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Abstract: Remote-sensing images constitute an important means of obtaining geographic information.
Image super-resolution reconstruction techniques are effective methods of improving the spatial
resolution of remote-sensing images. Super-resolution reconstruction networks mainly improve
the model performance by increasing the network depth. However, blindly increasing the network
depth can easily lead to gradient disappearance or gradient explosion, increasing the difficulty of
training. This report proposes a new pyramidal multi-scale residual network (PMSRN) that uses
hierarchical residual-like connections and dilation convolution to form a multi-scale dilation residual
block (MSDRB). The MSDRB enhances the ability to detect context information and fuses hierarchical
features through the hierarchical feature fusion structure. Finally, a complementary block of global
and local features is added to the reconstruction structure to alleviate the problem that useful original
information is ignored. The experimental results showed that, compared with a basic multi-scale
residual network, the PMSRN increased the peak signal-to-noise ratio by up to 0.44 dB and the
structural similarity to 0.9776.

Keywords: remote sensing; super-resolution reconstruction; pyramidal multi-scale residual network;
multi-scale dilation residual block; hierarchical feature fusion structure; complementary block

1. Introduction

Image resolution indicates the amount of information contained in an image [1].
A high-resolution (HR) image has a higher pixel density, higher definition characteristics,
and more detailed texture information than a low-resolution (LR) image. Whereas image
resolution is the number of pixels in an image, spatial resolution indicates the minimum
size of ground targets whose details can be distinguished and is used in the field of
remote sensing. In remote-sensing images, high spatial resolution enables the changes
in surface details to be observed more clearly on a smaller spatial size [2]. In actual
scenes, some remote-sensing satellites only provide low-spatial-resolution remote-sensing
images that do not meet actual usage requirements. Single-image super-resolution (SISR)
reconstruction techniques use software methods to improve the spatial resolution of remote-
sensing images without changing the imaging system, which makes the use of these images
advantageous [3].

The popular SISR reconstruction techniques are mainly based on conventional algorithms
and learning-based algorithms. Conventional algorithms are divided into interpolation-based
and sparse-based representation methods. Interpolation-based methods, e.g., the bicubic
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interpolation algorithm (Bicubic), are simple to implement and have been extensively
used; however, linear models have a poor ability to recover high-frequency information [4].
Sparse-based approaches enhance the ability of linear models to recover high-frequency
information by using prior knowledge, but these methods are computationally complex
and require enormous amounts of computing resources [5]. Applying deep learning to
super-resolution reconstruction is an important method based on learning that involves
constructing an end-to-end convolutional neural network (CNN) model to learn the map-
ping relationship between LR and HR images [6]. Unlike conventional algorithms, it can
recover high-frequency information without requiring enormous computing resources;
consequently, super-resolution (SR) reconstruction based on deep learning has become a
research hotspot.

Recently, extensive results have been obtained through the application of deep-
learning CNNs to SISR reconstruction techniques [7]. In 2014, Dong et al. [6] proposed
the SR convolutional neural network (SRCNN) model, which was the first to use a neural
network to learn end-to-end mapping between LR and HR images; however, the input
up-sampled images increased the amount of calculations performed in the network model.
Thus, in 2016, Dong et al. [8] proposed the fast super-resolution convolutional neural
network (FSRCNN), which used a deconvolution layer to serve as a reconstruction struc-
ture to reduce the amount of calculations of the network model. However, this caused
checkerboard artifacts [9] in the reconstructed images, owing to pixel overlap. In 2016,
Shi et al. [9] proposed an efficient sub-pixel convolutional neural network (ESPCN) to
reconstruct images by using sub-pixel convolution and solved the checkerboard artifact
problem. However, the network depth was less than five layers, causing the SR images
reconstructed by this network to possess poor definition.

