SST, DIN, SSH 0 −
BInit 0.47 79.19 MEI * −

BTerm 0.51 11.56 SST *, Si +
BDur 0.65 13.3 Fe *, NAO +
BArea 0.82 3.24 Fe *, SST *, Sal*. Si *, NAO, MEI, Uo, Vo + + + −
YArea 0.63 3.95 DIN *, Si *, NAO, Vo, Uo + −
BFreq 0.8 0.23 Si *, SST *, Fe, Vo − 0

CoMa

Metric R2 RMSE Model Predictors Response to main
predictors increase

Mean 0.65 0.03 Vo *, DIN, MLD, SSH, Sal, Si +
Max 0.63 0.1 DIN *, Sal, MLD +

BAmp 0.63 0.09 DIN *, Sal, MLD, Uo +
BPeak 0.53 32.61 SSH *. Fe *, Sal + −
BInit 0.84 39.78 MLD *, AMO, Fe, SST, NAO, Si, MEI, SSH, Vo, Sal −

BTerm 0.43 34.65 DIN *, SSH *, Fe, AMO, Sal − +
BDur 0.71 11.94 SSH *, Sal *, DIN, AMO 0 −
BArea 0.68 11.78 SSH *. Sal *, Si, DIN, Uo, MLD 0
YArea 0.86 6.38 SSH *, Vo *, MLD, DIN, Sal, Si, Uo + +
BFreq 0.64 0.42 MEI *, Sal *, MLD, DIN + +

CoUp

Metric R2 RMSE Model Predictors Response to main
predictors increase

Mean 0.69 0.06 Sal * +
Max 0.86 0.1 Sal *, MEI *, Zeu, Vo, Uo, DIN, SST + +

BAmp 0.66 0.13 MEI *, DIN, NAO, Uo, Fe +
BPeak 0.7 59.52 SSH *, Zeu −
BInit 0.72 57.42 DIN *, MEI *, Uo *, SST, AMO, Sal, Si, NAO − + 0

BTerm 0.87 36.17 SSH *, NAO, Uo, AMO, Fe, MEI, Si −
BDur 0.56 13.83 Uo *, MLD, Si +
BArea 0.58 20.83 Uo *, MLD −
YArea 0.69 22 Sal * +
BFreq 0.59 0.6 Sal *. Fe +
CoBa

Metric R2 RMSE Model Predictors Response to main
predictors increase

Mean 0.73 0.26 Sal *, Uo * + −
Max 0.58 0.67 Sal * +

BAmp 0.61 0.43 Si *, Uo, SSH, Sal, Fe −
BPeak 0.66 67.7 SST *, NAO, Vo, MEI +
BInit 0.6 89.81 NAO *, Si *, Zeu*, AMO − − −

BTerm 0.48 57.33 Si *, SST *, NAO, SSH 0 +
BDur 0.71 21.62 Uo *, Si, MLD +
BArea 0.5 106.92 Uo *, MLD +
YArea 0.73 96.11 Sal *, Uo +
BFreq 0.6 0.5 MEI *, Zeu, Uo, Si, MLD, SST +
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DIN, Si, MLD, and AMO were identified as the main drivers of phytoplankton phe-
nology in the OcN phenoregion. Higher DIN concentration was associated with increases
in the mean chl-a and YArea, as well as with later spring blooms. Si was seen to negatively
influence max chl-a and bloom biomass. Deeper mixed layers were associated with blooms
with later peak dates. AMO was linked to bloom termination, duration, and frequency.

Regarding the OcSW region, DIN, MEI, and Si were the most common drivers singled
out by the models. DIN was seen to be instrumental towards years with higher max chl-a
and biomass (YArea). Higher values of MEI also led to higher mean chl-a and earlier
blooms. Finally, higher Si concentration was associated with lower biomass blooms with
earlier peaks and fewer blooms.

Random forests for the CoMa phenoregion were characterized by the sea surface
height (SSH) and DIN as major predictors. Higher SSH was seen to be associated with
blooms with later peaks and end dates, as well as higher biomass blooms and overall higher
YArea. DIN was linked to higher chl-a and BAmp and blooms with earlier termination.
Results suggest that bloom initiation, however, was shaped by the MLD.

