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Abstract: The non-destructive testing and diagnosis of transport infrastructures is essential because
of the need to protect these facilities for mobility, and for economic and social development. The
effective and timely assessment of structural health conditions becomes crucial in order to assure the
safety of the transportation system and time saver protocols, as well as to reduce excessive repair and
maintenance costs. Ground penetrating radar (GPR) is one of the most recommended non-destructive
methods for routine subsurface inspections. This paper focuses on the on-site use of GPR applied to
transport infrastructures, namely pavements, railways, retaining walls, bridges and tunnels. The
methodologies, advantages and disadvantages, along with up-to-date research results on GPR in
infrastructure inspection are presented herein. Hence, through the review of the published literature,
the potential of using GPR is demonstrated, while the main limitations of the method are discussed
and some practical recommendations are made.

Keywords: ground penetrating radar; inspection; pavements; railways; bridges; tunnels; retaining
walls; methodologies; limitations; benefits

1. Introduction

The deterioration and distress mechanisms that are active under the surface cannot
be assessed with high accuracy using only traditional methods such as visual inspection,
hammer sounding, chain dragging, and not even by destructive coring and test pits.
Alternative methods are therefore required for a more complete inspection. Among other
geophysical methods, ground penetrating radar (GPR) is widely recognized as one of the
most powerful and versatile non-destructive testing (NDT) methods for routine subsurface
inspections. GPR is a geophysical method that allows for the analysis of the propagation
capacity of electromagnetic waves through media with different dielectric constants. A
transmitting antenna emits an electromagnetic signal into the ground, which is partly
reflected at the interface between two different media with sufficient dielectric contrast and
partly transmitted into deeper layers. Then, the reflections produced are recorded from the
receiving antenna, which is either in a separate antenna box or in the same antenna box as
the transmitter. The strength (amplitude) of the reflected fields is proportional to the change
in the magnitude of the dielectric constant. As the antenna is moved along the ground
surface, a two-dimensional image (known as a radargram or B-scan) is obtained, which is
an XZ graphic representation of the detected reflections. The x-axis represents the antenna
displacement along the survey line, and the z-axis represents the two-way travel time of
the pulse emitted and received. If the time required to propagate to a reflector and back is
measured, and the velocity of the signal propagation in the medium is known, the depth
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of the reflector can therefore be determined. By using three-dimensional data acquisition
and imaging techniques, the reflected signals recorded by the GPR can be transformed
into 3D imaging, which allows for a better perception of the underground structures. A
detailed description of the methodology along with a deep theoretical background can be
found in [1–3]. GPR is a portable and fast data acquisition technique that provides dense
and accurate data, with a much higher resolution compared with competing geophysical
approaches.

The major strengths of GPR are that the method allows for the collection of data
at high speed, continuously, using mobile acquisition units and in a non-contact mode.
Furthermore, it enables one to keep the prospected transport infrastructure area in-service
during the GPR assessment, thus reducing costs and discomfort to users. Conversely,
the main limitations occur in the presence of high-conductivity materials (such as wet
clay) and in heterogeneous conditions causing signal attenuation and complex scattering
phenomena, respectively. Another drawback is that the interpretation of radargrams
is generally non-intuitive and requires considerable expertise to properly process and
understand the measurements.

A few international organizations have promoted recommendations to properly use
GPR in transport infrastructures. The American Society for Testing and Materials (ASTM)
has produced a standard guide, ASTM D6432-19, that summarizes the equipment and
field procedures for GPR subsurface investigation, as well as processing methods used to
interpret GPR data [4]. The British Highway Agency has published technical specifications
(DMRB 3.1.7 and DMRB 7.3.2) regarding the use of GPR for testing highway structures
(concrete and masonry bridges) [5] and for pavement assessment [6], respectively. In Eu-
rope, the EuroGPR has produced guidelines for pavement structural surveys [7] including
limitations of GPR use on pavements, survey assessment, survey specification, location
referencing, data quality and backup, and data reporting. In Italy, the Comitato Elettotec-
nico Italiano (CEI) published the Italian standard (CEI 306–8) for performing preliminary
surveys with GPR before laying underground utilities and infrastructures [8].

The use of GPR in civil engineering applications began to appear in the mid-70s
and early 80s, mainly focused on the detection of hidden utilities [9–12] and pavement
inspection [13,14]. From these first studies, the number of applications and developments of
the methodology increased remarkably, being nowadays successfully and widely employed
for a great variety of tasks. A comprehensive overview on the civil engineering applications
of GPR can be found in [15–17].

GPR surveys in pavements (rigid or flexible) are frequently applied as a complemen-
tary technique for the assessment of roads and airport pavements. GPR images provide
valuable information about the continuity of layers and their thickness, which could be
combined with falling weight deflectometer (FWD) tests. In addition, GPR inspection
allows for the analysis of the pavement layer’s condition and locating defects, which is
crucial in preserving the structure and its service life. In road assessment, the main analyses
are focused on measuring layer thickness and detecting voids or delamination. Other, more
recent studies are dedicated to the detection of water presence, mainly in the base and
subgrade. Quality studies of the material density, water infiltration and cracking are also
some examples of the applications that have been recently tested. Most of those researches
are based on the analysis of the GPR images through the two-way travel time conversion
into depths and the reflected wave amplitude analysis. However, during the last few years,
several tests were prepared to determine additional parameters by studying frequencies.

For railway assessment, the main applications consist of ballast layer thickness mea-
surement and detection of changes in track structure and substructure. During the last
decade, a huge research effort has been carried out to improve the systematic application
of GPR for ballast condition assessment, such as ballast fouling and moisture content.

In the study of retaining walls, GPR focuses on the detection of rebar in concrete retain-
ing walls, detecting joints and dowels, and the location of damage and water infiltration.
In some cases, the GPR analysis objective is the detection of the contact between the wall
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and the natural soil or between the wall and further restorations. Other applications are
the detection and the analysis of the foundations. Those walls support high loads and the
assessment of their state is important in maintaining or repairing parts of the structure.

Regarding masonry bridges, the main GPR applications comprehend the detection of
unknown geometries such as hidden arches and ancient profiles, restorations and reconstruc-
tions in stonework, moisture content in masonry, bridge foundation, voids and cracks in
masonry, filling distribution, and thickness of ashlars (e.g., voussoirs). Concerning concrete
bridges, GPR evaluation encompasses the diagnosis of bridge–deck thickness, mapping
rebar and tendon ducts, moisture content, corrosion assessment, and mapping delamination.

Finally, in tunneling inspection, the applications of GPR include the assessment of
concrete segments and backfill grouting thickness, reinforcement, damages (e.g., cavities)
in lining, moisture content and corrosion.

This paper presents a review of published works in the frame of GPR application in
the evaluation of transport infrastructures, including roads, highways, airport runways,
railways, retaining walls, concrete and masonry bridges, and tunnels. Although it has
been demonstrated that GPR has significantly benefited the procedures for inspection
and successfully solved some of the limitations of traditional methods, it also has some
constraints. In order to maximize the benefit obtained through the use of GPR, it is
important to be aware of these constraints and to be able to adapt the methodologies for
testing and for analysis of the results to the job’s specific conditions. Thus, through the
review of the methodologies shown by other authors in the literature, the present paper
highlights some of these best practices and recommendations (type of antennas, setting
parameters, acquisition mode, processing, etc.). Moreover, some recommendations are
made in terms of best practices aiming to improve the application of GPR and to avoid the
misinterpretation of results.

As Supplementary Materials, different tables are addressed with a compilation of
interesting published works carrying out the on-site survey of transport infrastructures.
Those present a synthesis on GPR equipment, inspection methodologies, and set parameters
for data acquisition and data processing, as well as the most relevant results obtained and
the drawbacks identified.

2. GPR Equipment for Transport Infrastructures Surveying

There are several GPR manufacturers and commercial equipment available, and some
experimental prototypes also exist. Different GPR systems will have different capabilities
according to the type of antennas and their frequency, which affect the operating speed,
the resolution, the penetration and the sampling rate [17,18]. The frequency and depth
of penetration are related, with higher frequency pulses achieving lower penetration, but
better resolution. Impulse GPR systems are the most widely used, with two main groups
of GPR antennas, dipole and horn antennas, and with frequencies nowadays ranging from
10 MHz to 6 GHz. Currently, the most commonly used technology is the time-domain
impulse radar. Additionally, several investigations point to the step-frequency radar as
a potential technology for broad resolution range, although these systems do not allow
real-time visualization of data during acquisition.

It should be noted that there are technical standards regulating the electromagnetic emis-
sions of GPR equipment. The following are the main standards in Europe, USA and Canada:
European Telecommunications Standard Institute (ETSI) EN 203 066-1, ETSI EN 203 066-2,
ETSI EN 203 489-32 and ETSI EG 202 730, USA regulations on UWB-GPR: Part 15 of Federal
Communications Commission (FCC) Regulations, and Industry Canada Radio Standards
Specification RSS-220 (Issue 1) “Devices Using Ultra-Wideband (UWB) Technology.

2.1. GPR with Horn Antennas

GPR horn antennas were specifically designed for use in transport infrastructures eval-
uation, since they can operate at traffic speed. In the last ten years, this type of equipment
has evolved from prototype status to routine use in pavement evaluation studies.
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Horn antennas have frequencies ranging from 1 to 2.5 GHz, corresponding to penetra-
tion depths in the order of 1 m to 0.4 m, respectively. The minimum layer thickness that
can be detected is about 50 mm, for 1 GHz antennas and 25 mm, for the higher frequencies.

The antennas are “air-coupled”, and normally they work mounted on a mobile vehicle
and are suspended at a certain distance from the surface (Figure 1a,b), typically ranging
from 0.4 to 0.6 m. They perform measurements at traffic speeds (up to 80–120 km/h)
without any interference with traffic, and therefore they are suitable for the evaluation of
in-service pavements without major disturbance to road users.

Figure 1. Different ground penetrating radar (GPR) antennas: (a) air-coupled (horn) antennas, (b) multi-antenna system
(horn), (c) ground-coupled (dipole) antennas in a trolley, and (d) array multi-channel (ground-coupled) antennas.

2.2. GPR with Dipole Antennas

Dipole antennas were primarily developed for use in geological survey, normally
ground-coupled (Figure 1c). They have frequencies ranging between 10 MHz and 6 GHz.
For transport infrastructure applications, the best results are obtained with antennas from
400 MHz to 2.5 GHz central frequency. In general, the higher the frequency, the lower the
penetration depth and the higher the resolution is. For example, 1.5 GHz dipole antennas
will give a penetration depth of 0.50 m, while the 400 MHz will give a penetration of
2.00 m [19].

Dipole antennas were mainly developed for use in contact with the surface, or sus-
pended just above it (2–5 cm), and they are suitable for testing at maximum speeds of
20–30 km/h. In this condition, the radar signal is “ground-coupled”. Ground coupling
introduces a stronger signal into the pavement, and therefore these antennas are nor-
mally employed for detailed studies over limited areas, as they allow one to obtain higher
resolution [20].

2.3. GPR with Antennas Array Multi-Channel

GPR array multi-channel systems consist of a large number of closely-spaced anten-
nas recording at the same time. Different multi-channel prototypes have recently been
provided with different configurations, and they can include both air- and ground-coupled
antennas (Figure 1b,d, respectively). Commonly, such multi-static systems are composed
of 4–16 couples of transmitting and receiving channels mounted in a parallel broadside
configuration with a cross-line trace spacing of 4–12 cm, depending on the manufacturer.
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The main advantage is that they enable faster data collection by increasing the ex-
tension of the investigated area per time unit, and they make it easier for the operator to
produce 3D images.

Generally, in transport infrastructure inspection, the antennas are mounted on a mobile
vehicle to minimize traffic disruption. Mobile GPR is positioned connected to an external
real-time kinematic (RTK) global navigation satellite system (GNSS) for trace tagging
(georeferenced data) or to a distance measurement indicator (DMI) to control the distance
trace-interval and to measure the travelled distance. The system also uses a computer
navigation guided system to correctly follow profile direction and keep a constant overlap
among parallel profiles without any physical marker on the ground surface.

3. Overview on GPR in Roads and Airports

Mobility and communications are the axis of our society’s development. Road trans-
port and planes move population and merchandising, being crucial for the development of
industry and the cities. The roads and airports are the infrastructures that support this high
level of activity. The safety and the efficiency of the transport and communication routes
require detailed maintenance plans. The plans must include detailed inspection of infras-
tructures and development of maintenance strategies based on this information. Damage
due to age, traffic and weather highly affects this type of infrastructure and, without a
careful conservation and maintenance strategies, can lead to significant financial losses and
can cause accidents. Roads and airports are two types of pavement structures designed
to support different kinds of vehicles. Generally, the pavement consists of several layers:
the surface course (asphalt or concrete layer), the base course (usually an asphalt base
layer) and the subbase course (an unbound aggregate layer). This structure is supported
by the natural subsoil (subgrade layer). The number of layers and their thickness depend
on the type of pavement, being different in the case of roads, airports and industrial and
harbor platforms (slabs). The airport pavement layers’ thicknesses are always higher than
in the roads. Depending on their structure, it is also possible to distinguish between rigid,
flexible and semi-rigid pavements. In the first case, the surface layer is a reinforced concrete
slab (although in some cases it is overlaid with an asphalt course, becoming a semi-rigid
pavement) laid over a lean concrete layer. In the case of flexible pavements, the surface
course is an asphalt layer. Differences in the structure of pavements yield on differences in
the pavement behavior. Deformation in flexible pavements due to normal traffic loads is
generally recoverable, whereas degradation due to excessive loads in rigid pavements are
permanent. Changes in temperature also induce stress in rigid pavement and significantly
affect the asphalt layers’ moduli that decrease with an increase in temperature, due to the
viscoelastic characteristics of this material. However, the strength in the case of flexible
pavements depends also on the strength and quality of the subgrade soil, whereas in
the case of rigid pavements, this only depends on the concrete layer design. Therefore,
rigid pavements are usually used in zones with soils that present an inadequate support
condition, in bridges or to cross voids or failure zones.

The requirement in many cases of surveying without interrupting the use of roads
and airports forces the use of non-destructive tests that, at the same time, can be carried out
without obstructing or disturbing the traffic [21,22]. GPR assessment in flexible pavement
rehabilitation is recommended in the American Association of State Highway and Trans-
portation Officials (AASTHO) guides [23], in combination with the use of FWD to obtain
the thickness and the strength of each layer. In addition, GPR evaluation is frequently used
to complement the studies about the structural conditions of pavements, detecting defects
that affect their service life and preservation. The study of defects in pavements by means
of GPR began at the end of the 20th century. The first studies allowed one to determine the
contact between the asphalt and base layers, being difficult to distinguish thinner layers
and details [24]. However, the studies about the relation between the GPR images and the
material parameters [25–27] allowed for the application of the technique in the assessment,
focused on particular aspects such as the material density for quality controls [28], control
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of layer thickness [29–31], detection of voids [32], measuring the depth to damage, and the
detection of contact between rehabilitated (new) and old pavement [33]. Figure 2 presents
an example of GPR data obtained in the assessment of roads with the objective of detecting
possible voids in the ground, under the structure of the pavement.

Figure 2. Detection of voids under the structure of the pavement with a 400 MHz center frequency antenna. Red arrows
indicate the location of the anomalies associated to voids under the granular subbase, but the different layers of the
pavement cannot be distinguished. (a) Radargram and (b) data interpretation.

More recent applications were focused on the damage and water infiltration detec-
tion in order to analyze the bearing capacity of the pavements, highly affected by the
water content underneath the asphalt [34,35]. They also include the detection of pavement
layers [36–38], the analysis of material density [39], cracking analysis [40–42], water detec-
tion [43–45], and the analysis of drainage structures under pavements [46]. Other recent
studies have analyzed the effect of moisture in GPR amplitudes and frequencies [47,48] or
delamination [47,49].