In 2015, He et al. [10] proposed the residual network (ResNet), which used a residual
structure to solve the problem of the inability to perform training when the number of
network layers was large. Therefore, adding a ResNet can increase the number of network
layers to enhance the feature extraction capabilities of the network [10]. On this basis, in
2016, Kim et al. [11] proposed the very deep super-resolution (VDSR) network which used
numerous residual structures in the SR reconstruction network. Further, in the same year,
Kim et al. [12] proposed the deeply recursive convolutional network (DRCN) and applied
a recursive neural network structure in SR processing for the first time based on VDSR.
However, the reconstructed image effects was poor when the up-sampling factor is eight or
higher. Therefore, in 2017, Lai et al. [13] proposed the Laplacian super-resolution network
(LapSRN), which obtained better reconstruction effects with a high up-sampling factor
based on the method of residual prediction implemented in a step-by-step manner and with
the design of a new loss function. The reconstruction effect represents the definition of the
SR image [13]. In 2017, Lim et al. [14] proposed the enhanced deep super-resolution (EDSR)
model, which eliminated the batch normalisation (BN) operation so that the model size
could be increased to improve the quality of the outcome. However, the network model
contained numerous parameters and was difficult to train. In 2018, Li et al. [15] proposed
the multi-scale residual network (MSRN), which combined local and global features to
solve the problem of feature disappearance in the transmission process. However, the up-
sampling operation lost the feature information of the original image. In 2019, Hui et al. [16]
proposed the information multi-distillation network (IMDN) to construct a lightweight
multi-distillation block that could reconstruct SR images rapidly. In 2020, Tian et al. [17]
proposed the coarse-to-fine super-resolution convolutional neural network (CFSRCNN)
with multiple refining modules to increase the model stability. However, the feature
extraction capabilities of these two networks were insufficient, and the reconstruction
effects need to be improved.

In summary, the current popular methods usually possess the following shortcomings:

1. Difficulty recurring network models: most SR reconstruction models require opera-
tors to have superior training methods; meanwhile, some SR reconstruction models
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have many network layers, which require sophisticated hardware equipment. These
characteristics make these network models difficult to recur.

2. Inadequate feature utilisation: blindly increasing the number of network layers
will aggravate image feature forgetting; however, using only a single up-sampling
operation to increase the number of pixels in the final reconstruction stage will cause
some of the LR image information to be lost.

In view of the above shortcomings, this report presents a novel multi-scale dila-
tion residual block (MSDRB) and new complementary block (CB) for reconstruction and
proposes a new pyramidal multi-scale residual network (PMSRN). Firstly, the dilation
convolution combination with multiple dilation rates is used to improve the receptive field
and reduce the difficulty of training. Simultaneously, to integrate image features of different
scales more effectively, hierarchical residual-like connections (namely, Res2Net [18]) are
introduced into the MSDRBs to achieve a more granular multi-scale feature representation.
On this basis, to solve the problem of forgetting and underutilising network features as
much as possible, the output of each MSDRB layer is used as the input of the hierarchical
feature fusion structure (HFFS). Finally, the CB module designed during the reconstruction
process can fully utilise the useful information in the original LR image.

The contributions of this study are as follows:

1. A new MSDRB is proposed. This module expresses multi-scale features with finer
granularity, increases the receptive field of each network layer, and enhances the
ability to detect image features adaptively.

2. To fuse the shallow and deep features, a new reconstruction CB is proposed. This
module can fully utilise the useful information in the original LR image, prevent
network instability, and improve the network robustness and image reconstruction
effect.

3. The proposed PMSRN is easier to train than other networks, since its number of
parameters is only 43.33% of that of EDSR, and the module is independent and easy
to migrate to other networks for learning.

The remainder of this paper is organised as follows. Section 2 introduces the MSDRB
and reconstruction part of the CB module and describes the relevant theoretical analysis.
Section 3 presents the experimental results and analyses the effectiveness of the algorithm.
Section 4 discusses the practical application effects of PMSRN in different scenarios. Finally,
Section 5 outlines the conclusions.

2. Materials and Methods

The proposed method is suitable for the SR reconstruction of single LR images. To
ensure that the proposed method is universally applicable to images from different sensors,
a red–green–blue (RGB) colour model is used to convert all the bands in the image. Because
these bands have the same spatial resolution, each low-spatial-resolution image can obtain
the corresponding three-channel image to be reconstructed and use it as the network
model input.

2.1. Network Architecture

The objective of SR reconstruction is to reconstruct a high-definition SR image ISR∈RWr×Hr×C

from an LR image ILR∈RW×H×C by learning the mapping between LR and HR. The number
of RGB space channels C is 3, the LR version of the HR image IHR∈RWr×Hr×C is ILR, W and H,
respectively, represent the width and height of the LR, and r represents the up-sampling factor
during SR reconstruction. After the network is trained and learned, the weight coefficient set θ̂
obtained as:

θ̂ = argmin
θ

1
N

N

∑
i=1

LSR(Fθ(ILR
i ), IHR

i ). (1)

Here, according to the MSRN [15], i represents the ith image in the Nth training set,
and LSR represents the loss function used in an SR reconstruction network. The gradient-