CoUp had no clear predominant predictors, with salinity (Sal), MEI, SSH, and the
meridional water transport (Uo) being among the most common. Higher salinity was
linked to years characterized by fewer blooms and higher biomass overall. MEI was seen
to contribute to higher max chl-a, BAmp, and earlier blooms (i.e., starting earlier). SSH
was the main factor behind bloom peak and termination, with lower SSH contributing to
earlier peak and termination dates. Higher Uo (i.e., westward transport) was associated
with longer blooms, while lower Uo (eastward transport) led to higher-biomass blooms.

Phenology in CoBa was also very heterogeneous in terms of model results. Never-
theless, Sal, Si, and Uo were among the most frequent predictors. Surface waters with
higher salinity were associated with higher mean and max chl-a, as well as with higher
yearly biomass. Higher Si concentration was, on the other hand, linked to lower BAmp
and earlier blooms. Moreover, the RF models for CoBa suggest eastward water transport
was also instrumental, contributing to lower overall chl-a mean, yet higher biomass, longer
blooms.

4. Discussion
4.1. Phytoplankton Bloom Phenology in the WIC

Phytoplankton in oceanic waters off Western Iberia are clearly defined by a spring
bloom. However, there is a difference between the spring blooms north of 40◦N and the
spring blooms south of 38◦N. While both situations are variants of the North Atlantic spring
bloom, the first is more akin to the classical spring blooms [7,60], and its duration is in line
with previous studies [8] for the same latitudes. Moreover, a fall bloom typically follows,
benefiting from the increase in the MLD and the consequent enclosing of nutrients [61].
South of 38◦N, however, phenology was characterized by much longer, yet lower biomass
blooms and a single bloom per year.

WIC’s role as a transition region between North Atlantic temperate and subtropical
waters has already been pointed out for phytoplankton biomass [30]. This study not only
corroborates those findings but also confirms that this transition also shapes phytoplankton
bloom phenology. Moreover, basin-wide studies have shown differences in bloom initiation
across WIC (e.g., [8,15,19,62]). Furthermore, trend-analysis performed in this work suggest
blooms north of 40◦ appear to be initiating and peaking almost a month later. On the
contrary, [19] observed a trend towards earlier bloom initiation off NW Iberia. Nevertheless,
this study sought to evaluate phenology at a basin-wide scale. Thus, a much lower spatial
(100 × 100 km) and temporal resolution (8 days) were used by those authors, which may
have contributed to the observed differences.

Bloom phenology in the WIC was seen to vary even more along the coast as three
separate phenoregions were clearly defined. A clear transition region (CoMa) was identified
along the continental shelf margin, exhibiting intermediate productivity (comparing to the
coastal and oceanic phenoregions) and a typical spring bloom, like its adjacent oceanic
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waters. These results corroborate the findings of [63,64], which also observed a similar
transition in the slope area. Moreover, [63] found that the slope area off NW Iberia was
more similar to the oceanic area than to the shelf area in terms of the chl-a annual cycle.

Near the main upwelling centers (NW Iberia and Sagres; CoUp), phytoplankton was
characterized by frequent, irregular high-biomass blooms. The strongest blooms occur
during the late summer and early autumn, matching the seasonal upwelling observed
off NW Iberia [32,65] and previous phenology studies [66,67]. The high-frequency of
blooms and their short duration is a sign of the pulsed input of nutrients and turbulence
that characterize wind-driven coastal upwelling-downwelling cycles, leading to high
variability in bloom timing. It is also important to consider the observed shift towards
earlier blooms. While it is difficult to know what is behind this shift, the increase in
upwelling intensity off NW Iberia [65,68], which is contributing to an increase in overall
phytoplankton biomass [30], may also be leading to the establishment of the summer
bloom, allowing for earlier main blooms.