3.1. Roads

GPR application in roads is mainly focused on the assessment of flexible pavements
as a complementary survey combined with more traditional methods: visual inspection,
drilling and sampling, deflections and dynamic response monitoring systems. In some
cases, GPR is also combined with infrared thermography, laser scanning and accelerometers.
The application of this geophysical method in the assessment of pavements is regulated
and recommended in the AASTHO guides [23]. Moreover, the guide ASTM D4748-98 [50]
presents the procedures for the inspection of the upper layers of both bituminous and
concrete pavements, using a short-pulse GPR. The methods included in this international
standard are focused on the thickness evaluation of pavement layers. The report presents
the functioning principles of a short-pulse radar and the test equipment configuration.
Therefore, the guide includes technical topics such as calibration and standardization,
procedures, calculation and reliability of the results. The document also emphasizes the
importance of safety issues in GPR survey activities, since the apparatus involves po-
tential microwave radiation hazard. However, the different characteristics of countries
have driven the European Nordic countries to develop the Mara Nord Project, in order to
provide recommendations and guidelines for the use of GPR in road construction quality
control [51]. This project started in 2009 and involved several research units such as univer-
sities, national transport administrations, road rehabilitation and consultant companies,
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and GPR manufacturers from Finland, Sweden and Norway. The goal of this project was
to define common criteria for the equipment standards and for the results requirements.

The European Cooperation in Science and Technology (COST) Action TU1208 has
published some tests and recommendations for suitable GPR system performance compli-
ance, obtained by scientists from Belgium (Belgium Road Research Center), Czech Republic
(University of Pardubice), Portugal (National Laboratory for Civil Engineering), and Serbia
(Faculty of Technical Sciences, Novi Sad) [52]. The D6087-08 standard, emitted by the
ASTM [53], describes four procedures for the calibration of GPR systems equipped with
air-coupled antennas. After a critical analysis of those procedures, four improved tests
were proposed, which can be carried out to evaluate the signal-to-noise ratio, short-term
stability, linearity in the time axis, and long-term stability of the GPR signal.

GPR is also applied in the assessment of rigid pavements, with one of the main objec-
tives being the identification of metal bars and layers thickness [54], and measuring the
rebar cover depth [55]. The assessment to detect damage such as cracking and voids is
another application in rigid pavements [41,42,56]. These studies are mainly focused on the
detection of damage areas, but in some cases the origin of the damage is also investigated,
including the effect of roots in pavements [57] and the impact of weather and load condi-
tions. Figure 3 presents an example of GPR data acquired in a rigid pavement, showing the
location of the rebar and the cover depth, besides the different layers and cracking.

Figure 3. Results obtained in the study of rigid pavement. (a) Radargram. (b) Data interpretation highlighting the existence
of cracks also visible at pavement surface (c) and cracks in the deeper layers, not yet visible. Moreover, image (b) shows the
location of the rebar, the cover depth and the thickness of the different layers, obtaining a final model of the structure (d)
(adapted from Rasol et al. [56]).

To summarize, GPR applications in pavement are mainly focused on:

• Measuring layer thickness [30,36,38,58–63].
• Detection of cracks and voids under the pavement, including the analysis of possible

causes (weather, loads, roots, etc.) [40,56,57,64–68].
• Quality control of asphalt, mainly in the case of new pavement [69–72].
• Moisture and changes of water content detection [34,43,48,73,74].

Table S1, in Supplementary Materials, presents a compilation of the relevant on-site
survey of roads.

3.2. Airports

The GPR assessment of airport infrastructure has the same objectives as road inspec-
tions. Most of them are focused on the detection of anomalies that could indicate damage
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in the airport runways, taxiways and apron pavements. The main difference between
road and airport pavements is the layer thickness that in the case of an airport can be
about 0.50 m, while in highways and roads is about 0.30 m [75]. The structure in airport
pavements is composed of asphalt, concrete or reinforced concrete slabs. Moreover, the
pavement of airport runways has a greater durability due to the higher content of asphalt
bitumen. This infrastructure is designed to support the load due to the weight of the
airplanes (between 70 Tn and 420 Tn). The highest loads are supported at the top (head-
land) of the runway where the airplanes accelerate when starting the take-off and stop
after landing.

Despite the great loads supported by this infrastructure and its importance in commu-
nication and transport, the examples of GPR assessment of airports that can be found in
the literature are less than those found on roads. In most of those examples, the objective
is determining a procedure for the location of rebar and recognition of cracks and voids
(in and under the concrete slab) [76–80]. Cracks wider than 1 mm are also detectable [81].
Other studies are focused on the detection of pavement structures and layers, detecting the
dowels, joints and expansion joints [77] and different layers thickness [75,82–84]. GPR is
also used to evaluate the quality of grouting treatments [78] applied to stabilize damaged
pavements. GPR is also used in the assessment of the asphalt layers’ interfaces to detect
debonding [75,85]. Other studies were focused on the analysis of airports under special
conditions: (i) in the case of airports built over the sea, in order to detect the contact
between the filled layers and the natural soil under the sea [86]; and (ii) in the study of
airports in frozen areas, in order to detect the depth to the permafrost layer [87].

To summarize, the main applications in airport pavements are focused on:

• Measuring layer thickness [75,77,82–84].
• Detection of cracks and voids in pavement [76,79,81,88].
• Detection of thin cracks [81].
• Quality control of restoration treatments [78].
• Thickness of filling layers in special airports [86].
• Detection of debonding [75,85].
• Depth to permafrost layer [87].
• Structures in the pavement [77].
• Detection of rebar in reinforced concrete pavements [80].

Table S2, in Supplementary Materials, presents a compilation of the relevant on-site
survey of airports.

4. Overview on GPR in Railways

The railway (railroad in USA English) is a transport infrastructure energetically ef-
ficient and environmentally friendly, and it is gaining more and more importance for
passengers and freight transport. The railway network use is increasing and, consequently,
not only the deterioration under traffic load is higher, but also the time window available
for monitoring and maintenance actions is becoming more restricted. The maintenance has
to be well planned, due to the impact that it has on the railway users’ comfort and safety,
and to enable it, a proper inspection is essential. In this context of efficient and expedient
monitoring, NDT such as GPR represents a powerful tool to assess the track condition.
The information gathered with GPR is generally used together with other track inspection
results, such as track geometry and both rail shape and rail integrity measurements. While
the track geometry and rail condition data give an indication of track deterioration, GPR
survey provides the identification of the real cause of deterioration, such as changes in
structure, settlements, ballast fouling and drainage problems. The information provided
by GPR is therefore crucial for the definition of efficient maintenance action and depth of
the intervention, mainly if the deterioration is due to substructure defects. Some examples
of GPR application to railway assessment are shown in Figure 4.
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4.1. Ballasted Railways (Superstructure and Substructure)

One of the first studies of GPR application to railway was performed in late 90s
by Sussmann [89]. Several studies were developed since then, some of them referred to
herein. Nevertheless, there are only a few guides and standards for GPR application to
railways [90].

On railways, a major limitation to the systematic application of GPR is the presence
of the rails, as it is a metal, and consequently an ideal reflector that can shadow the
information gathered in the subsurface. To overcome this, dedicated antennas and software
were developed for railway assessment [91,92], which are discussed later in this paper.

The main applications of GPR for railway infrastructure evaluation are:

• Layer thickness measurement, mainly ballast [92–96].
• Investigation of embankment defects and moisture [92,94].
• Location of ballast pockets, subsidence and trapped water areas [92,93,95,97].
• Frost susceptible areas [98,99].
• Fouled ballast assessment [100–104].

In order to support the knowledge and to calibrate the on-site surveys, several labora-
tory and real scale tests were performed, such as:

• Track substructure assessment, layer thickness (experimental test sections) [105].
• Ballast condition characterization, fouling and fragmentation (experimental test sec-

tions) [101,106].
• Fouled ballast assessment (laboratory tests) [101,107–110].
• The influence of concrete sleepers on the assessment of ballast condition (laboratory

tests) [111].

4.2. Ballastless Railways

The objectives of GPR application on a ballastless track are similar to other concrete
reinforced structures, such as rigid pavements and bridge decks. The main applications are:

• Layer thickness measurement [112].
• Rebar detection [112].
• Mud detection under the slabs [113].
• Debonding between sleepers and slabs and between layers [112].

Table S3, in Supplementary Materials, presents a compilation of the relevant on-site
survey of railways.
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Figure 4. Example of information obtained by GPR surveying on a ballasted track (1.0 GHz air-
coupled antenna): (a) subballast thickness and continuity in the Alcácer Bypass (Portugal) showing
an increase in capping layer thickness (red ellipse); (b) an in-service national railway line (Portugal)
displaying the interfaces between the clean ballast/fouled ballast/subgrade where the settlement
location is evident due to weak subgrade (adapted from Fontul et al. [95]); (c) GPR record of an
in-service railway line showing the metal reflection of a steel tie rod. (UGM means Unbound Granular
Material).

5. Overview on GPR in Retaining Walls

Retaining walls are structures prepared to support the soil laterally, in order to avoid
landslides. Those structures retain the soil behind them and are designed to support high
pressures due to the tones of the materials. The pressures, in most cases, are increased as
a consequence of soil water content. This type of structure allows one to define different
levels of soil, and in most cases are indispensable constructions in roads, bridges, tunnels
or railways. Depending on the construction, there are different types of retaining walls.
Some of the most usual types are:
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• Gravity retaining walls, which are massive and require a significant gravity load to be
stable under the soil horizontal pressures. These structures can be built with concrete,
masonry, stone or precast concrete boxes filled with coarse material structures.

• Cantilever retaining walls that are usually built using concrete and reinforced with pre-
stress concrete. These walls are composed of the stem and a base slab as a foundation.
This is the most usual type.

• Anchored retaining walls, composed of the stem and cables anchored with concrete in
the ground.

• Piled retaining walls, built with adjacent piles, making a wall.

As a consequence of aging, degradation of materials, changes in the loads (due to
variations in the water content or in consequence of the construction of other structures) or
changes in the temperature and moisture, the walls can suffer different levels of damage,
leading even to the collapse of the structure. The detection of the pathologies reduces
the possibility of the structure failure. The assessment of those walls requires the study
of the structure and the analysis of the interaction between the structure and the soil.
The inspection of the structures for retained soil requires the assessment of the wall that
determines the decisions about the structure (repair, maintenance, change or frequency of
future inspections). The assessment involves the visual inspection and simple sonic and
thermographic tests. Depending on the results, more invasive tests could be needed.

Non-destructive inspection techniques are currently applied to obtain valuable infor-
mation about the state of the wall. GPR is a promising technique in this field. However, the
application of GPR to vertical structures still requires development. The US Department
of Transportation prepared a guide for retaining wall inspection [114], including GPR as
a possible technique that requires further analysis and improvement. The assessment of
those structures requires the analysis of the wall conditions (damage, moisture, rebar), the
study of the soil (mainly water content) and the evaluation of the supporting structures
(cables and anchors) and the foundations. Therefore, the GPR applications in retaining
walls focus on the detection of the rebar in concrete retaining walls [115], detecting joints
and dowels and obtaining high quality 3D models [116]. The studies define the limits of
the method, showing a clear first layer of rebar and a low-quality image of the second rebar
layer [117]. Figure 5 presents two examples of the reinforced wall inspections. In both cases,
the rebar is detected and several anomalies highlight the existence of possible damage.

Only a few applications in masonry retaining walls can be found in the literature.
Those applications are based on detecting the contact with the natural soil, estimating the
thickness of the structure, and changes due to old repair works and the inner structure [118],
including the foundations [119]. Although in many cases, GPR data is acquired with the
antenna on the surface of the wall, in some cases, the analysis of the wall acquiring data
from its top part (Figure 6) could provide information about the number of stone rows and
the contact between ashlars [120]. Figure 6 shows the image and the interpretation of the
GPR data. In the study of those walls, the velocity could be estimated from the hyperbolas
produced at the contacts between stones.

In some cases, the retaining walls are part of subterranean structures, as in the case of
some Mycenaean tombs [121]. Those structures are composed of irregular stones, in two or
more layers. Figure 7 is an example of the GPR images that can be obtained in this type
of retaining wall. The different stone layers could be detected, and the irregular pattern
of anomalies in the GPR images corresponds to the uneven stones. In addition, changes
in the amplitudes could inform about the variations of physical of chemical properties
of the ground or the structure, highlighting zones that could be damaged or that must
be restored.
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Figure 5. Two examples of GPR images (a and c) obtained in reinforced retaining wall assessments with a 2.3 GHz antenna.
Both cases focus on the detection of the rebar and the location of zones with possible damage (b and d).

Figure 6. GPR assessment of masonry walls composed by granite ashlars. (a) The data were acquired from the upper part
of the retaining wall. (b) GPR image. (c) Interpreted radargram, showing the contact between the different rows of ashlars
and the anomalies produced by the contact between stones (red arrows) (adapted from Solla et al. [120]).
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Figure 7. GPR images from the study of the retaining walls in a subterranean tomb (adapted from Santos-Assunçao
et al. [121]). (a) Scheme of the structure and location of the profile line (in red). (b) Processed GPR image. (c) Data
interpretation. The wall is composed of two layers of uneven stones. The contact with the natural soil is detected and the
changes in the amplitude denote changes in the soil salt content, which could affect the preservation of the structure.

A particular type of retaining wall is used as a support system in deep excavations
in the case of unstable soils or shallow water table. Those walls are built with concrete
in different construction phases and in different sections inside the ground. The soil is
excavated until the depth of the constructed section and, after that, the next section of the
wall is built. This process continues until the excavation is complete. Prior to the excavation,
the assessment of the already constructed wall section increases the safety of the process.
Borehole GPR is a reliable method in this quality control process. The GPR images provide
information about the integrity of the underground retaining wall, showing zones that
must be repaired before excavation, such as damage or voids in the ground in contact with
the structure that could lead to the collapse during the excavation procedure. Figure 8
shows an example of a borehole GPR image in the retaining wall during an excavation. The
objective is the detection of both wall surfaces, the possible defects and voids in the concrete
and in the ground behind the wall, and zones with possible changes in water content.

To summarize, the main applications in retaining walls depend on the type of the
structure. However, the detection of the contact between the natural soil and the wall
in order to identify possible voids, and changes in humidity or defects on the surface of
the wall, is a common application in all types of walls. In masonry walls, the common
objectives of surveying are the analysis of layers, the contact between blocks, and the
assessment of foundations. Conversely, in concrete walls the main goal focuses on the
detection of the rebar and possible defects that occurred during the construction of the wall.

Table S4, in Supplementary Materials, presents a compilation of the relevant on-site
survey of retaining walls.
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Figure 8. Borehole GPR images. (a) Radargram. (b) Data interpretation. (c) The excavation and the
position of the GPR borehole. The images allow one to determine the contact between the wall and
the ground, as well as zones that must be repaired or reinforced before the excavation.

6. Overview on GPR in Bridges

Bridges are considered vital to human life because they connect different lands and
facilitate economic, industrial and social development. However, a great majority of these
structures, in operation within the transportation system, require desperate repair and
maintenance strategies. The condition monitoring of bridges focuses on detecting material
degradation and structural pathologies aiming to accurately assess the safety and service
life of existing structures. Conventionally, diagnosis is accomplished by visual inspection
and assessment can therefore be difficult as there is structural design and damage of
the structure inaccessible and hidden from view. Indeed, the GPR method is one of the
non-destructive techniques most used in internal bridge inspections [122–126], due to its
high practicality in the field in a relatively quick time and with the minimum intervention
without affecting the structure’s integrity. Internal damage detection can prevent the
unpredictable and premature collapse of structures.