Remote Sens. 2021, 13, 666 4 of 25

descent method is used to minimise LSR to obtain the mapping function Fθ of the optimal
model. Several researchers have begun to study the loss function LSR to improve network
performance through the innovative LSR; however, the network performance improvement
is not evident [15]. In order to avoid introducing unnecessary training methods and reduce
computations, we finally choose the L1 function. Therefore, the loss function LSR can be
defined as:

LSR(Fθ(ILR
i ), IHR

i ) =
∣∣∣∣∣∣Fθ(ILR

i )− IHR
i

∣∣∣∣∣∣1. (2)

The PMSRN is an improved version of the MSRN. This architecture can reconstruct
SISR images into higher resolution images, mainly through feature extraction and image
reconstruction. Figure 1 shows the overall architecture.

Figure 1. Pyramidal multi-scale residual network (PMSRN) model architecture. The network model includes two parts:
feature extraction and reconstruction. Feature extraction is performed by the hierarchical feature fusion structure (HFFS)
and eight multi-scale dilation residual blocks (MSDRBs), and reconstruction mainly involves a complementary block (CB).

In the training process, firstly, the RGB colour model is used to convert all the bands
contained in the public image to obtain the HR image. Secondly, the LR obtained by the HR
through the Bicubic down-sampling operation is used as the PMSRN input. Thirdly, the
PMSRN uses multiple MSDRBs to learn the feature mapping relationship between the LR
and HR. Furthermore, the global and local feature information are subsequently combined
through the HFFS. Finally, the CB reconstructs the SR image.

Our approach differs from the original MSRN [15] in two main aspects:

• In the feature extraction, the MSDRB replaces the multi-scale residual module.
• In the reconstruction part, a CB module was added.

2.1.1. Multi-Scale Dilation Residual Block (MSDRB)

Firstly, in order to provide the network with stronger multi-scale feature extraction
capabilities, an MSDRB (Figure 2) was designed in PMSRN. The MSDRB consists of three
parts: multi-scale fusion, multilevel residual learning, and multi-dilation-rate dilated
convolution groups.



Remote Sens. 2021, 13, 666 5 of 25

Figure 2. MSDRB structure, with four layers divided into three branches. Branch 1 contains the hierarchical residual-like
connections (namely, Res2Net) residual block, activation function (i.e., rectified linear unit, ReLU), and concatenation
operation. Branches 2 and 3 contain the dilation convolution with dilation rates d of 2 and 3, respectively; ReLU; and
concatenation operation. The outputs of branches S3, P3, and Q3 are output as S′ after concatenation and 1 × 1 convolution.
Finally, S′ is feature-added with Bn−1.

Multi-Scale Feature Fusion: the multi-scale nature of the image is similar to that of
the human eye observing an object. When the distance from the object is different, the
perceived characteristics are different; that is, with the same object in the field of view,
the image size and scale are different, so the features are also different [19], multi-scale
information is crucial to computer vision algorithms.

In the first-layer network structure, the input Bn−1 passes through the Res2Net resid-
ual block of branch 1, is activated by the activation function rectified linear unit (ReLU,
represented by σ), and outputs S1; input Bn−1 passes through the dilation convolution of
branch 2 (dilation rate d = 2), is activated by the ReLU activation function, and outputs
P1; input Bn−1 passes through the dilation convolution of branch 3 (dilation rate d = 3), is
activated by the ReLU activation function, and outputs Q1. The structure outputs S1, P1,
and Q1 can be expressed as follows:

S1 = σ(w1
3×3,Res2Net ∗ Bn−1 + b1), (3)

P1 = σ(w1
3×3,d=2 ∗ Bn−1 + b1), (4)

Q1 = σ(w1
3×3,d=3 ∗ Bn−1 + b1). (5)

In the second-layer network structure, the inputs S1, P1, and Q1 output [S1, P1, Q1]
through the concatenation operation. [S1, P1, Q1] passes through the Res2Net residual
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block of branch 1, is activated by the ReLU activation function, and outputs S2. Then,
[S1, P1, Q1] passes through the dilation convolution of branch 2 (expansion rate d = 2), is
activated by the activation function ReLU, and outputs P2. Further, [S1, P1, Q1] passes
through the dilation convolution of branch 3 (expansion rate d = 3), is activated by the
activation function ReLU, and outputs Q2. The outputs S2, P2, and Q2 of the network
structure of the second layer can be expressed as follows:

S2 = σ(w2
3×3,Res2Net ∗ [S1, P1, Q1] + b2), (6)

P2 = σ(w2
3×3,d=2 ∗ [P1, S1, Q1] + b2), (7)

Q2 = σ(w2
3×3,d=3 ∗ [Q1, P1, S1] + b2). (8)

In the third-layer network structure, the inputs S2 and P2 of branch 1 output [S2, P2]
through the concatenation operation, which is activated by the ReLU activation function
and outputs S3. The inputs S2 and Q2 of branch 2 output [S2, Q2] after the concatenation
operation, which is activated by the ReLU activation function and outputs P3. The inputs
Q2 and P2 of branch 3 output [Q2, P2] after the concatenation operation, which is activated
by the ReLU activation function and outputs Q3. The network structure outputs S3, P3 and
Q3 of the third layer can be expressed as follows:

S3 = σ([S2, P2]), (9)

P3 = σ([S2, Q2]), (10)

Q3 = σ([Q2, P2]). (11)

In the fourth-layer network structure, the inputs S3, P3, and Q3 are subjected to the
concatenation operation; the output is [S3, P3, Q3], which is filtered by a 1 × 1 standard
convolution kernel and outputs S′. The output S′ of the fourth layer can be expressed as:

S′ = σ(w4
1×1 ∗ [S3, P3, Q3] + b4). (12)

In (3)–(12), w and b represent the weight and bias, respectively; the superscripts
represent the numbers of layers; the subscripts 1 × 1 and 3 × 3 represent the sizes of the
convolution kernels; the subscript Res2Net represents the convolution type as hierarchical
residual-like connections; and the subscript d represents the dilation convolution with
dilation rate d.

Let us assume that the number of channels of the MSDRB input Bn−1 is n_feats; then,
the numbers of output channels of the internal first, second, and third layers are n_feats,
3 × n_feats, and 6× n_feats, respectively. In the fourth layer, the number of output channels
based on the feature map concatenation is 18 × n_feats, and the number of feature map
channels is reduced to n_feats again with a 1 × 1 convolution kernel.

Multilevel Residual Learning: inside a single MSDRB, Res2Net represents multi-scale
features with a level that is more granular and increases the receptive field range of each
network layer. Specifically, the module replaces a single 3 × 3 convolution kernel with a
convolution kernel group. Simultaneously, different convolution kernels can be connected
in the form of hierarchical residuals (Figure 3b).
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Figure 3. Comparison of ResNet and Res2Net structures. Inside Res2Net, a single 3 × 3 convolution
kernel is replaced with a convolution kernel group. (a) ResNet module and (b) Res2Net module.

The internal operation of Res2Net can be defined as:

Y1 = X1 = M1, (13)

Y2 = X2 ∗ (3× 3) = M2, (14)

Y3 = (M2 + X3) ∗ (3× 3) = M3, (15)

Y4 = (M3 + X4) ∗ (3× 3) = M4. (16)

The input image features are filtered by a 1 × 1 standard convolution operation and
copied into four pieces of feature information, namely, X1, X2, X3, and X4. In Res2Net,
the outputs of different receptive fields are obtained. For example, Y2, Y3, and Y4 obtain
the receptive fields of the standard convolutions 3 × 3, 5 × 5, and 7 × 7, respectively.
Finally, the four outputs are fused, and the number of output channels is reduced to the
number of input channels after a 1× 1 convolution operation. This strategy of splitting and
fusing enables convolution to process features more efficiently. Note that the MSRN has
stronger feature extraction capabilities [15] than the ResNet, dense residual network [20],
and inception [21]. To illustrate further the necessity of introducing the Res2Net module,
we conducted an experimental comparison with MSRN (discussed in Section 3.1.2).

Outside the MSDRB, add the corresponding elements of S′ and Bn−1 and output Bn,
which is expressed as:

Bn = S′ + Bn−1. (17)

Multi-Dilation Rate Dilated Convolution Group: although this group improves the
receptive field and reduces the amount of calculation, the resolution loss is minimised.
Dilated convolution is used to set different dilation rates d to obtain different receptive
fields. Adding d − 1 zeros to the convolution kernel will not increase the amount of
calculation. Figure 4 shows dilated convolution kernels at different d values.
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Figure 4. Schematic of dilated convolution. Red pixels represent non-zero weight values, white pixels
represent zero weight values, and the matrix composed of red pixels is the size of the receptive field:
(a) d = 1, dilation convolution with a receptive field size of 3 × 3, the same as that of the standard
convolution; (b) d = 2, dilation convolution with a receptive field size of 5 × 5; (c) d = 3, dilation
convolution with a receptive field size of 7 × 7.