CoBa included pixels close to several large river basins, more specifically the Tagus,
Sado, Ria de Aveiro, and, overall, the Gulf of Cádiz systems, which share a similar signature
in terms of bloom phenology. This region’s short and frequent blooms, as well as its high
variability in bloom timing, suggests bloom phenology is regulated by pulses of favorable
environmental conditions. This is expected, as river discharges (and its nutrient input) are a
major factor in regulating phytoplankton biomass in the Gulf of Cádiz [29,69] and off river
mouths. Despite its variability, most blooms were seen to initiate in mid-winter, which is
typically when river discharges are at their highest volume [70] and terminate in spring.
This, along with the high chl-a, could be a sign that this phenoregion may be characterized
as case 2 waters. In case 2 waters, CDOM, sediment interference, and particle resuspension
absorb sunlight in the blue/green bands, inducing errors in the chl-a signal [71]. Plus,
the presence of suspended particulate matter (SPM) may also difficult the atmospheric
correction procedure of remote sensing imagery [72]. Thus, care should be taken regarding
a possible chl-a overestimation caused by CDOM and SPM. While this may affect all
coastal pixels, pixels belonging to CoBa are the most likely to be overestimated due to their
proximity to river basins. This phenoregion was also the one that changed more over the
past 20 years, as it became less productive and with higher bloom duration. This could
be a consequence of the already observed significant reduction in river discharges [73]. If
river discharges continue to decrease as projected (estimate decline of 61–92% by 2050 [73]),
nutrient availability should decrease, leading to overall lower biomass. It is, however,
unclear what are the consequences of this shift for other phenology metrics, as bloom area
and frequency remained unchanged despite being correlated with bloom duration.

4.2. Drivers of Bloom Phenology

Understanding what drives phytoplankton phenology is particularly important in
complex coastal regions, where water column conditions are not as stable as in the open
ocean, and a suite of agents work together to shape phytoplankton. Offshore, bloom
phenology north of 38◦N (OcN) was mainly seen to be driven by changes in the DIN, Si,
MLD, and AMO. As mentioned above, OcN displayed a typical temperate North Atlantic
spring bloom. Thus, it makes sense that nutrients, basin-wide agents (AMO), and MLD,
a known major factor in bloom regulation in the NE Atlantic [74], have significant roles
in phenology. While the onset of the spring bloom is still not completely understood [10],
DIN concentration was here identified as the main factor behind the bloom initiation.
While this result does not mean that DIN is a factor in bloom initiation, it is likely that
years with higher DIN concentration allow for faster growth and, therefore, earlier bloom
initiation dates as calculated here using the 15% of the mean threshold. Moreover, the fact
that higher Si concentration is associated with lower max chl-a, bloom amplitude, and
bloom area might be due to high Si consumption on more productive years by diatoms,
the main phytoplankton group behind the spring bloom. Higher (warmer) values of AMO
correspond to higher surface temperature, surface pressure, and precipitation in Western
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Europe [75]. Due to the large temporal scale of AMO, it becomes difficult to conclude how
higher AMO could lead to earlier termination, shorter blooms, and higher bloom frequency.
Nevertheless, it is possible that the more unstable weather and higher precipitation in this
region could become disadvantageous for phytoplankton growth, therefore interrupting a
bloom and contributing to its earlier termination and, eventually, the onset of a new bloom
(thus, the higher bloom frequency).

The similarity between OcSW and OcN is reflected by the two shared main predictors
identified by the RF models: DIN and Si. Nevertheless, the way these predictors interact
with the bloom phenology metrics is different. DIN here is related to the chl-a max, BAmp,
and yearly biomass, while Si is linked to bloom peak date, bloom biomass, and yearly
biomass. In OcSW, PAR is higher; seawater is typically warmer, scarce in macronutrients,
and with a shallower mixed layer [30]. While MLD and AMO are important for bloom
phenology in the northern waters, the same is not true in OcSW. With typically lower
MLDs, deep nutrient cycling is not as effective, resulting in lower nutrient availability
at the surface [8] and contributing to lower biomass. This corroborates the results here
presented, which suggest DIN is the main factor regulation max chl-a and BAmp. Another
major driver of bloom phenology in OcSW was MEI. OcSW, in agreement with [15], was
also the only phenoregion that had MEI as one of its major predictors. Positive MEI in the
temperate North Atlantic has been linked, among others, to intensified winds and lower
phytoplankton growth [14]. Here, on the contrary, it was associated with a higher mean chl-
a. It is possible that higher MEI could be promoting more intense winds and, consequently,
higher mixing. Since waters in the OcSW are more stratified and poorer in macronutrients,
this mixing could increase surface nutrient availability, increasing phytoplankton biomass.
These results corroborate how important vertical mixing and nutrient availability is for the
highly oligotrophic waters off the SW Iberia [14,29,64].