This section provides an overview of the main GPR applications on the condition
monitoring of both masonry and concrete bridge structures.

6.1. Stone Masonry Arch Bridges

A large number of the existing masonry arch bridges still in use within the transporta-
tion network are ancient structures remaining from Roman and Mediaeval periods. In
addition to their age, and environmental conditions, the stability of these bridges (both road
and railway bridges) is questionable because of the actual loading, significantly higher than
the estimate for their original design [127]. Consequently, they require periodic inspections
of the changes in the structural condition, aiming to develop effective preventive and
maintenance tasks.
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The use of NDT technology becomes essential for the health assessment of these
former structures in order to preserve their historical character and structural integrity.
In this context, the GPR method has been demonstrated as effective for the diagnosis of
masonry arch bridges, in which the detection of the following characteristics was possible:

• Unknown geometries remaining in the interior of the bridge such as hidden arches
and ancient profiles (shape) of the structure [128–130].

• Evidences of restorations and/or reconstructions in stonework [130–133].
• Existence of cavities and fractures/cracking in masonry [131,134–136].
• Moisture in masonry [134,137,138].
• Bridge foundations [137,139–141].
• Filling distribution in masonry [130,136,139–143].
• Thickness of ashlars (pavement, ring arch, spandrel walls, etc.) [124,130,139,140,142–146].

There are different studies combining GPR with structural assessment on masonry arch
bridges. The knowledge of the internal geometry and material characterization of the bridge
allows engineers to perform more accurate numerical simulations and detailed assessment
of the bridge’s structural load capacity and safety [136,139,140,142,143,145–151].

Figure 9 presents some GPR data obtained in three different masonry arch bridges,
which demonstrate the feasibility of the technique for the documentation of previously
unknown information from the interior of the structure.

Figure 9. Examples of information obtained by GPR surveying on stone masonry arch bridges: (a) Traba bridge (Noia,
Spain) showing an ancient profile (green ellipse), evidence of reinforced concrete used for restoration (orange rectangles)
and presence of a void in a pier (red square); (b) Monforte bridge (Monforte de Lemos, Spain) displaying the interface
between the original and the new backfill used for restoration (pink line) and the existence of two hidden arches (cyan
arrows); (c) Vilanova bridge (Allariz, Spain) reproducing the voussoirs of the arch-ring (yellow lines).

6.2. Concrete Bridges

Bridge deck condition assessment is the most important part of concrete bridge health
diagnostics and maintenance. Reinforced concrete bridges have steel bars, or rebar, which
are embedded within the deck for structural strength. The corrosion of internal reinforc-
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ing bars is a major cause of concrete bridge deck deterioration and the most significant
contributor to bridge deficiencies (with the formation of cracks and delamination). These
deficiencies cause severe damage even on the top pavement layers, often having a crucial
effect on driving safety and even structural failure. In order to prevent failure at early
stages, extend the service life of concrete bridge decks, and reduce maintenance costs,
proper inspection must be carried out periodically. GPR is seen predominantly as an effec-
tive NDT technique for deterioration assessment. The ASTM has a standard procedure,
the ASTM D6087-08, that defines a methodology for using GPR to evaluate the condition
of concrete bridge decks [53]. It is also important to mention the guidelines published
by the European project—Mara Nord—for the use of GPR in bridge deck surveys [152],
which describes GPR equipment, survey planning and performance, data processing and
interpretation, and the reporting and delivery of results.

GPR has been successfully used in a wide range of applications in concrete bridge
inspection, including:

• Estimation of concrete cover depth [153–155].
• Mapping reinforcing bars (deck and beams) [153,154,156–162].
• Location of cable ducts and other utilities such as deck joints or drain grate [154,158,160,163].
• Damage detection on concrete (corrosion, cracking, spall, delamination, etc.) [157,158,

160,161,164–175].
• Moisture detection and water content estimation [155,157,158,176].

When dealing with a GPR bridge inspection, a large amount of data are produced
and extensive manual processing is required to extract useful information, in which the
manual identification and localization of rebar is time-consuming and labor intensive. In
such a context, some authors have developed algorithms for the automatic detection of
rebar [157,173,174,176–182] and cracks/delamination [165,177,178].

Additionally, as in the case of stone masonry arch bridges, there are different studies
that use GPR data to create structural models aiming to analyze the load-carrying capacity
of concrete bridges [159,183].

Table S5, in Supplementary Materials, presents a compilation of the relevant on-site
survey of masonry and concrete bridges.

7. Overview on GPR in Tunneling

Tunnels are essential civil engineering structures that constitute an important part
of roadways, passages, sewer systems, utility networks and railways. There are various
categories of tunnel construction, including bored, drill and blast, horizontal directional
drilling, and pipe jacking/microtunnels. Moreover, the bored tunnel can be divided into
two subcategories, controlled bored tunnels and tunnel boring machine (TBM) tunneling.
Shield tunneling is the typical method used for railways, which is considered a more stable
method than mining.

Tunnel distresses might not be visible, and it is therefore necessary to conduct regular
inspections during its service life in order to ensure safety and long-term viability. Various
processes and subsequent failures may cause damage to tunnel structural integrity; those
that occur during construction (ground settlement) and after opening to service (aging,
physical and chemical agents, etc.). Undoubtedly, the frequency of periodic inspection
should be increased when the tunnel has become aged. If potential and hidden deficiencies
of the tunnel are detected in advance, and treated in time, many accidents may be avoided,
whereas excessive repair and maintenance costs can be saved. Firstly, the geological and
hydro-geologic conditions in which tunneling occur are essential factors in the structural
integrity. Secondly, more and more problems appear in the lining with aging, such as water
leakage, cracks, spalling and voids behind the lining, which greatly affect the safety of
the tunnel and the users. The thickness distribution of the grouting layer behind lining
segments is a crucial factor to control the quality of the tunnel and it directly affects the
overall bearing capacity and structural adhesion of the tunnel. Overall, based on the Inter-
national Tunneling and Underground Space Association (ITA/AITES) [184], the stresses
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and settlements that appear at the surface of the lining are indicators of an inadequate
TBM method on shield tunnels: (i) over-excavation, (ii) the ploughing/heading effect and
steering, (iii) lining deformation and insufficient grouting and (iv) swelling/consolidation
of the surrounding ground.

Conventional methods for tunnel assessment are destructive and have great limitations
and uncertainties in obtaining a representative model of the overall structure. Nowadays,
the stability of tunnels is being assessed more and more often through geophysical surveys.
In fact, geophysical NDT technology is meant to obtain a rapid analysis of rock shearing
and concrete lining quality. The ASTM produced a standard guide, ASTM D6429-99, to
provide assistance in selecting the most appropriate geophysical method for a range of
geologic, geotechnical, hydrologic, and environmental investigations [185]. Hence, the
GPR method has demonstrated its reliability in quality testing, since it provides continuous
measurements of grouting distribution. Some examples of GPR application to tunneling
inspection are shown in Figure 10.

This section provides an overview of the main GPR applications on the condition
monitoring of tunnel structures. Currently, the most common applications include the
following objectives:

• Thickness of concrete segment/lining [186–199].
• Thickness of the backfill grouting layer [187,189,193,196,198,199].
• Damages in concrete lining and grouting layer [186,188,192,194,196,200,201].
• Damages (e.g., cracks/fissures, fractures and voids) behind tunnel linings [188,195,

197,200–205].
• Moisture/water content [186,188,195,203,204,206].
• Depth and location of reinforcement (rebar) [189,192,194,195,201,207,208].
• Inspection of other reinforced concrete structures (e.g., steel arch and shotcrete

layer) [188,197,204,206–208].
• Location of immersion joints [207,208].
• Identification of depth and presence of insulation material [208].

Figure 10. Results obtained from a GPR tunneling inspection: (a) shotcrete layer, (b) cavity and (c) embedded steel arch
(adapted from Prego et al. [204]).

Table S6, in Supplementary Materials, presents a compilation of relevant on-site survey
of tunnels.
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8. Discussion Table on Limitations and Best Practices
8.1. Roads and Airports

GPR surveys in pavements are most likely some of the most common and developed
inspections. Generally, the main objectives are focused on the detection of layer thickness
and damage in the pavement layers or under the road structure. Therefore, the application
is included in several regulations [7,50,53,149]. The standard ASTM D4748 [50] defines
the GPR test method for the determination of pavement layer thickness, advising of two
potential complex scenarios (extremely wet pavement or saturated pavements, and high
iron content in the aggregates) at which attenuation could affect the data interpretation. The
ASTM D6087-08 [53] develops the test methods to assess the asphalt covering concrete decks
with GPR. Both standards cover flexible and rigid pavements. However, these standards are
only recommendations, and the application depends on the different countries’ regulations.
In Europe, there are no specific common guidelines about the application of GPR in
pavement surveys, even though some proposals are developed in different countries [209].
Examples of those guidelines are in the Mara Nord Project [51] and in the British [5,6] and
Belgian [210] regulations. Many authors declare that an optimal pavement assessment
requires a GPR calibration process. The studies demonstrate that the correct calibration
causes an extreme decrease in the error in the estimation of the pavement thickness.
The analysis of the uncertainty of GPR data interpretation in the study of pavements
demonstrates that the calibrated data is closer to real data than non-calibrated data [211],
being the results and the interpretation affected by the calibration process. The divergence
between GPR data and real data is produced by several factors, such as: (i) the distance
between the antenna and the pavement surface; (ii) the pavement age; (iii) the heterogeneity
of the medium (changes in water content, presence of cracks, changes in density, etc.); (iv)
the wave attenuation; (v) the scatters at the pavement surface (depending on its roughness);
(vi) water, leaves or sand presence at pavement surface; (vii) changes in the time-zero; (viii)
clutter; and (ix) changes in the data acquisition velocity [75,84,212]. The analysis of different
calibration algorithms demonstrates that all of them diminish the systematic error during
the data acquisition [212], and the tests allow one to evaluate the operation and the stability
of the GPR system [213]. In some cases, calibration consists of comparing GPR data with
cores, obtaining radar-wave velocities by comparing the thickness of each layer with the
time to each continuous anomaly in the B-scans. In other cases, it consists of determining
the dielectric permittivity of the surface layer comparing the amplitude of the reflected
wave at the surface with the amplitude of the wave reflected on a metallic plate. However,
in other cases, the dielectric permittivity of the layers can be determined with common mid-
point (CMP) or wide-angle reflection and refraction (WARR) measurements. In the case
of rigid pavements, the wave velocity in the concrete layers can be estimated considering
the hyperbolic anomalies produced on GPR data as a consequence of reflections on the
rebar [80]. An error less than 3% is observed in the thickness concrete layer estimation
using this method [55].

Some of the authors use ground-coupled antennas [47,48,214]. In some cases, when
surveying is dedicated to limited sections of the roads, the antenna is manually moved or
mounted on a cart survey. Nevertheless, for large-scale surveying, the ground-coupled
antenna is generally mounted on a vehicle that uses special devices and moves at a traffic
speed. These devices are usually platforms or trailers that support the antenna at a certain
distance from the surface of the road or the airport platform. The platforms are built with
wood [84,215], plastics [21] or fiberglass [75] in order to reduce as much as possible clutter
in the radar data. However, in some cases the survey is carried out using a platform in
contact with the pavement, connected to the vehicle. The ground-coupled antenna is placed
on that platform, assuring the maximum contact between the antenna and the pavement
surface [216], and the maximum transmission of the wave into the medium. This type
of data acquisition reduces the velocity of the vehicle during the survey, with the speed
between 16 km/h [216] and 25 km/h [217], but increases the penetration depth, compared
with a survey using the same frequencies but with the antenna suspended at a certain
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distance from the pavement surface. In general, surveys with ground-coupled antennas are
designed to place the antenna as close as possible to the pavement surface. In most cases,
pavements are surveyed with air-launched antennas [217]. These devices are suspended at
a distance between 150 mm to 500 mm from the surface of the pavement [17,75,80,84,216].
Those devices provide clean GPR images, allowing surveys at a traffic speed (up to about
90 to 120 km/h) [75,84,218], but the penetration depth is less than in the case of ground-
coupled antennas in contact with the surface of the medium. The comparison between
the data obtained with each one of those antennas epitomizes the change in the direct and
reflected wave, depending on the distance between the antenna and the surface of the
pavement [75,219].

Some of the most recent assessments use an array of antennas, combining in many
cases ground-coupled and air-launched antennas [216,220]. In [63] the use of a single
transmitter and five receiver Vivaldi antennas is proposed, obtaining results in tests and
pavement surveys with an error less than 10%, which is in the same level of other methods,
including drilling. Other studies use a step-frequency array system [221] detecting shallow
and deeper features. Dérobert et al. [222] demonstrate that a combination of UWB antennas,
ranging from 500 MHz to 6 GHz central frequency, detected the second course in the base
of the pavement structure and thin layers of about 2.5 cm. In addition, controlled tests
based on the detection of pavement layers and damage conclude that GPR is a useful
tool that could be implemented as a quality control tool during the construction of new
pavements or in the assessment of already existing structures, indicating that survey speed
during the data acquisition velocity must be different, depending on the antenna [218].

Even though in many of the applications the study is based on the analysis of anoma-
lies in B-scans [82,86,87], in some cases those analyses are combined with other analyses
from amplitudes and data obtained in CMP or WARR surveys [85], detection of reflec-
tions patterns in A-scans and B-scans [76], and velocity analysis [81]. In addition, many
applications propose the use of arrays and multi-frequency antennas [77,81,83,85].

8.1.1. Soil Subgrade Assessment and the Detection of Bedrock

Some of the first studies in pavements were focused on the analysis of the soil subgrade.
This layer is highly sensitive to the environmental changes, being also affected by the traffic
loads [223]. Saarenketo [69] points to three applications:

• Analysis of new road alignments, studying the ground materials and the depth to the
bedrock and to the water table, reaching in some cases a depth of about 5 m.

• Assessment of existing roads in order to detect filling materials [86], voids or weak
zones under the pavement [40,56,64–68].

• Quality control of restorations [69–72].

One of the most important difficulties in the assessment of the subgrade is the wave
attenuation. Two possible causes are the clay content in the soils and the existence of
a significant water content [102,223], which recommends the use of different center fre-
quency antennas to improve the data interpretation. In general, a combination of several
assessment techniques is the most useful tool to detect the anomalous zones in the sub-
grade, being applicable in the quality control of roads under construction [223]. The tests
presented by [223] are a clear example of the use of combined methodologies and types
of antennas to enhance the final results. They conclude that air-coupled antennas are
more appropriate in detecting interfaces between layers and with the subgrade; whereas
the ground-coupled antennas are more appropriate in determining anomalous zones that
could be associated with damage.

Related to the detection of the subgrade, there are two main types of studies: (i)
the analysis of the ground under the pavement and (ii) the estimation of the depth to
the bedrock. The location of the bedrock is essential, mainly in the design of road lines.
In these applications, the attenuation causes an extreme decrease in the signal-to-noise
ratio at higher depths, being difficult to distinguish clearly the contact with the bedrock
or the existence of fractures and stratification in the ground under the pavement. These
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geological features could affect the stability of the road. Moreover, the data accuracy in
the data interpretation depends on the precision in GPR wave velocity estimation [224],
being a complex task in heterogeneous media. The studies presented in [224] propose the
450 MHz ground-coupled antenna as the most appropriate system, because it offers higher
resolution than antennas between 100 MHz to 200 MHz central frequency. This result is a
consequence of the GPR wave attenuation, allowing for the detection of discontinuities
until a maximum depth of 5 m in all cases, based on the observation of different textures
in the B-scans. The authors recommend the combination of GPR with electric resistivity
tomography (ERT) in the case of: (i) bedrock at depths higher than 5 m and (ii) soils with
superficial conductive clays. Those clays produce an extreme attenuation of the GPR
signals. Other studies demonstrate that GPR is effective in determining the asphalt layers,
being moderately successful in the detection of base thickness and shallow stratigraphy
and is not applicable in the location of the near-surface bedrock [225]. However, other
studies demonstrate that a 600 MHz center frequency antenna allows the detection of the
bedrock contact and also changes in the compaction of the subgrade, locating areas under
the pavement with poor soil compaction [226]. Low compaction of the subgrade soil could
be the cause of road degradation, and GPR assessment could be a support in the strategies
for road restorations. Saarenketo and Scullion [69] warn about the weak anomalies that
could be associated with the bedrock contact depending on the dielectric properties of the
pavement and the soil and the rock; hence concluding that the anomalies will probably be
weak and non-continuous reflections.