If the amount of calculation remains constant, different dilation rates d will make the
standard convolution k × k have different receptive fields R. The receptive field of dilation
convolution [22] can be calculated as follows:

R = (d− 1)(k− 1) + k. (18)

The calculation based on (18) shows that when d = 1, 2, and 3, the dilation convolution
(Figure 4a–c) is equivalent to a 3 × 3, 5 × 5, and 7 × 7 receptive field of the standard
convolution, as used in branches 1, 2, and 3 in Figure 2, respectively.

Different branches constructed in this manner have different receptive fields. Com-
bined with the above multi-scale feature fusion and multilevel residual learning, the
PMSRN can increase the amount of calculation by a small margin and enhance the ability
to detect image feature information (see Section 3.2.3 for a discussion of the correspond-
ing experiments).

2.1.2. Complementary Block (CB) in Image Reconstruction Structure

Secondly, in order to fuse the shallow and deep features, a new reconstruction CB is
proposed in PMSRN. A CB is constructed in the reconstructed structure of the PMSRN, and
its input consists of two parts, namely, original image feature B0 and the HFFS (Figure 5).
The HFFS is a global and local feature fusion structure. The inputs B0, B1, . . . , and
Bn are subjected to the concatenation operation, and the output is filtered through two
convolution layers.

B0 and the HFFS respectively perform sub-pixel convolution operations (Figure 6)
and rearrange the tensor with dimensions H ×W × C·r2 as rH × rW × C. Then, the corre-
sponding elements are added, and the features are reconstructed as SR images after 3 × 3
standard convolution filtering. The CB module integrates the global and local features, effec-
tively utilises the original feature information, and prevents information loss. Section 3.1.1
analyses the necessity of the CB module.
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Figure 5. Reconstruction structure of the PMSRN, which mainly consists of the CB module. The
CB module input includes two parts, namely, the original image feature information B0 and the
HFFS. The two parts of the input perform sub-pixel convolution operations, and the corresponding
elements are added to reconstruct the SR image. The HFFS concatenates the inputs B0, B1, . . . , and
Bn and outputs them after two layers of convolutional filtering.

Figure 6. Schematic of the sub-pixel convolution operation. The sub-pixel convolution rearranges
the tensor with dimensions of H ×W × C·r2 to rH × rW × C.

2.2. Datasets

To facilitate experimental comparisons with other SR reconstruction networks, the
publicly available, high-quality image dataset, diverse 2K (DIV2K) [23], was selected, which
contained 800 training and 100 verification images. In the test phase, the remote-sensing
images used in the test stage contained numerous regular roads, buildings, fields, and
other features with increased requirements for detailed texture, while the DIV2K training
set images showed clear details. By learning the mapping relationship between the LR
and HR of the DIV2K training set, the ability of the network model to distinguish detailed
textures can be enhanced to improve the spatial resolution of the remote sensing image.
Therefore, the DIV2K dataset can be applied to the SR reconstruction of remote-sensing
images. The aerial image dataset (AID) is a remote sensing image dataset that includes
30 categories of scene images, each of which has approximately 220–420 pieces (a total of
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10,000 pieces), and each image size is 600 × 600. A total of 7614 high-definition images
were selected as the new dataset, of which 80% (6768) were used as the training set, 10%
(846) as the verification set, and 10% (846) as the AID-test.

The DIV2K dataset is used in the comparative experiments described in Sections 3.1 and 3.2.
The AID dataset is used to compare the effect of remote-sensing image reconstruction, as de-
scribed in Sections 3.3 and 4. Both training sets have 2× (r = 2), 3× (r = 3), 4× (r = 4), and
8× (r = 8) training sets with four different up-sampling factors. To improve the training effi-
ciency, the LR image input after bi-cubic down-sampling was divided into multiple training
images with a size of 64× 64, and sent to the network model for training. Before training, each
training block was randomly scaled, rotated, and flipped to increase the training data.