Bloom phenology in CoMa was seen to be regulated by DIN and SSH. DIN again
appears as the main nutrient available for phytoplankton communities, mirroring the
two oceanic phenoregions. SSH allows to map warmer/colder areas and mesoscale pro-
cesses (e.g., upwelling, eddies), making it likely that SST also has a role in this region’s
bloom phenology, although this variable was not signaled by the RF models. Previous
studies [76–78] have shown that this area is characterized by eddies and currents. These
phenomena contribute to deeper mixed layers, fueling nutrient cycling and entrainment,
essentially sustaining phytoplankton [21]. Corroborating these studies, the RFs showed
that higher average SSH was linked to higher bloom and overall productivity, as well as
longer blooms. This is also in line with previous studies that found a strong coupling
between phytoplankton biomass and distribution and small-scale oceanographic features
in NW Iberia [35].

CoUp and CoBa were two highly heterogenous phenoregions in terms of main pre-
dictors, which shared several predictors. For CoUp, as a phenoregion characterized by
coastal upwelling, it is logical that phytoplankton bloom phenology should be modulated
by factors associated with upwelling. The fact that westward water transport (typical of
upwelling off the NW Iberia) was linked to a higher bloom area corroborates this hypothe-
sis. Plus, the association of MEI and higher max chl-a and BAmp might be a consequence
of the intensified winds as a result of positive MEI in the temperate North Atlantic, which
would lead to more intense upwelling in this region. Higher salinity, being linked to higher
phytoplankton biomass and higher bloom frequency, could be a proxy of the upwelling
of more dense (higher salinity) waters, providing nutrients essential for phytoplankton
growth. Coastal upwelling intensity in the WIC is expected to increase in the future, as
in other eastern boundary upwelling systems (e.g., [79,80]), even though recent studies
have contradicted this trend in the WIC [81]. While higher upwelling intensity should
promote higher nutrient availability, the expected increased wind intensity will also cause
deeper water column mixing and light limitation, leading to lower phytoplankton biomass
in some regions [79]. Apart from biomass, bloom phenology may also be impacted by the
predicted changes in upwelling [20]. For instance, in the northern California Current, the
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spring bloom timing is expected to change, possibly causing mismatches throughout the
food web [82]. With upwelling-related drivers being so important for bloom phenology in
the WIC, it is essential to continue monitoring this region.

On CoBa, like CoUp, higher salinity was linked to higher biomass. Since this region’s
productivity is highly dependent on river discharges and its nutrient input, it would be
expected that lower, not higher; salinity would be the factor behind years with higher
biomass. Bloom initiation was seen to occur early with lower NAO, Si, and the euphotic
zone depth (Zeu). While higher Si and deeper Zeu provide typical favorable conditions
for bloom growth, higher (positive) NAO index values are linked with lower river flow
in the Iberian Peninsula [83], which leads to lower riverine nutrient input. Thus, CoBa
appears to be a phenoregion for which the RF results exhibit several contradictions, which
is expected since it was the phenoregion with the worst performance, likely due to the
inherent variability of the region.

Overall, drivers of productivity in each of the phenoregions were successfully identi-
fied, exhibiting the importance of these studies and potential for the use of RF models for
studying phytoplankton ecology. Nevertheless, interannual variations in bloom initiation
were more difficult to assess (lower model performances for BPeak, Binit, and BTerm).
Likely that the length of the dataset used (21 years) may not be enough to offset the high
variability in bloom timing in coastal areas. Henson et al. [6] suggested that 30–60 years of
data may be required to disentangle natural and anthropogenic signals in phytoplankton.
Plus, while CoUp and CoBa exhibit coherent phenological patterns, they include small
areas that likely have small environmental differences (e.g., different upwelling sites, differ-
ent rivers, etc.). Thus, the predictors for these coastal phenoregions should be interpreted
carefully. To improve on these results, newer studies should focus on smaller specific areas
and use higher spatial resolution (1 km or 300 m).