8.1.2. Pavement Layer Thickness Analysis

Pavement is usually assessed with GPR in combination with FWD [223,226–228].
In these studies, one of the most common analysis is the determination of layer thick-
ness [30,36,38,58–63,75]. This analysis requires high-frequency antennas, in all cases with a
central frequency higher than 800 MHz. For example, [36] uses a 2 GHz antenna, while [229]
reports the application of a 1.5 GHz ground-coupled antenna for the layer thickness deter-
mination, and [48] compares the results obtained with two antennas with 800 MHz and
900 MHz central frequency. The detection of the contact between layers is observed in
the B-scans as a continuous anomaly produced by the reflection of the radar-wave at the
interface between two media with different dielectric permittivity. The studies point to
the easier detection of boundaries in the case of asphalt layers than in the case of concrete
layers [17,84,228]. The results indicate that the error in the layer thickness determination
is higher in the case of thinner layers and deteriorated structures. Errors less than 10%
are reported in several works referring to new pavements [36,63,75]. Another analysis
observes an error of about 12% in the surface asphalt layer with a common data processing
method, but about 3% when the deconvolution is applied to separate the anomalies [60].
The analysis developed by [230] obtains the following results: (i) with air-coupled antennas
of 1.8 GHz central frequency and the CMP (common mid-point) survey, the error in thinner
asphalt layers ranges between 6% and 18%; and (ii) with ground-coupled antennas of
1.5 GHz central frequency and the CO (common offset) mode, the error ranges between
1% and 26%. This study highlights the importance of the data processing for the proper
picking of anomalies associated with reflections in the base of thin layers. It is noticeable
that both methods introduce the same error (an average value of 7%) in the case of thicker
layers. This study also notices the influence of dust or sand on the surface of the pavement
for the analysis of the dielectric permittivity using ground-coupled antennas, although
the error depends on the thickness and the depth to the layer. In [216] an average error
of 6.8% was reported for pavement thickness layers ranging from 280 to 350 mm, while
for pavement thickness layers ranging from 100 mm to 200 mm the error was 3.8%. Other
authors also conclude that the error in the bituminous layer differs from the error in the
granular layer. In [231] an average error of 7.5% was obtained for asphalt surface layers
ranging from 5 mm to 500 mm thick, but this error increased until it was 12% in the case
of granular base layers ranging from 150 mm to 330 mm thick. A higher error was also
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obtained in [230] for thinner layers, observing a correlation between the thickness of the
layer and the error in the case of CO surveys. However, no correlation was observed in the
case of CMP surveys.

Additionally, the error depends on the quality and homogeneity of the layers. Al-Qadi
et al. [232] observe lower errors in the case of plain concrete layers; whereas the studies in
old pavements [216] and in new pavements [217], show an important change in the error
comparing both studies in new and old pavements.

The error diminishes in the case of a proper calibration using several cores [36,214,223],
although the accuracy depends on the number of cores. The results obtained without cali-
bration present higher errors and demonstrate that the GPR used as a unique NDT assess-
ment of the pavement is only useful for a quick and rough evaluation, being nonetheless a
satisfactory technique.

8.1.3. Damage Assessment: Detection of Voids and Cracks

In most surveys, the objective is determining a procedure for the recognition of cracks
and under-slab voids, as well as the rebar location in reinforced concrete slabs [76–81,88],
being mostly used the CO acquisition mode and determining anomalies in B-scans. How-
ever, Yi et al. [81] observed that thin cracks are not detected using the common reflection
analysis, and propose a 3D CMP using an array of antennas in order to determine slight
changes in the radar-wave velocity that could be associated with zones affected by cracks
wider than 1 mm.

On-site measurements compared with cores highlight that clear images of cracks in
the B-scans correspond to large fissures (several centimeters wide), in many cases filled
with foreign material [42,56]. Early fissures are not visible in GPR images because the
anomaly is masked with the anomalies produced in the grains and heterogeneities of the
layers [66]. However, zones affected by many smaller early cracks produce in some cases
blurred images in GPR B-scans. This effect can be used to select possible zones with early
damage. The effect of internal small cracks is also visible in the frequency spectrum. The
heterogeneity due to the existence of cracks, mainly in the subgrade, increases the energy
dispersion and subsequently attenuates the signal, generating an irregular image [81] with
vague boundaries [66]. The radar-wave velocity in damaged areas differs slightly from the
radar-wave velocity in undamaged asphalt [81]. In addition, the amplitude of the frequency
spectrum decreases, which denotes the existence of possible anomalous zones [47].

Several tests report that 1 GHz center frequency antenna [40,41,65], or even larger
frequency antennas [66], are valuable systems to characterize vertical pavement cracks.
However, lower frequency antennas, for example 250 MHz, are in many cases more effective
for detecting cracks because the larger wavelength is less affected by the heterogeneities
and the aggregates grading of the layers [65]. In consequence, most pavements are assessed
with antennas presenting a range of frequencies. For example, the studies in [68] explore
depths between 50 mm to 160 mm using antennas with central frequency between 2.5 GHz
and 700 MHz; [233] obtains details of the top structure and the subgrade soil with 1.5 GHz
and 400 MHz center frequency antennas, respectively; [234] explores the bituminous layer
with a 1.6 GHz center frequency antenna and the underneath structure (base, subbase
and subgrade) with a 600 MHz center frequency antenna; [235] combines 800 MHz and
500 MHz center frequency antennas to detect subsidence in a port area, showing visible
deterioration in paving blocks and loss of filling; and [221] uses an array of antennas with
central frequencies ranging between 50 MHz and 3050 MHz.

Many works are devoted to laboratory tests and controlled measurements in order
to determine the limits in the detection of cracks. The laboratory tests described by [56]
in specimens representing rigid pavements are focused on detecting the bottom of the
cracks depending on its width, length, and filling material. The results conclude that
it is possible to detect 2 mm wide cracks, and the presence of material filling the crack
increases its detectability, being possible to determine the bottom of the cracks: (i) wider
than 5 mm and filled with saturated sand; and (ii) wider than 15 mm and filled with
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dry sand. The detection also depends on the depth of the crack and its position in the
pavement structure. The controlled field studies described in [65] also present the detection
of the bottom of the cracks in asphalt pavements, concluding that the stronger anomaly
is obtained when the bottom of the crack intersects the bottom of the asphalt pavement.
The results obtained in the laboratory experiments presented in [67] highlight that the
stronger response depends on the contrast between adjacent layers in the case of cracks
crossing the entire upper layer. The analysis presented in [40] determines an error of about
5.5% in the estimation of the length of the cracks when the bottom is detected. In those
experimental tests, additional computational methods (e.g., finite-difference time-domain
(FDTD) modelling) were applied to compare synthetic data with laboratory and controlled
measurements.

To summarize, different authors point to the applicability of GPR in the detection of
cracks and voids inside different layers of the pavement structure. The method provides
clear images in the case of large cracks, although small cracks (until 2 mm) can be detected
in the upper layers. The existence of zones with a large number of thin or early cracks
can be also detected because of the changes in the radar-wave velocity with respect to
the velocity in undamaged pavement. In addition, the bottom of the cracks can be also
detected in the case of large and superficial cracks or in the case of cracks filled with
water or saturated sand. The dielectric permittivity of those materials differs strongly from
the dielectric permittivity of the pavement layer materials. More heterogeneous layers,
presenting different grading, make the detection of cracks or voids more difficult. Cracks
crossing one entire layer are more detectable, especially in the case of a large contrast in
their dielectric permittivity.

8.1.4. Damage Assessment: Debonding

The loss of adhesion between adjacent pavement layers produces a change in the
behavior of the pavement, which can contribute to its early failure, producing permanent
deformations or superficial cracks and adversely affecting its performance. This problem
is considerably severe in the case of airport pavements that undergo high shear stresses
during the landing and take-off of the planes. The early detection of debonding is therefore
crucial for pavement assessment. The application of GPR in the detection of debonding is
usually combined with FWD analysis [75,85], with consistent results validating each other.
In addition, the analysis of the GPR signal frequency indicates that the spectrum is sensitive
to the structural condition of the pavement, correlating the results with the standardized
deflection tests [47] in roads: when comparing damaged zones with undamaged zones,
the spectrum bandwidth reduces while the amplitude and the central frequency decreases.
However, the clear detection of debonding is only possible in the case of water presence in
the debonded zone. Another analysis focused on the assessment of airport pavements [85]
refers that the identification of such damage is difficult because it is usually produced at
the shallow zone of the pavement structure (within the first several centimeters). However,
GPR lateral wave in the CMP data acquisition is highly sensitive to the material properties,
and the amplitude maps have proved to be efficient in determining debonding zones
in which the high amplitude corresponds with the damaged zones detected by acoustic
sounding methods. Methodologies based on linear prediction and supported by vector
regression have been proposed and tested using a 10 GHz bandwidth antenna in an
accelerated pavement testing facility [236], providing promising results in the detection
of thin debonding. Another proposal was the application of a support vector machine to
the A-scans, allowing for the detection of horizontally stratified debonding and geotextiles
between the two upper pavement layers [237].

8.1.5. Damage Assessment: Moisture

The analysis of changes in water content in the different pavement layers of the sub-
strate was analyzed in a laboratory [238], in controlled field tests [43], and in specific zones
of roads [48,73,74]. Some results epitomize the ability of GPR to reveal variations in the
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water content in the pavement layers beneath the asphalt layer. Comparing GPR data
with direct measurements of gravimetric water content reveals the ability of GPR to detect
changes in moisture and also to assess the functionality of the drainage layers [34]. The
results presented in [74] compare 1 GHz and 2 GHz center frequency antennas, conclud-
ing that, although data was similar in both cases, the higher penetration depth with the
1 GHz center frequency antenna makes it more appropriate for detecting zones affected
by moisture. In addition, the existence of high water content in fractures [42] and debond-
ing [47,48] between layers is a particular condition for the best detection of those damages.
The representation of A-scan datasets in time-domain and in frequency-domain, obtained
in wet and dry parts of the pavements, illustrates the great difference in amplitude due
to the difference in dielectric permittivity contrast. In many assessments, the moisture
damage is detected by observing the amplitude of the maximum peak in the time-domain.
However, Zhang et al. [45] propose the use of more properties of the dataset to detect wet
zones, considering statistical properties that are affected by moisture, selected with linear
discriminant analysis. The comparison of results from GPR tests and passive microwave
radiometry demonstrates that GPR is able to detect water content at higher depths, en-
abling the detection of water table in the soil under the structure [237]. Nevertheless, the
identification in the B-scans of the anomaly associated with water table can require different
seasonal measurements in order to determine the permanent and variable reflectors, which
allows one to distinguish between natural layers or pavement structures, and water table.

The central frequency of the antennas recommended for the detection of moisture
ranges from 900 MHz (to analyze moisture in the ground under the pavement [239]) to
higher frequencies such as 2.5 GHz (to determine the existence of water in porous layers of
the pavement structure [45], between those layers or inside cracks and voids).

The frost susceptibility is another issue to be treated in pavements placed in zones with
extreme temperature changes. It is related to water content and drainage of the subgrade.
In roads affected by frozen water, a strong reflection is produced at the interface between
frozen and non-frozen sections when the subgrade presents high dielectric permittivity
and subsequent high frost susceptibility [69].

8.1.6. Quality Control of New Structures: Asphalt Air Void Content and Segregation

Quality control is important in the construction of new pavements and in the restora-
tion of already existing roads and airfields [78,240,241]. The analysis requires the improve-
ment of signal-to-noise ratio of the GPR scans. Bianchini Ciampoli et al. [240] present
and discuss a processing flow to improve the GPR images during the quality control of
structures. In these applications, a previous calibration is required to obtain accurate
results [217].

Quality control involves the thickness control during pavement construction [217],
the quality analysis of the layer bonding [209,242], the porosity of the materials [71] and
the analysis of thin layers overlaid on old and rehabilitated pavements [217].

The existence of thin layers over the pavements, added as a rehabilitation of damaged
zones, produces an overlap between the wave reflected on the surface and the wave
reflected on the contact between the thin layer and the old pavement, making the detection
of the anomaly and the thickness estimation of the rehabilitated layer difficult. The existence
of those thin layers considerably degrades the accuracy of the GPR interpretation of the
layer’s thickness and, therefore, accurate signal processing can be required. GPR surveys
provide precise results in the estimation of the layer’s thickness when used to assess the
quality control of flexible pavements during their construction, allowing traffic speed
velocities during the data acquisition (up to 90 km/h with air-coupled antennas and
25 km/h with ground-coupled antennas [217]). Nevertheless, the use of air-coupled
antennas is highly recommended [217].

The analysis of quality in the pavement layer bonding is based on the water accumu-
lated in the debonded zones. GPR is an efficient tool because of its sensitivity to changes in
water content. Furthermore, it has been observed that GPR is also sensitive to changes in
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the quality of the material in the case of new pavements [242]. These changes are perceived
mainly as a consequence of changes in the travel wave velocity. However, it is difficult to
discern between the real cause of changes in the wave travel time: changes in the material
conditions or variations in the layer thickness.

The void content in the asphalt pavement is related to the dielectric permittivity
values that are obtained when calibrating the wave velocity by comparing GPR data to
cores [72]. Dielectric permittivity ranges between 4.5 and 6.5 in dry aggregates while
the asphalt permittivity varies between 2.6 and 2.8 [71]. Saarenketo [71] introduces an
empirical relationship between the air voids content and the measured dielectric values
from GPR data, with an accuracy of about 90%. The uncertainty in these kind of studies can
be reduced by comparing GPR data to cores [28]. The analysis presented in [71] also detects
the damage in pavements as a consequence of segregation, which is produced in small
zones of the shallow layers of pavements with low density materials. This segregation is
also associated with an excess of coarse aggregates. The proposed analysis is based on the
estimation of the surface dielectric permittivity using GPR data, in which extremely low
values could be associated with segregated zones [69]. Computational methods corroborate
the occurrence of changes in the GPR signal when variation exists in the pavement density.
The A-scan’s amplitude increases when the asphalt pavement density increases because
of the higher dielectric permittivity, also showing an augment in the amplitude of the
frequency range [243].

8.1.7. Rebar Detection and Corrosion

In rigid and reinforced pavements, a usual assessment also involves the detection of
the rebar [42], [56], [80] and the cover depth to the rebar [55], obtaining an average error of
about 2.6% when comparing GPR results with cores. The estimation of the cover depth
is based on the analysis of hyperbolas produced by reflections on the rebar. The analysis
of the rebar location is, in most cases, based on B-scans acquired along the pavement
surface. However, in many cases the 2D horizontal analysis can provide accurate and
effective images of the rebar distribution inside the rigid pavement. Those images can
be obtained from a grid of B-scans obtained in profile lines separated by 10 cm [244].
Combining GPR with other techniques such as electromagnetic induction, it is possible
to determine the position of the rebar, the cover thickness, and the rebar diameter [245].
The main limitation occurs in the case of a densely-meshed rebar, requiring antennas with
narrower transmission energy cones. The proposal of applying deep learning techniques to
B-scans suggests accurate results in the classification of the rebar and other buried objects
in pavements after building a data library for pavement objects. The technique is based
on the recognition of changes in the GPR data amplitude and the anomalies associated
with interfaces. The results presented in [246] allowed to automatically detect both the
hyperbolas and the interfaces.

Another aspect in the rebar assessment of rigid pavement is the analysis of corrosion.
Some studies have analyzed the GPR response due to corrosion of the rebar in reinforced
structures: the damage obscures the B-scans and the amplitude of the hyperbolas pro-
duced by a corroded rebar decreases extremely when compared with the amplitude of the
hyperbolas obtained from the reflection by a non-damaged rebar [247,248].

In addition, the existence of water with high salt content facilitates the corrosion of
those elements. GPR B-scans show an important attenuation in the zones affected by high
salt content water, which allows for the detection of possible problematic zones [247]. De-
tailed studies indicate that the reflected wave amplitude is sensitive to mapping corrosion
in the rebar while the direct wave frequency amplitude is sensitive to chloride content [249],
where the dispersion of the energy acts as an indicator of the cracks most likely produced in
the concrete around rebar in later stages of corrosion process [248]. Other studies correlate
damage in the surface of rigid pavements with the corrosion of the rebar [168].



Remote Sens. 2021, 13, 672 25 of 54

8.1.8. Recent Developments and Applications

The most recent developments in the pavement assessment are focused on four main
purposes: (i) controlled experiments, (ii) deep learning and automatic detection of damage
and layers, (iii) antenna positioning, and (iv) design of new devices.

Some of those more controlled experiments are realized in testing sites on roads,
comparing GPR results to other complementary tests and cores. Other tests are developed
in a laboratory, using specimens prepared to simulate damage and structures. Many tests
are prepared to analyze the effect of different conditions on the GPR images and to monitor
damages. The experimental tests address the evaluation of different problems. In this way,
for example, Rasol et al. [56] present the effects of size and filling of cracks on the GPR
images, and Baltrušaitis et al. [250] use the GPR results in order to estimate the quality of
materials by determining the bulk density of bituminous mixture, and [251] determines the
bitumen content in different mixtures. In all cases, the measured parameter is the dielectric
permittivity, and mathematical models are compared to cores and experimental results.

Regarding laboratory tests and field surveys, some developments applied neural
networks in data analysis, deep learning techniques and automatic detection of damage
by means of post-processing techniques. For example, Zhang et al. [45] propose a training
convolutional neural network structure for moisture damage detection from GPR B-scans,
which works by using an incremental random sampling method to automatically select
the most appropriate plot scale at each radargram. Other authors, such as Kim et al. [246],
propose the reconstruction of GPR data to detect underground objects under pavements in
urban areas using deep learning techniques, concluding that the precision of the results
depends directly on the quality and number of field training data. In this work, four
features were studied: (i) pavement layer interfaces, (ii) the existence of a manhole cover in
the surface, (iii) the detection of buried targets that produce hyperbolas, and (iv) subsoil
background. More complex elements in the study could require a larger number of training
data. Larger databases are compiled and used in the study of pavement distress using
deep learning methods, showing that the frequency of the antenna also affects the results
because of the detail loss [252]. In [253] a review of deep learning applications in GPR is
presented, comparing the results and grouping the works depending on the type of data
used. The conclusion is that the methods using A-scans [254,255] present slightly better
results than those using B-scans [252,256] or C-scans [257,258]. However, the best spatial
information is obtained from C-scans, and the most recent works [257] are focused on 3D
GPR data. Notwithstanding, this processing requires more complex architecture and a
large volume of datasets. The optimal solution to achieve a proper development in the
deep learning based on C-scans is to create a big GPR dataset, sharing data from research
around the world [253].

The efficiency of the monitoring, at high speed, turns the GPR into an important tool
when combined with new loading tests devices, such as FWD and, more recently, with TSD
(traffic speed deflectometer) [259–262]. For studies at the network level, in some countries
the use of GPR is already considered mandatory for layer thickness assessment due to its ef-
ficiency to support pavement management system decisions [263]. The joint interpretation
of GPR with load tests, such as FWD and TSD, has also led to changes performed on the
GPR system in order to better process the data collected. For this purpose, a dedicated GPR,
a noise-modulated ground penetrating radar (NM-GPR), was developed in Australia [259].
This GPR variant uses coded signal modulation and efficient receiver hardware to enable
traffic speed multi-channel performance and consists of hardware receivers combined with
an array of ground-coupled antennas and custom damping systems in a trailer format to
collect 3D data while travelling at speeds of up to 100 km/h. The NM-GPR is used for
the assessment of calibrated road layer depth measurements and quantitative moisture
mapping. Geospatial views, developed to align and join the data gathered with NM-GPR,
TSD and FWD, represent an important tool for understanding these complementary data
together and in the context of the surrounding environment [259].
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Other new developments are focused on finding antenna setups (positioning systems)
that can be used in different scenarios. In that way, the studies by Yuan and Cai [264]
propose a mechanism to automatically adapt the antenna trajectories. The methodology
consists of comparing synthetic data obtained for different angles between the antenna and
the target with field data, thus contributing to automation in the antenna positioning. The
self-detection of the antenna position is possible using fixed reflectors on the surface [265]
or using a geodetic network in order to georeference the position of each A-scan and
the anomalies in the radargrams [266]. The work by Gabrys and Ortyl [267] compare
several georeferencing systems in GPR surveys for the detection of layers and pipes under
the pavement in C-scans. The position was determined using a GPS synchronized with
the UTC time and a total station. The results demonstrate that the higher accuracy in
the anomaly position is obtained with the synchronized GPS, although in some cases
the system does not provide the correct antenna trajectories. This is caused because this
system is based on signals from satellites and in some circumstances, as in dense cities, the
horizon visibility is limited. In those cases, the most efficient position is obtained with the
total station.

Finally, the design of new devices for GPR surveys also includes the positioning of
the antenna with robotic systems. In the field of road inspections, a few more developed
prototypes have been built with the objective of early detection and repairing damage, using
cameras for visual inspections. Wu et al. [268] design and test (in controlled experiments)
a six-channel antenna mounted on a robotic system, and [269] proposes and constructs a
robotic system with 3D printing, with the scope of using the prototype both for assessing
damage and repairing early cracks. In addition, some works suggest pavement surveys by
using drones [270]. The UAVs (unmanned aerial vehicles) are flexible platforms that could
support different types of remote sensing sensors [271] and, in the inspection of roads,
have a low impact in the traffic while allowing one to obtain images from several lanes at
the same time and build 3D images [272].

8.2. Railways Inspection

Although GPR is applied in several railways for monitoring, as it provides a rapid
continuous measuring, its application presents limitations that have to be considered. The
GPR setup has to be chosen according to the scope of the study. On the one hand, GPR
assessment can be applied at different stages of railway life cycle, during construction of
new lines, for in-service monitoring or for rehabilitation purposes. On the other hand, GPR
can be used for distinct diagnosis goals, such as detecting settlements of deeper layers,
ballast quality evaluation, debonding and crack detection. The specific requirements for
an efficient application of GPR on railway assessments and the main limitations, together
with advice in overcoming them, are referred herein.

Designated inspection vehicles are used in railways to assess the railway condition,
through inclinometers, digital videography, laser scanning and, most recently in Europe,
USA and Australia, the GPR. This inspection enables a diagnosis of railway elements
related to traffic safety and comfort, such as track geometry, rail profile, and sleeper and
fastening defects. Based on this assessment, maintenance works are planned when the track
condition reaches a pre-defined level, known as the “intervention level” [107,273]. The
main maintenance intervention on the railway is tamping, performed when the settlement
of the rail is occurring, and consists of adding a ballast below the sleepers to raise the
rail level [274]. This is an action that corrects the track geometry but does not solve the
deterioration causes, which are mainly due to substructure settlements [17,96,97,107], that
can be only detected by GPR, thus exemplifies its importance.

GPR had been initially been applied to railway diagnosis in the 90s, at research level,
using ground-coupled antennas [84,89,275] and, some years later, using high-frequency air-
coupled horn antennas [97,276,277] that enable non-contact tests at higher speeds. Some key
limitations delayed the GPR application to railways. One is the nature of track elements,
ballast and sleepers, that are rough contact surfaces for the ground-coupled antennas.
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These factors, together with the safety of the technicians that perform the measurement,
represented challenges to the testing process.

The GPR railway monitoring is usually performed along the track, on longitudinal
alignments. At least one testing profile is measured between the rails, on the track axle. Ad-
ditionally, another two profiles can be measured laterally, on the right and left ballast shoul-
ders, in order to obtain information on the transversal condition of the track [89–91,96,276].
Generally, the central frequency of the antennas for the middle and lateral profiles is the
same. Ground-coupled antennas were adapted for air-coupled measurement, and their
dimension and location, on being installed on the inspection vehicle, were chosen in order
to comply with the railway loading gauge requirements, which is the case of 400 MHz
and 500 MHz center frequency antennas [95,102,278]. Nevertheless, in order to perform a
thorough diagnostic of the railway, antennas with different central frequencies are required,
depending on the objectives of the tests, for example:

• Subgrade and platform assessment: low-frequency antennas are employed (from
100 MHz to 400 MHz) [98,105,279].

• Ballast and subballast layer thickness: medium-frequency (from 400 MHz to
1 GHz) [90–92,94–96], most commonly used at network level.

• Moisture and fouling detection: high-frequency antennas (from 1.2 GHz to
2 GHz) [90,93,101,103,104,106,280,281].

Not only are the antennas different, but the signal processing is also distinct, according
to the purpose of the measurement. Although the reflection picking method is sufficient
for layer thickness assessment, in the case of moisture and fouling evaluation, more com-
plex signal processing is required, such as signal scattering [281] and the time–frequency
approach [93,282,283]. This also requires different antenna configuration [284] and testing
methodology, such as the CMP approach [279]. Nevertheless, dedicated software is needed
for moisture and fouling detection. It is shown in the bibliography that, using specific
software, moisture and fouling results can be obtained even with lower center frequency
antennas (400 MHz) [94,100,102,278].

In order to study and validate the ballast quality assessment, several studies, in a
laboratory and on-site, were undertaken in the last decade. These works have studied
several aspects in order to enable better GPR results on railways from the type of an-
tennas (high-frequency, ultra-wide band, etc.) [93,102,109,278] to antenna configuration
during tests [106,279,280,284] and signal processing (scattering [267], time–frequency do-
main analysis [93,101,106,280,282,283], multi-channel analysis [285], and entropy-based
analysis [107]).

After all these years, the GPR is still used, mostly for the assessment of ballast layer
thickness (which is the same as in road investigations, where it is mainly used for estimating
the thickness of layers). The ballast dielectric characteristics depend on the type of material
(e.g., limestone or granite), on the grading level (maximum diameter and discontinuous
grading), on the fouling level (clean or fouled) and on water content. In addition, it is
dependent on the central frequency of the antenna. Compared with roads surveys, the
test pits are more difficult to perform, due to train circulation (that has to be suspended
during works), and due to ballast properties that roll into the test pit when clean, which is
a challenge for digging. Those test pits are used in the railway assessment to confirm the
ballast layer thickness and the fouling level. On the one hand, the dielectric properties are
highly influenced by moisture (water relative dielectric permittivity is 81). The moisture
trapped in the ballast is due to ballast fouling, resulted from ballast particle fragmentation
and from subgrade soil migration into the ballast, mainly in ancient lines with no subballast
layer [275,286]. Due to these particularities, it is difficult to assume a default value for
the ballast dielectric constant, so several laboratory tests were performed to determine
ranges of variation for this parameter [89,101,107,109,110,276,278,280,285]. It is always
recommended to perform test pits to confirm the GPR results. On the other hand, the
fact that a fouled ballast is propitious to increase moisture content enables an overall
estimation of the fouling level when comparing testing campaigns performed in dry versus
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wet seasons. It is possible, in this way, to identify rail sections where fouling and moisture
are present [107,283].

Other limitations of GPR application to railways are:

• Measuring below clay or very clayish layers.
• The presence of steel sleepers in railways [287].
• The gradual increase in fouling in depth that make the interface between the ballast

and soil undetectable.
• The rail presence that, as a metal, can result in a constant reflection, masking in most

cases the information at the depth corresponding to the distance between the antenna
and the rail (e.g., if the lateral antennas are too close to the rail, the measurement in
depth becomes very difficult as the rail reflection is strong and in many cases a ringing
effect appears).

The GPR tests can be performed and analyzed together with other NDT, either geo-
physical or that assess the track geometry and stiffness, as referred to in the beginning of
this subsection.

The use of other geophysical methods together with GPR aims mainly to complement
it and, in general, they are localized tests instead of continuous measurements such as GPR.
Among those complementary methods are: electrical resistivity tomography (ERT), seismic
wave propagation, microgravimetry, the impact–echo method (IEM) and the ultrasonic
test [112,113,288].

The information obtained with GPR represents an important tool when evaluating the
railway condition together with the parameters continuously measured by the inspection
vehicle, such as track geometry [108,283]. In this regard, the Federal Railroad Administra-
tion Report DOT/FRA/ORD-20/07 [289] presents the results regarding the development of
a probability model for the occurrence of track geometry defects as a function of subgrade
parameters showing a statistically significant relationship to be used in predictive analysis.
Two parameters, assessed by GPR, are referred to in this report as crucial: the ballast
layer thickness and the fouling index. GPR information can also complement other non-
destructive load tests, such as a stiffness assessment with a rolling stiffness measurement
vehicle [290], a falling weight deflectometer (FWD) [95] and a light FWD [17,95,286,291], a
dynamic cone penetrometer [90], a geo endoscopy test [90], [292] and light detection and
ranging or laser imaging detection and ranging (LiDAR) [293]. The use of a multi-temporal
InSAR (interferometric synthetic aperture radar) for transport infrastructure monitoring has
also been significantly increasing during the last few years [294–296]. Studies undertaken
on railways have shown the potential of the applicability of InSAR together with GPR,
mainly for the detection of causes of track subsidence [297], and to monitor subsidence at
the transition zones of railway bridges [298]. It is important to highlight the relevance of
the GPR, which can be synergistically used with other NDT to validate the results obtained
by InSAR and to identify the possible causes of the displacements detected.

The TRACKSCAN project, financed by H2020 from 2015–2016 [299], has developed
a dedicated device to perform GPR measurements on railways on all the assets: ballast,
subballast, tunnels, retaining walls and culverts. The project has highlighted not only the
crucial importance of GPR for “seeing” beyond the surfaces, but also the complexity of
GPR interpretation [300]. The GPR results support management decisions on maintenance
actions, by the timely detection of defects.

Between 2015 and 2018, a large project, also financed by H2020, was developed in
Europe, DESTinationRAIL [301] that provided a decision support tool for rail infrastructure
managers based on the FACT (find, analyze, classify and treat) principle. This research
addressed several rail structural elements from bridges, earthworks and track, and con-
tributed to the improvement of different phases of rail management including monitoring,
data analysis, regulations, risk assessment and recommendations for optimal intervention
programs for railway maintenance. One of the most important tools studied for monitoring
process was the GPR, used for several scopes. Thus, GPR was applied for the detection
of potential hot-spots on substructure, such as ballast pockets and mud pumps, for the
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detection of water content changes during rainfall and, as a novel approach, for the loca-
tion of soft clay and peat deposits that can cause accelerated ground settlements under
dynamic amplification caused by high-speed trains (over 200 km/h). This research made
extensive recommendations for conducting GPR investigations on railway lines, which
included the application of optimal system configuration consisting of ground-coupled
and air-coupled antennas. More details can be found in specific Deliverables (D), namely
on GPR applications referred to above in D1.2, the joint interpretation of GPR with track
geometry in D2.4, a novel damage detection methodology developed for bridge assessment
in D 2.2 and the assessment of earthworks in D2.3 [301].