4.3. Remote Sensing as a Tool for Assessing Bloom Phenology in Coastal Regions

While ocean color remote sensing has been extensively used to study phytoplankton
bloom phenology, there are a few caveats that should be considered. First, the collection
of continuous, high-quality ocean color remote sensing data only started in 1998. Thus,
only recently have +20 year datasets been available, which may be insufficient to fully
characterize bloom phenology in a given region. Second, it is essential that spatial and
temporal resolution match the region of interest and the question at hand. For instance,
global phenology studies allow for coarser spatial and temporal resolution than complex
coastal regions, such as WIC. Otherwise, studies may overlook relevant phenology patterns,
such as smaller yet intense blooms or shifts in bloom timing.

This study used 21 years’ worth of data (1998–2018) with a moderate (4 × 4 km)
spatial resolution and a high (1 day) temporal resolution. To avoid temporal gaps in the
dataset, a combination of two gap-filling methodologies from previous studies [25,42]
was successfully applied. To the authors’ best knowledge, this is the first phytoplankton
phenology studies using daily data. Results were promising as this not only helped discern
bloom timing with higher detail but also identify significant trends in bloom timing,
which otherwise might not have been possible. Plus, the additional resolution allowed
the detection of subtle differences in bloom timing and duration between phenoregions,
highlighting the importance of using a daily resolution to assess phenology in coastal
regions. This difference in information gained between daily and weekly resolution
may be essential for accurate environmental management of coastal areas. Water-quality
management, fisheries, or aquaculture may especially benefit from this. Nevertheless, it
is important to be careful when OCRS in optically complex waters since the increase in
uncertainty and variability may lead to contradictory results, as happened in this study for
the most sensible phenology metrics in coastal phenoregions.

Due to the projected continuity of operational ocean color missions [84], ocean color
datasets will not only increase their temporal span but also allow for phytoplankton phe-
nology studies with higher temporal and spatial resolution. Furthermore, the launch of
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hyperspectral sensors, such as the Ocean Color Instrument (OCI) aboard NASA-PACE, will
enable improved assessment of phytoplankton groups, paving the way for high-resolution
group-specific phenology studies at a global scale. In the end, ocean color datasets are ex-
pected to enable the disentangling of interannual and multidecadal variability in phenology
patterns, allowing scientists to discern the impacts of climate change on its variability [84].

5. Final Considerations

Oceanic phytoplankton communities form typically long, low-biomass spring blooms,
mainly influenced by atmospheric phenomena and water column conditions. Nevertheless,
a clear difference exists between northern and southern waters in the WIC, as blooms in
northern waters are more akin to the classical spring bloom and appear to have been starting
and peaking later over the past 20 years. Coastal phytoplankton, however, are characterized
by short, high-biomass, highly heterogeneous blooms, as nutrients, sea surface height and
horizontal transport had major roles in shaping phenology. Wind-driven upwelling and
riverine input were seen to be major factors affecting bloom phenology in the coastal areas.

Changes in phytoplankton bloom phenology should be considered in coastal manage-
ment and monitored due to their possible consequences to the functioning of the ecosystem.
This work is expected to contribute to the understanding of phenology in the WIC. WIC is
located amid the northern zone of the Canary Upwelling System (one of the four eastern
boundary upwelling systems in the world [85]). These systems are responsible for over 20%
of the world’s fisheries production, and phytoplankton bloom phenology is intertwined
with fish recruitment. Mismatches between the seasonal timings of fish reproduction and
the peak biomass of plankton typically lead to poor fish recruitment [4], and extreme
mismatches (>30 days) in the WIC will likely become more frequent in the future due to
climate change [5]. Therefore, future studies should focus on the possible implications
of changes in bloom phenology on these resources as a trophic mismatch or bottom-up
phenomena may negatively impact stock biomass and recruitment. Moreover, this study
can be helpful for future bloom phenology studies across the other eastern boundary
upwelling systems, such as the California, Benguela and Peru upwelling systems, as they
all share several oceanographical features.

The five phenoregions here described and their associated phenology metrics and
drivers should be useful for the assessment of phytoplankton in the EU Marine Strat-
egy Framework Directive (Directive 2008/56/EC) subregion “Bay of Biscay and the
Iberian Coast” and for the implementation of the EU Water Framework Directive (Di-
rective 2000/60/EC) [86]. It also complements other works in the WIC using ocean color
remote sensing to aid the management of regional fisheries and aquaculture activities
(e.g., [87–90]).
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