At the same time, the Federal Railway Administration (USA) has also financed a
project aiming to develop a device for rail scan and guidelines for GPR implementation on
rail assessment [90]. A GPR system was installed on a survey vehicle for field-testing and
the integration of GPR results with track stiffness and geometry was also addressed. Several
tests and calibrations were performed for over 130 km and improvements were made,
mainly to the signal quality of shoulder antennas. In addition, dynamic cone penetrometer
(DCP) tests, test pits and laboratory tests were performed to validate the results for fouling
and moisture assessment. The system installed consists of three 2 GHz horn antennas and
one 400 MHz ground-coupled antenna that can measure at a maximum speed of 120 km/h.
The specificities of the approach are: i) automated processing software that handle large
volumes of data for rapid reporting and ii) the integration of GPR data with the track
geometry and gage restraint measurement system (GRMS) data generated by the T-20
car [90]. Based on this extensive research, GPR indexes were defined depending on four
parameters, namely ballast fouling, ballast depth, layer roughness and moisture detection.
Those indexes were then combined with track roughness assessed through track geometry,
and a track substructure quality index (TSQI) matrix was developed and implemented.
Nevertheless, the study highlights the need for additional research: i) on the ballast fouling
index sensitivity to type of fines and ii) to improve the shoulder antennas’ results, namely
the signal penetration and reflection characteristics as they are highly influenced by the
edge of the tie.

It is clear that there is a general interest in GPR application for railway studies,
given the importance of this test for the detection of real causes of track deterioration
and to support the maintenance management decisions. Nevertheless, in spite of the
studies developed so far there is still the need for future research to improve the testing
methodology and data processing in order to make the GPR application more user friendly
and time efficient.

In the case of ballastless railway tracks, GPR application is similar to other concrete
reinforced structures, such as pavements and bridge decks. The main challenge is to select
the frequency to be applied in order to measure the slab thickness and the base layer
thickness and condition, as generally the slab is laid over a lean concrete layer. The central
frequency of the antenna has to be lower in order to detect the interface between the lean
concrete and soil, as the GPR wave dissipation in concrete is higher than in asphalt or in
aggregates. Similar to ballasted railways, antennas with different central frequencies can be
used for different purposes. In this case, the lower frequencies for layer thickness, and void
and mud detection under the slabs [113], and higher frequencies for detecting debonding
between sleepers and slab, cracks at the interface, and the rebar location [112]. In the case
of ballastless railways, GPR is generally applied together with other NDT methods, such
as the impact-echo method (IEM) and ultrasonic testing.

It can be concluded that GPR represents an important tool for railway assessment in
order to support the asset management of this transport infrastructure.

8.3. Retaining Walls

GPR assessment of retaining walls is focused on many cases in the detection of the
contact between the wall and the natural soil, in the search of voids or changes in water
content. Other objectives depend on the type of wall.
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In the case of most of the cantilever walls and concrete retaining walls, one of the
objectives is the detection of the rebar [115,116]. In those cases, the application is similar to
other usual inspections of concrete structures [302], and antennas with central frequencies
higher than 900 MHz are normally used because the presence of metal mesh makes difficult
the signal penetration to deeper targets, in the case of high density of rebar. However,
several layers of reinforcement could be mapped and represented using 3D images of GPR
slices [116], with the rebar position and structure perfectly detected and even including
other reinforcement structures such as dowels [116,302]. The main difficulty for an accurate
3D representation of the vertical and horizontal rebar structure is the control of the exact
position of the antenna [302]. Tests in different types of structures indicate that the accuracy
of the antenna position in order to obtain precise 3D images is within 1 cm for m2 [303].
Hugenschmidt and Kalogeropoulus [116] propose a 1 cm separation between the profile
lines, and develop and use a survey apparatus based on guides for the antenna and an
electric motor to move up and down the antenna on the wall, covering the entire surface
with precision. Another important step in 3D imaging is the processing that requires
in all cases an appropriate migration [116,303]. Hugenschmidt et al. [117] test different
processing strategies, comparing results from the most classical 2D filter sequence and
3D processing with an inverse scattering followed by data fusion. The results show that
the most classical processing allows for the detection of the top layer of the rebar, which
decreasesing the resolution extremely, and focuses on the second layer of vertical bars,
although the 3D processing followed by fusion showed the vertical and horizontal bars
in the top layer of the rebar. The most complete map of both rebar layers was obtained
with the inverse scattering and data fusion. However, the second rebar layer is defined
with a lower quality image. The authors suggest that the influence of the concrete, acting
as a low-pass filter, and the screen effect of the top rebar layer mask the deeper targets,
highlighting the limits of dataset. Other authors also suggest the application of inverse
scattering techniques in the assessment of reinforced concrete walls focused on the rebar
location [304,305].

Therefore, concerning the detection of inner damage or the contact between the
wall and the natural soil, the result depends on the rebar density. Hugenschmidt and
Kalogeropoulus [116] and Hugenschmidt and Mastrangelo [302] test the results comparing
three different center frequency antennas: 1.5 GHz, 900 MHz and 400 MHz. The results
epitomize that, although the resolution decreases as the central frequency decreases, as
expected, the lower frequency does not allow greater penetration into the medium. Hence,
the inspected depth is the same in all cases as a consequence of the screen effect of the
metallic rebar.

GPR assessment is also a promising tool in the case of quality control of retaining
walls in deep excavations in unstable soils. In those cases, borehole GPR could be used
before the excavation in order to check the integrity of the structure, detecting zones with
possible defects, and increasing the safety of the dig. There are few applications of borehole
GPR in the literature, most of them being in tunnels during the excavation [306] and in
mining and geological explorations. The highest difficulty in this survey is determining
the azimuthal position of the targets, mainly in the case of single borehole GPR [307].

The objectives in the assessment of stone and masonry retaining walls include the
detection of foundations [119,120], the study of the structure [119], analyzing the contact
between stones [120] and determining layers in the wall [121]. In addition, different
damages or possible causes of damage are also examined. The most common analysis
focuses on the study of voids [308], cracks and discontinuity between stones [120]. In some
cases, the inspection focuses on the detection of changes in the mineral composition of
the ground that could affect the wall. This is the case in the analysis of changes in the
soil salt content [121] or sulphate and chloride content [309]. Changes in the aggregate
size also produces changes in the GPR images, showing a large scattering [310]. This
effect has been detected in the ground studies [311,312]. Those inspections require the
detection of both surfaces of the wall, as it is important to detect the contact between the
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ground and the wall. Therefore, the central frequency of the antennas used depends on
the aspects under interest. Beben et al. [115] utilize dual center frequency antennas of
200 MHz and 600 MHz to analyze the wall and the foundations and, depending on the
terrain conditions, an antenna with a central frequency of 80 MHz. Solla et al. [120] inspect
a stone retaining wall with a 1 GHz center frequency antenna, with survey lines in the top
of the wall to detect the different stone layers and the contact between the wall and the
ground, and the foundations. Santos-Asunçao et al. [121] use an 800 MHz center frequency
antenna to detect a buried structure, and the 1 GHz and 2.3 GHz center frequency antennas
in the assessment of the state of the buried walls, obtaining 3D images and GPR slices.
Wiggenhauser et al. [310] check the inner structure of walls using two antennas with lower
central frequencies of 200 MHz and 400 MHz. In addition, several tests in laboratory [313]
or in field surveys [115] recommend the use of a high-frequency microwave synthetic
aperture radar between 1 GHz and 6 GHz in order to obtain B-scans or to generate 2D
slice images.

Wiggenhauser et al. [310] highlight the difficulty of the GPR and other NDT in the
inspection of masonry retaining walls as a consequence of the limited access to the surfaces
and their different stages of deterioration, whereas Santos-Assunçao et al. [121] remark the
problem in accurate data acquisition due to irregular stone surfaces and also the importance
of the precise position of the antenna, proposing a laser guide marking for the profile lines.

In general, although there are promising results in the assessment of retaining walls,
two of the main difficulties are the uncertainty because the different targets could produce
similar anomalies and the accurate position of the antenna, because in many cases data
are gathered on hard-to-reach surfaces or over irregular surfaces. Different authors pro-
pose methodologies and apparatus to facilitate accurate data collection in these difficult
conditions. Another inconvenience that affects the assessment of concrete reinforced walls
is the limit in penetration depth due to the screening effect of the rebar and the low-pass
filter effect of concrete. Although there is the application of accurate data processing, the
detection of the contact between the wall and the natural soil is not possible no matter
the frequency used. In the case of masonry walls composed of irregular stones and ir-
regular surfaces, ringing noise usually appears in the images that makes the detection of
pathologies (voids and cracks) difficult. In addition, there is not a standard procedure or
guideline in order to apply GPR surveys to the different types of walls, excepting the guide
proposed by the US Department of Transportation [114] and technical reports that include
the GPR between the NDT methods for retaining wall inspection [309] or define GPR
procedures [308] applied to different case studies. Finally, GPR wall inspection is usually
combined with a preceding visual inspection and other tests such as laser scanning [120],
infrared thermography, acoustic methods and X-Ray fluorescence material identification
through samples [309].

8.4. Bridges Health Assessment

Surveying stone masonry or concrete bridges differ in the GPR equipment and in data
acquisition methods used. Thus, the discussion on these types of structures reported herein
is presented separately.

8.4.1. Stone Masonry Arch Bridges

The application of GPR aims to reach the bridge foundations while analyzing the
shallower filling and structural elements. The 250 MHz and 500 MHz center frequency
antennas are therefore more commonly selected as the most suitable due to their optimal
compromise between penetration and resolution. Ground-coupled antenna configurations,
usually single antennas mounted on a trolley or manually on a survey cart, are used in this
type of bridge surveying. Alani et al. [132], Fauchard et al. [135], Pérez-Gracia et al. [140],
Solla et al. [128–131,137,144], Lubowiecka et al. [142] and Arêde et al. [145] employed a
combination of low (200–250 MHz) and medium (500–600 MHz) center frequency antennas
to evaluate the stone masonry health assessment. Additionally, higher frequencies were
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used in the 800 MHz to 2 GHz frequency range to estimate the thickness of masonry walls
and arches [124,132,134–136,138,140,141,143].

Longitudinal profile lines crossing the bridge in the common offset (CO) mode are rec-
ommended, with the antenna polarization being orthogonal to the direction of acquisition.
Generally, the GPR data acquisition is based on distance intervals, and the trace-interval
should be at least 5 cm (2 cm for the 500 MHz central frequency and 5 cm for the 250 MHz
central frequency). To measure the profile lengths and to control the trace distance interval,
an odometer wheel is usually attached to the GPR system. However, some stone masonry
arch bridges have a surface pavement composed of large irregular blocks, which make mea-
surements difficult, as the continuous movement of the survey wheel is often interrupted.
In such circumstances, the survey wheel should be previously calibrated on-site to avoid
inaccuracies in spatial trace positioning. Moreover, for these ancient structures that have
suffered several restorations or reconstructions throughout history, causing heterogeneity
in filling, it is recommended to survey more than one profile line in order to prevent
inappropriate data interpretation. Note that GPR profiles should be collected at a prudent
distance from the parapets of the bridge that may lead to airwave events (noise) coupled to
the reflected signal.

Testing standards for masonry arch bridge inspection were provided by the Interna-
tional Union of Laboratories and Experts in Construction Materials, Systems and Structures
(RILEM) Technical Committee (TC) 127-MS “Non-Destructive Tests for Masonry Materials
and Structures – test MS.D.3: Radar Investigation of Masonry” [314].

There are a large variety of processing filters to reduce clutter and any unwanted
noise in the GPR data collected over stone masonry bridges, in which complex reflection
patterns occur due to internal heterogeneity. The processing objectives are: (i) to correct the
downshifting of the radar section due to the air-ground interface (e.g., time-zero correction
or max. phase correction), (ii) to amplify the received signal in order to mitigate possible
losses or attenuations (e.g., gain function, automatic gain control or geometrical divergence
compensation), (iii) to suppress the continuous component (e.g., DC removal or dewow),
(iv) to remove horizontal continuous low-frequency reflectors (e.g., subtracting average or
background removal), (v) to remove both low- and high-frequency noise (e.g., band pass),
and (vi) to suppress strong clutter (e.g., deconvolution or migration). Additionally, ancient
bridges usually present a double-slope or steep profile, and topographic corrections are
therefore required to improve the accuracy in imaging subsurface features.

Some limitations were reported when measuring the thickness of voussoirs (or ring
stones) composing an arch from GPR data collected over the bridge’s pathway [144,145].
The conjunction of both the internal heterogeneity in filling and the more irregular inter-
nal shape of the voussoirs yields heavy signal scattering that often masks the reflection
produced at the filling-stone interface. To overcome this drawback, some authors [143]
have proposed to collect the GPR profiles directly through the inferior face of the vault.
However, this methodology is only operational if the vault intrados surface is accessible.
Another crucial piece of information for more accurate analytical calculations and structural
assessment of bridge structures is the thickness of the spandrel walls [143,149]. In this case,
the GPR profile lines should be conducted through the vertical walls of the bridge. It is
important to also mention the technical difficulties experienced during data acquisition,
firstly due to the difficult accessibility to the upper stonework of the bridge and, secondly,
due to the excessive weight of the antennas, especially with the 500 MHz antenna. Hence,
the use of a ladder is recommended to access the higher parts of the structure, as well as the
support of at least two operators in order to maintain both the GPR antenna and the survey
wheel in contact with the surface [149]. Further developments should include the design of
a measurement device and innovative methods for the acquisition of GPR data through the
less accessible parts of a bridge structure (e.g., vaults’ intrados, piers, and spandrel walls).

The analysis and interpretation of GPR data is often difficult due to the complexity of
stone masonry bridge structures and the heterogeneity of the building materials. In order to
understand the propagation of the GPR signal through media and its response (scattering),
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several electromagnetic simulators have been developed, in which particular scenarios
and soil properties can be modelled. One of the most employed is the finite-difference
time-domain (FDTD) algorithm, which is based on a discretization of both space- and
time-domain. Previous studies have demonstrated that realistic and large-scale models can
thus be simulated, which allows for a better approximation and comparison to real data in
order to assist interpretation. Solla et al. [130,133,137] present an interesting approach to
elaborate FDTD models using real geometries based on orthoimages of the bridge structure
provided by geomatics techniques (photogrammetric or laser scanning methods). However,
this simulation in fine detail requires excessive computational resources and time. In this
regard, Diamanti et al. [315,316] develop a numerical approach in which the subgridding
method was implemented into the standard FDTD method. Thus, micro regions can be
created, with different spatial-steps (or space discretization). Very fine spatial-steps would
be exclusively used to simulate smaller geometries such as cracks or delamination; hence,
the calculation time required to simulate the entire model is reduced.

The combination of GPR with complementary geophysical techniques (e.g., sonic/ultrasonic
testing, electric resistivity, infrared thermography, etc.) is highly recommended. Each par-
ticular method provides different information owing to the physical properties of the
construction materials, which allows for a more detailed investigation in the diagnosis of
bridge stability. Orbán and Gutermann [124] combine GPR, sonic testing, and infrared
tomography (IRT) to investigate hidden geometry, voids and cracks and moisture distribu-
tion in masonry and fill, as well as to define wet areas. Trela et al. [134] use geoelectrical
measurements of spectral induced polarization (SIP), combined with GPR, to evaluate the
moisture distribution inside the masonry. Fauchard et al. [135] present a combination of
GPR and electrical resistivity tomography (ERT). The GPR revealed internal damage such
as voids and delamination, while the ERT allowed one to characterize the transition zone
between the bridge and the riverbanks. Solla et al. [317] combine GPR and IRT, together
with FDTD modelling, to analyze the moisture in a medieval arch bridge. More recently,
Biscarini et al. [318] use GPR and IRT, together with UAV photogrammetry (RGB imaging),
to analyze material degradation and its causes in a Roman masonry bridge. Additional
information was found regarding the construction phases and restoring interventions of
the bridge. Furthermore, Alani et al. [319] present a holistic approach using GPR and
InSAR technologies to investigate both the subsurface geometry and the structural dis-
placements of masonry arch bridges certainly caused by water floods and the riverbed soil
expansions. Apart from non-invasive geophysics, there are a large variety of conventional
NDT methods that complements the GPR surveys. In this frame, Arêde et al. [145] con-
duct an integral campaign using GPR with other non-destructive and slightly-destructive
techniques oriented to estimate physical and mechanical parameters such as on-site stress
and masonry deformability (dynamic probing super heavy (DPSH), Ménard pressuremeter
(PMT) and flat-jack tests). Finally, it is possible to find several studies focused on the
structural assessment of stone masonry arch bridges that combine the use of GPR with
complementary geomatics techniques. Generally, these works use geomatics and GPR data
to create the model of the bridge structure to be simulated using the finite element method
(FEM) analysis [143,146,149,150]. Hence, the complex external geometry (metric informa-
tion) of the structure is provided through geomatics—terrestrial laser scanning (TLS) or
photogrammetry—while the GPR gives information of its internal composition [320]. More
exhaustive and robust modelling integrates GPR and complementary NDT, such as vibrant
ambient noise [136,140,141,148,151], sonic testing [141,148,151], impact–echo tests [141,151]
and thermography [136].

8.4.2. Concrete Bridges

GPR surveying of concrete bridges is mainly focused on rebar detection and mapping,
the estimation of deck thickness, damage detection such as cracking or delamination,
moisture and corrosion; as well as other deeper aspects such as foundations and pier
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assessments. The GPR systems, testing methodologies and analysis to be applied for all
these aspects are herein discussed.

Depending on the extension of the surveyed area, the depth required and the traffic
flow conditions, both ground-coupled and air-coupled antenna systems can be employed
in inspecting this type of bridge. Herein lies the difficulty of providing good quality data
sets while being completed rapidly and safely for both operators and users. Firstly, in
order to avoid traffic disruption, the air-coupled systems allow measuring at a higher
speed (with lower resolution measurements) as they are generally mounted on a van or
a vehicle. Next, measurements can be conducted for the whole length of the bridge or
only for selected areas of interest in both longitudinal and transversal directions. For
small survey areas and vertical surfaces, when a more detailed analysis is required (e.g.,
abutments, girders and piers), single ground-coupled antennas are most commonly used.
Conversely, for large survey areas, and particularly to map utilities and reinforcement, the
use of multi-channel systems is highly recommended. Array multi-channel systems are
preferred because they cover wider width measurements, which shorten the surveying
time, increasing the productivity, and benefiting 3D visualization and the reconstruction of
underground network. Moreover, these systems may use antennas arranged with different
polarizations. For instance, the optimization of antenna orientation to take advantage of
signal polarization is an important feature for successfully locating reinforcement; hence, a
hyperbolic reflection is obtained if the GPR profile line is conducted perpendicular to the
object direction.

Most commonly, the GPR was used to specifically locate the presence of any cracking
and delamination, moisture and corrosion, and to locate the rebar and ducts within the
concrete slab. For this purpose, the GPR systems generally used have frequencies higher
than 1 GHz (up to 2.6 GHZ). The 1 GHz frequency is capable of investigating up to
100–150 cm depth from the concrete surface, while the higher radar frequency has lower
depth of investigation, up to 15–20 cm, but means more resolution and accurate data
acquisition (it supports a higher sampling rate). For example, regarding resolution, the
2.0 GHz frequency can guarantee a theoretical resolution of 1.25 cm (quarter of a wavelength
criteria) in concrete.

Based on 20 years of operational experiences, Rhee et al. [175] propose a sampling
rate for bridge deck inspection using 1.0 GHz air-coupled GPR antenna sets between 12
and 14 scans/m depending on the highway speed. A sampling rate of 12 scans/m means
one scan per every 80 mm (with the vehicle where the GPR system is mounted driven at
the speed of 80–100 km/h). This sampling rate is much lower than the common sampling
rate for ground-coupled GPR operated by normal walking speed, about 50–200 scans/m.
In this regard, the recommendation in the Mara Nord’s project guidelines [152] states that
with air-coupled antenna systems, the sampling rate should be at least 10 scans/m, while
with ground-coupled antenna systems, a sampling rate of 100 scans/m is recommended.

The ground-coupled GPR system is usually mounted on a survey cart with an in-
tegrated encoder wheel that serves to measure the profile lengths and to control the
trace-interval. However, to obtain a good reconstruction of the surveyed area, the system
requires a good positioning, using a high precision global positioning system (GPS), a total
station, or even a local system of coordinates. On the other hand, the air-coupled GPR
systems are most commonly mounted on vehicles or other automatic measuring equip-
ment. The latter employs a differential RTK GPS and an encoder-based distance measuring
instrument (DMI) for real-time positioning. This global positioning eliminates the need
for predefined profile lines and provides a safer data acquisition, because the driver of
the mobile system can pay attention to the traffic flow instead of a predefined reference,
without reducing the accuracy of relative positioning. Another benefit of a good global
positioning is the fact that georeferencing allows for the integration of results obtained
from multiple technologies in a geographic information systems (GIS) environment, which
contributes to identify the location and extent of defects [169].
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The presentation of GPR data is usually carried out in the form of 3D maps, or time-
slices, at different depths. According to the recommendations provided by Mara Nord’s
project guidelines [152], for an accurate 3D data acquisition, the distance between parallel
profile lines should be a maximum of 50 cm with a 2D system and a maximum of 12 cm
with a 3D system. Then, the most generalized results on surveying bridge decks are 3D
maps of amplitude, which can be produced showing two types of information at the
same time [172]. Firstly, the rebar will appear as the most prominent (the steel/metal is a
complete reflector of the radar energy). Secondly, the corroded areas will be detected as
having low amplitudes (due to the lower dielectric permittivity than healthy rebar areas).
Additionally, potential areas of deterioration appear as zones of signal attenuation, and
the rebar will appear deeper (lower signal velocity) due to higher moisture and chloride
content. Color contour maps of deterioration can be therefore produced, mainly defining
moisture, delamination and corrosion. Deterioration maps should be created at different
depths in the concrete deck slab in order to estimate the extent of deterioration.

There are different regulations and standard test methods describing processing
methodologies to quantitatively analyze the GPR data that generally employ reflection
amplitudes. Stryk et al. [321] present an overview of existent recommendations for bridge
inspection, namely: the American standard ASTM D6087-08 “Standard Test Method for
Evaluating Asphalt-Covered Concrete Bridge Deck Using Ground Penetrating Radar” [53],
the American SHRP 2- report S2-R06A-RR-1 “Nondestructive Testing to Identify Concrete
Bridge Deck Deterioration” [322], the Mara Nord Project “Recommendations for guidelines
for the use of GPR in bridge deck surveys” [152], the British technical specifications DMRB
3.1.7 “Design Manual for Roads and Bridges, Advice notes on the non-destructive testing
of highway structures—advice note 3.5 BA 86/2006: Ground Penetrating Radar (GPR)” [5],
the German BASt-report B55 “Examination of GPR in combination with magnetic tech-
niques for the determination of moisture and salinity of concrete bridge decks with asphalt
cover” [323], and the German document B10 “Recommendation for nondestructive test-
ing of civil engineering structures by GPR” [324]. Additional standards including the
assessment of bridge decks are: The American AASHTO R 37-04 “Standard Practice for
Application of Ground Penetrating Radar (GPR) to Highways” [325], the American ACI
228.2R-98 “Nondestructive Test Methods for Evaluation of Concrete in Structures” [326],
and the American NCHRP RR 848 “Inspection Guidelines for Bridge Post-Tensioning and
Stay Cable Systems Using NDE Methods” [327].

The typical post-processing includes time-zero correction (set ground surface), back-
ground removal (remove horizontal banding), band pass filtering (remove high- and
low-frequency noise), and gain (amplify the received signal across depth range). Migration
is also recommended when identifying the rebar in a concrete slab in order to reduce or
eliminate hyperbolic diffraction patterns in the data [180]. Thus, each pixel in the original
GPR images will be migrated focusing energy on the true rebar locations; hence, the in-
tensity values of the pixels at a true object location will end up having the sum intensity
value of all the pixels on the hyperbolic signature (the energy will be focused therefore on
those pixels). Moreover, a procedure known as depth correction is commonly applied [178],
where linear regression is used to normalize amplitudes in order to obtain a correct deterio-
ration map. The signal strength (amplitude) decreases with rebar corrosion, but also with
variation in the rebar depth. Reflections from deeper rebars are more attenuated than those
from shallower rebars due to a larger two-way travel time and, therefore, it is important to
apply this correction in order to minimize the effect of the rebar depth such that the overall
amplitude variation in the entire bridge deck will be only indicative of corrosion.

Although GPR data collection can be fast and efficient when surveying concrete
bridges, the interpretation of GPR data is a very time-consuming task and depends on
the interpretational abilities of the operator to provide accurate information and reliable
results. For example, for rebar detection application, and for a bridge deck with thou-
sands of rebars, it takes an extensive amount of time to manually identify and measure
the amplitude value of each rebar. Extensive literature exists, therefore, regarding the
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automatic detection of rebars in concrete bridge decks, which is based on detecting reflec-
tion hyperbola patterns. There is a large variety of computational methods that can be
applied, such as interpolation functions, a histogram of oriented gradients (HOG), a feature
descriptors-based multi-layer perceptron (MLP) classifier, a support vector machine (SVM),
a convolutional neural network (CNN), the limited and simplified hyperbolic summation
(LSHS) technique, partial differential equations (PDEs), the hidden Markov model (HMM),
a genetic algorithm, and the fuzzy logic approach. These computational methods are
described and applied in some relevant and recent studies [177–181] and, in most cases,
with accuracies greater than 95.0%. On the other hand, algorithms are also implemented to
extract the GPR amplitudes automatically from both the whole GPR signals and the rebar
peaks detected [165], [171], [174], generally after applying a migration procedure.

Some limitations can occur during concrete bridge inspections. Firstly, the steel/metal
is a quasi-perfect reflector of the radar-waves, which facilitates the rebar detection, but
deeper targets can be masked if it is a tight mesh. In this regard, collecting data in both
polarizations (with the dipoles perpendicular and parallel to data collection direction)
has benefits because the reflections produced by metallic targets perpendicular to the
data collection direction are weakly seen in data collected with dipoles parallel to the
scanning direction, so that other potential targets below them can be more easily detected.
Secondly, overlapping reflections are usually observed between consecutive bars that is
dependent on the spatial resolution of the antenna (higher frequencies provide a higher
resolution), which may lead to the misinterpretation of closest or smaller-diameter bars.
Resolution problems can also occur in sections with a too small concrete cover when
measuring pavement thickness. The selection of the most appropriate central frequency of
the antenna is therefore crucial herein. Moreover, another important parameter affecting
the location accuracy is the horizontal sampling. Dense horizontal sampling (scan spacing),
gives more accuracy on positioning and good quality data for further amplitude analysis,
although its main consequence is a decrease in the survey speed. Conversely, using a low
sampling rate may limit data visibility in the field and cause inaccurate adjustments of
hyperbolas peaks when processing. Thirdly, the 3D data acquisition (especially with single
GPR antennas) may incur an incorrect distance encoder calibration, position of the antenna
on starting/ending grid lines, improperly configured survey grid, georeferencing, etc. The
use of antenna arrays or automatic scanner systems makes the acquisition of 3D data easier
and thus encourages a wider use of 3D techniques although, in practice, these systems
usually have an excessive cost. For example, a higher sampling rate (higher number of
traces recorded) decreases a survey speed, which could result in higher survey costs and,
more importantly, could interrupt the traffic flow. Fourthly, the amplitude value is highly
dependent on various factors such as different depth to the top mat of the reinforcing
steel, weather conditions (e.g., humidity) during data acquisition, and concrete properties
(e.g., density, porosity, etc.), which makes the detection of corrosion and delamination only
difficult from the analysis of amplitude maps. Confirmation with the additional analysis
of other signal attributes (e.g., signal attenuation, signal-to-noise ratio and velocity of
propagation) or complementary NDT should be part of the process whenever possible.

Regarding the combined used of GPR with other complementary NDT, Sun et al. [174]
compare delamination maps from acoustic surveys with deterioration maps (signal at-
tenuation maps) from GPR. The results demonstrate that combining both techniques
will provide a complementary and comprehensive evaluation of concrete bridge decks,
although GPR detected more defects than acoustic methods. The acoustic method can
only detect near surface delamination, while GPR signals can penetrate concrete. Rathod
et al. [162] combine GPR with a rebar detector (profoscope), which uses electromagnetic
pulse induction technology to measure rebar diameter, spacing and cover depth which are
required to assess the load capacity of bridge decks. The results suggest that GPR gives
more consistent and accurate data with regards to spacing and cover. Dabous et al. [169]
successfully integrate infrared thermography (IRT) and GPR, mainly in indicating the
subsurface delamination of concrete bridge decks. In addition, the study demonstrates
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the feasibility of integrating the collected data into GIS for enhanced visualization of the
inspection results, which allows integrating data and gives a full-scale representation of the
condition of the inspected area. Other authors, such as Janků et al. [161] combine IRT and
GPR, but also ultrasonic pulse echo (UPE), for the detection of delamination in concrete
bridges. The results revealed the limited capability of GPR to detect cavities located just
beneath the surface, while UPE failed to detect such defects completely. On the other hand,
IRT was very successful at locating cavities near the surface, but only under convenient
weather conditions. GPR and UPE are better suited for locating deeper defects inside the
material. Dinh et al. [160] employ electrical resistivity (ER) and half-cell potential (HCP)
in order to validate the corrosion detected by GPR automatically from amplitude maps.
Barnes et al. [164] apply HCP and chain drag data as thresholds for an accurate damage
estimate from GPR amplitude maps. Abouhamad et al. [168] propose GPR in conjunction
with HCP and hammer sounding resistivity to find the appropriate GPR threshold and
use this information to correctly assess bridge deterioration. Alani et al. [183] use GPR
and IBIS-S (deflection and vibration detection sensor system with interferometric capabil-
ity) techniques for bridge assessment, which provide valuable information such as rebar
position, moisture ingress and deflection. To determinate the bridge condition, a FEM
(finite element model) of the bridge was then created using information obtained from
the NDT results and compared with the dynamic behavior of the bridge without defects.
Varela-Ortiz et al. [159] combine non-destructive load testing with GPR to obtain the safe
load-carrying capacity of concrete bridges. Thus, field load testing allowed one to calibrate
a FEM analysis and to accurately characterize the structure’s live-load response, while GPR
provided reliable information regarding the internal reinforcement and the condition of the
concrete. Varnavina et al. [172] use LiDAR technology and ultrasonic surface wave (USW)
testing to corroborate the spatial distribution of corrosion estimated by GPR.

8.5. Tunneling Inspection

GPR measurements in tunnels are generally conducted using 250 MHz, 500 MHz and
1 GHz center frequency antennas according to the requirements of resolution and depth.
When detecting the backfill grouting (grout mortar is commonly injected between the inner
lining and bedrock), low frequencies (200–100 MHz) are recommended to better penetrate
reinforcement, although results show a poor resolution. However, high frequencies (from 1
to 2 GHz) have shallower detecting depth, leading to a near-surface survey (e.g., detecting
rebar and defects or damage in lining). Both air-coupled and ground-coupled systems can
be used in tunnel diagnostics.

Generally, tunnels are inspected manually, by maneuvering the GPR antenna over
the surface of the tunnel, with single ground-coupled antennas using the mode of contin-
uous acquisition, which is very slow and inefficient. In the process of tunnel inspection,
longitudinal survey lines are most commonly arranged, with a range of three to six serial
lines located at the vault, the left hance, the right hance, the left sidewall, the right sidewall
and the inflected arch. It should be mentioned here that the connection with external
GPS devices for data referencing is obviously limited when surveying the interior of a
tunnel structure. Therefore, wheel encoders are used during data acquisition to ensure
the accuracy of ranging (trace interval) and location. Typical trace interval distances are:
5.0 cm (< 200 MHz), 2.5 cm (250 MHz), 2.0 cm (500 MHz) and 1.0 cm (> 1 GHz). So far,
the following practical problems that typically occur are: (1) loss of contact between the
antenna and the surface (the operator should ensure both the antenna and the survey wheel
are in contact with the surface, while keeping a constant (uniform speed) and continuous
rotation); (2) deviation of the antenna with respect to the radar line (the operator should
ensure the antenna position is consistent with the location of the acquisition line); and (3)
the presence of cables and conduits on the walls of the tunnel that makes it impossible to
collect data in those areas.

Due to the shortcomings of existing techniques using manual (hand-held) antennas or
even hydraulic supporting systems (mainly a vehicle bracket with an arm or a lifter to reach
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the top [188,191–193,195,328]), new GPR devices have been developed for higher speed
data collection and complete cross section scanning. In this regard, Balaguer et al. [329]
describe the current trends towards fully automated tunnel inspection, and introduce new
technologies such as robotic platforms, control algorithms and decision-making strategies.
Zan et al. [197] develop a train-mounted GPR system with multi-channel air-launched
antennas, and absolute positioning technology using GPS and GIS systems, in order to
not interrupt normal railway operation. In this system, recording data is controlled by a
distance sensor pulse, allowing for data collection to be fully automated. Using six sets
of 300 MHz air-launched antennas forming a full-section detecting system, with a trace-
interval of 5 cm, the maximum test speed can reach up to 175 km/h. A set of machinery was
designed by Xie et al. [330] consisting of arc-tracks connected to a shield tunnel machine in
order to detect grouting in real time during the construction phase. Both 500 MHz bowtie
and Vivaldi antennas were used, which automatically move along the tracks.

As previously mentioned, the detection efficiency is quite low when using ground-
coupled antennas, as they must be put close to the tunnel wall or roofs, which usually
requires traffic disruption due to slower survey speeds. Conversely, air-launched antennas
can be mounted on a vehicle with a certain distance to the wall. However, due to the
diffusion attenuation, some energy is lost in the air and the probing depth is shallower than
ground-coupled antennas. The American SHRP-2 report S2-R06G-RR-1 entitled “Mapping
voids, debonding, delamination, moisture, and other defects behind or within tunnel
linings” [331] recommends the use of air-coupled GPR antennas for detecting areas of high
moisture or low density, whereas ground-coupled antennas are recommended for detecting
defects at different cover depths within or behind the tunnel linings.

The extraction of information from the GPR data is often not a simple process. In
order to obtain a more distinct image, the radargrams are therefore enhanced using post-
processing filters. Most commonly, minimal filters are applied to ensure the minimal loss of
data. Time-zero is firstly corrected as the actual detection surface and the DC component is
then removed to normalize voltage. The dewow filter, band pass filter and deconvolution
are vertical (temporal) filters generally applied to remove DC. Gain is applied afterwards to
equalize the signal amplitude (e.g., linear and exponential gain or automatic gain control)
and, lastly, horizontal (spatial) filtering (e.g., subtracting average, background removal or
running average) can eliminate the noise or uncertain fluctuations in a given window.

Lyu et al. [332] apply the reverse-time migration (RTM) algorithm to improve the
detection accuracy of tunnel lining cavities. Compared with the Kirchhoff migration, the
RTM can better focus the energy of the diffraction wave on the position of the reflector
and reduce clutter (random scattering and multiple reflections from reinforcement), which
greatly improves data interpretation.

However, there are some negative factors adversely affecting the GPR detection. Firstly,
there are so many noisy signals from utilities (e.g., power cables) or metal (reinforcement)
in the tunnel. Shotcrete-containing steel fibers cannot be inspected because fibers generate
random electromagnetic scattering. Secondly, detecting grouting thickness requires enough
dielectric permittivity contrast between the grout and the soil to easily detect the boundary
between layers. In this regard, Zhang et al. [189] report that contrast in the dielectric
constant between the grout and the soil appeared to be sufficiently large fourteen days
after the grouting treatment.

In complex structures such as tunnels, the comparison of measured field data with
synthetic data has been proved to be a useful assisting tool for data interpretation. Numeri-
cal simulations are set up to predict the performance of the radar-wave and to recognize
typical reflection patterns, which allows one to obtain an accurate interpretation more
easily. There are some noteworthy studies showing that additional forward modelling has
increased the reliability of GPR results when inspecting internal rebar location and possible
damage, or even thickness of segments and grouting [189,194–196].

The GPR method was also applied in combination with other NDT methods in tunnel
diagnostics. Karlovšek et al. [333] include an overview of the non-destructive methods
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used for possible testing bored tunnels’ integrity (such as GPR, impact-echo, ultrasounds,
etc.), in which their pros and cons are briefly discussed. Cardarelli et al. [202] present an
integrated study using GPR, seismic refraction and seismic transmission tomography to
investigate tunnel stability. The interpretation of integrated data from GPR and seismic
tomography allowed for the detection of discontinuities in the rock (most likely associated
to open fractures), while the integration of GPR and seismic refraction is appropriate to
identify the loosened zone around the tunnel. Abraham and Dérobert [186] successfully
use GPR and seismic refraction to detect damaged zones and specific material properties
in fired tunnel walls. Xie and Zeng [193] combine GPR and 3D laser scanning for the
evaluation of a shielded tunnel condition, which demonstrates that GPR leads to the
detection of cavities behind lining, while laser scanning allows testing on surface situations
of tunnel liners (e.g., water seepage).

9. Final Remarks and Future Perspectives

The use of GPR for transport infrastructure assessment is increasingly trustworthy for
several purposes as already addressed in this paper. The reliability of the results is enabling
a more confident application of GPR together with complementary non-destructive tests
for the definition of key performance indicators (KPIs) in order to support the maintenance
decisions of transport infrastructure administrations [259,260,263].

Some researchers are focused on the design of innovative devices that facilitates
surveying in complex or inaccessible structures such as columns, walls and roofs. One
example is the device designed and tested by Hugenschmidt et al. [117] that consists of
a support for the antenna in rails moved with an electric motor. The assessment of tall
structures, in some cases with difficult accessibility, requires the development of gadgets
with the objective of rapid surveying while assuring accurate data acquisition and precise
antenna position. In this way, in some cases, the use of drones has been also proposed and
tested. The common application consists of the combination of a usual GPR survey with
a photogrammetric study by means of an UAV and other techniques [266,318]. However,
some authors propose prototypes to mount the GPR on an UAV [334]. This approach
requires the design of novel portable antennas [335]. Some proposed devices provide
promising results, although the antennas could be improved in order to enhance the
signal-to-noise ratio, and additional tests are therefore needed to validate the results and
to calibrate the equipment [336]. Further progress could be focused on the development
of antennas and UAV systems for surveying structures or parts of the structures with
poor accessibility (roofs, tunnels, columns, etc.) and large structures (airports and roads).
Data acquisition using an UAV could be used for the surveying of punctual zones of the
structures, and combined with more traditional surveys (common offsets, CMP or WARR).
Moreover, additional tests could be needed to validate and compare the results with those
obtained by using common ground-coupled or air-coupled antennas.

Other interesting field of research is the combination of GPR, and other NDT, with
robotic platforms for autonomous surveys. Valuable proposals include a climbing robot
supporting a GPR and a camera for the inspection of damage in walls [337,338] or robots
specifically designed for disaster management that could integrated different sensors (GPR,
LiDAR, cameras, etc.) on the platform [339]. The proposal of a big robotic platform with a
large number of sensors for autonomous pavement assessment [340] opens an interesting
line of research in the field of structures assessment. The development of those types of
devices requires studies for the integration of different sensors in the robotic system and
the progress on data fusion to obtain a complete and accurate inspection. An important
challenge in this field is the design of low weight equipment and fast and robust protocols
of communication, allowing for the visualization of data and interpreted models in real
time. The design of antennas to be mounted on robotic platforms for the assessment of
zones with difficult accessibility or landmine detection [341] is crucial in the advance of
combining cybernetics with NDT surveys. Moreover, most of the ongoing works are tested
in simple cases such as detecting rebars or metallic sheets. Most likely, robust and higher
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resolution antenna, as well as precise sensors for positioning might be developed and
tested in different environments.

As has already been referred to, the GPR data processing is time-consuming and still
a challenge. There is a trend in using artificial intelligence (AI) in automatic processing
and detection instead of the common detailed trace-to-trace processing and subjective data
interpretation. During the last decade, artificial neural networks associated with machine
learning techniques have been successfully applied to improve the GPR processing [342],
namely, the inversion approach to locate subsurface targets [343,344], reconstructing high-
quality relative permittivity maps of tunnel lining [345], rebar detection [346], and railway
ballast diagnosis through unsupervised processing [347,348].

Innovative technologies and modelling, such as LiDAR and BIM (building information
modelling), when combined with GPR, thermography and electromagnetic location, are
critical for transport infrastructures subsurface diagnosis, even more significant in dense
urban areas [349]. Highly reliable 2D and 3D mapping became possible in this way.
Thus, providing an “accurate” view of the occupied subsurface space, disruptions can be
prevented in the case of new constructions, consequently improving safety and accuracy of
excavation sites [350,351].

Research financed by H2020 also emphasize the importance of this matter, with the
following ongoing projects:

• GEOFIT [352] aims to develop a compact GPR for mapping the underground with an
accurate positioning measurement device (e.g., GNSS). Regarding the processing, a
retrofitting approach is studied, namely to search for meaningful features in the GPR
data. For this purpose, based on the library of patterns of interest developed in this
project, the pattern that best fits in the GPR image is found. In this way, a higher level
of automation will be achieved through automatic recognition of objects and patterns.
An additional objective of GEOFIT is to integrate models of retrofitted buildings and
construction sites (as-built BIM) with models of the underground situation.

• Asset4Rail [353] aims “to developing a set of cost efficient and cutting-edge asset-
specific measuring and monitoring devices . . . The information collected by such
devices will then be processed to generate relevant maintenance infrastructure-related
information to support asset management decision.” One of the main outputs ex-
pected from the project is to develop a new product for the NDT inspection of tunnel
lining based on GPR, LiDAR and thermal cameras, as well as to develop and validate
the drone inspection of tunnels and bridges. Additionally, a future trend is to inte-
grate the monitoring data into BIM models, mainly for tunnels and bridges, enabling
maintenance decisions function. “The resulting integrated BIM environment will con-
tain all current capabilities - a 3D BIM model carrying geometry, design information,
quantities etc., together with relevant linked documents, 5D costs, 6D maintenance
plans and similar – as well as a new capability for sensory readings, both real-time
and historical, enabling this data to be displayed side-by-side with all other relevant
asset and maintenance information, 3D model data and properties.”

• IM-SAFE [354] aims to support the European Commission (EC) and the European
Committee for Standardization (CEN) to prepare a new standard in monitoring for
optimal maintenance and safety of transport infrastructure based on consolidated and
accepted knowledge and experience in the EU and worldwide. Aligned with the topic
of this article, IM-SAFE includes the review of surveying technologies used in the
condition evaluation and diagnosis of bridges and tunnels (satellite imaging, LiDAR,
NDT active and passive testing technologies (such as GPR among others)). Moreover,
procedures will be adopted for determining damage detection indicators and actions
on structures in risk and safety analysis based on condition survey data, as well as
procedures for data quality assurance and digitalization (use of BIM, predictive twin
and other digital innovations).

To sum up, all the contributions herein presented have proven the benefits of the
wide application of GPR to on-site diagnosis, integration with complementary tests and
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geospatial visualization and management modelling. Nevertheless, there are still open
issues mainly focused on the development of algorithms for more efficient data processing
and interpretation, in addition to new systems and devices improving data acquisition
and quality. Furthermore, digital innovations are expected in a near future, including the
integration of GPR data into a GIS/BIM environment, augmented reality and predictive
modelling in order to support industry 4.0.
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351. Šarlah, N.; Podobnikar, T.; Ambrožič, T.; Mušič, B. Application of Kinematic GPR-TPS Model with High 3D Georeference
Accuracy for Underground Utility Infrastructure Mapping: A Case Study from Urban Sites in Celje, Slovenia. Remote Sens. 2020,
12, 1228. [CrossRef]

352. GEOFIT “Deployment of Novel GEOthermal Systems, Technologies and Tools for Energy Efficient Building retroFITting” Project
(Grant Agreement ID 792210) (May 2018–April 2022). Available online: https://cordis.europa.eu/project/id/792210 (accessed
on 24 December 2020).

353. Assets4Rail “Measuring, Monitoring and Data Handling for Railway Assets; Bridges, Tunnels, Tracks and Safety Systems”
Project (Grant Agreement ID 826250) (December 2018–May 2021). Available online: https://cordis.europa.eu/project/id/826250
(accessed on 24 December 2020).

354. IM-SAFE “Harmonised Transport Infrastructure Monitoring in Europe for Optimal Maintenance and Safety” Project (Grant
Agreement ID 958171). (November 2020–April 2023). Available online: https://cordis.europa.eu/project/id/958171/pl (accessed
on 30 November 2020).

http://doi.org/10.1109/ICIEA.2018.8397858
http://doi.org/10.5194/ars-18-23-2020
http://doi.org/10.1002/rob.21791
http://doi.org/10.1109/IWAGPR.2017.7996112
http://doi.org/10.1016/j.aci.2018.10.001
http://doi.org/10.3390/rs10050730
http://doi.org/10.3390/rs12183056
http://doi.org/10.1007/s12205-019-2012-z
http://doi.org/10.1117/1.JRS.9.095058
http://doi.org/10.1155/2018/4832972
http://doi.org/10.3390/rs12244028
http://doi.org/10.3390/rs12081228
https://cordis.europa.eu/project/id/792210
https://cordis.europa.eu/project/id/826250
https://cordis.europa.eu/project/id/958171/pl

	Introduction 
	GPR Equipment for Transport Infrastructures Surveying 
	GPR with Horn Antennas 
	GPR with Dipole Antennas 
	GPR with Antennas Array Multi-Channel 

	Overview on GPR in Roads and Airports 
	Roads 
	Airports 

	Overview on GPR in Railways 
	Ballasted Railways (Superstructure and Substructure) 
	Ballastless Railways 

	Overview on GPR in Retaining Walls 
	Overview on GPR in Bridges 
	Stone Masonry Arch Bridges 
	Concrete Bridges 

	Overview on GPR in Tunneling 
	Discussion Table on Limitations and Best Practices 
	Roads and Airports 
	Soil Subgrade Assessment and the Detection of Bedrock 
	Pavement Layer Thickness Analysis 
	Damage Assessment: Detection of Voids and Cracks 
	Damage Assessment: Debonding 
	Damage Assessment: Moisture 
	Quality Control of New Structures: Asphalt Air Void Content and Segregation 
	Rebar Detection and Corrosion 
	Recent Developments and Applications 

	Railways Inspection 
	Retaining Walls 
	Bridges Health Assessment 
	Stone Masonry Arch Bridges 
	Concrete Bridges 

	Tunneling Inspection 

	Final Remarks and Future Perspectives 
	References