In the test phase of Section 3.2, five public datasets were used: Set5 [24], Set14 [25],
BSDS100 [26] (B100), Urban100 [27], and Manga109 [28]. The test sets Set5 and Set14 are low-
complexity, single-image, SR reconstruction datasets based on non-negative neighbourhood
embedding; BSDS100 and Urban100 comprise 100 images each; and the Manga109 dataset
contains 109 high-quality Japanese cartoon images, which can fully verify the performance
of the model. Both the PMSRN model and MSRN are trained in RGB space to evaluate
their performance. In Section 3.3, the AID-test set will be used as the test set to compare
the reconstruction effect of PMSRN on different training sets.

2.3. Experimental Environment

The initial learning rate lr of the PMSRN network is 0.0001, and the learning rate
decreases by 50% every 200 epochs. The optimiser was the Adam optimiser [29]. Eight MS-
DRB (n = 8) were used in the model. The number of input channels of each MSDRB was
equal to that of the output channels, and the number of output channels of the HFFS mod-
ule was consistent with that of a single MSDRB. Two NVIDIA GeForce RTX 2080Ti were
used to train the PMSRN model on the Pytorch framework. When there is a corresponding
HR image, two evaluation standards, peak signal-to-noise ratio (PSNR) [30] and structural
similarity (SSIM) [30] are used for evaluation. The higher the PSNR/SSIM value, the better
the SR image reconstruction effects.

3. Results
3.1. Necessity of Introducing CB and Res2Net Modules
3.1.1. Benefits of CB

To utilise the global and local feature information fully and enhance the reconstruction
effect of SR images, a CB is added to the reconstruction structure of the model. An ex-
periment was performed to analyse the relationship between the peak signal-to-noise
ratio (PSNR) of the diverse 2K (DIV2K) verification set and the training batch epoch to
confirm the network improvement effected by the CB. Figure 7 compares the PSNRs of
the MSRN-CB and FSRCNN, MSRN, and IMDN networks in the epoch range of 0 to 100;
curves of different colours are used to indicate different networks. Note that to verify the
effectiveness of the CB module, no pre-training parameters (training methods) were used
to initialise any of the networks.

The PSNR training curves of the deep network (more than 20 layers) MSRN (blue line),
MSRN-CB (green line), and IMDN (purple line) are much higher than that of the shallow
network (fewer than 5 layers) FSRCNN (orange line). The MSRN-CB (green line) has the
highest PSNR curve and the highest rising speed. With increasing r, the PSNR curve of
the MSRN-CB becomes increasingly flat, indicating that the CB module can effectively
improve the stability and robustness of the network model. To verify further the necessity
of introducing the CB module, the Manga109 test set was considered as an example, and
Table 1 compares the PSNR/SSIM of the four models.
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Figure 7. Cont.
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Figure 7. Comparison of the peak signal-to-noise ratios (PSNRs) of the multi-scale residual network
(MSRN, blue line), MSRN-CB (green line), information multi-distillation network (IMDN, purple
line), and fast super-resolution convolutional neural network (FSRCNN, orange line) with training
on the diverse 2K (DIV2K) dataset and up-sampling factors r values of (a) 2, (b) 3, (c) 4, and (d) 8.

Table 1. Comparison of MSRN-CB with MSRN, IMDN, and FSRCNN. The numbers in red and blue
represent optimal and suboptimal values, respectively.

Algorithm (Dataset) Scale
Manga109

PSNR/SSIM

FSRCNN [8] 2× 36.10/0.9695
MSRN [15] 2× 38.50/0.9766
MSRN-CB 2× 38.50/0.9769
IMDN [16] 2× 38.47/0.9766

FSRCNN [8] 3× 30.76/0.9188
MSRN [15] 3× 33.51/0.9442
MSRN-CB 3× 33.63/0.9450
IMDN [16] 3× 33.21/0.9420

FSRCNN [8] 4× 27.71/0.8633
MSRN [15] 4× 30.42/0.9083
MSRN-CB 4× 30.49/0.9088
IMDN [16] 4× 30.19/0.9042

FSRCNN [8] 8× 22.82/0.7048
MSRN [15] 8× 24.40/0.7729
MSRN-CB 8× 24.43/0.7744
IMDN [16] 8× 24.22/0.7656

The MSRN-CB has the highest value on the test set Manga109. When r = 2, its PSNR
is 2.4 dB higher than that of the shallow FSRCNN, 0.03 dB higher than that of the deep
IMDN, and the same as that of the deep MSRN, and its SSIM reaches 0.9769. When r = 3, its
PSNR is 2.87 dB higher than that of the shallow FSRCNN and 0.42 dB and 0.12 dB higher
than those of the deep IMDN and MSRN, respectively, and its SSIM reaches 0.9450. When
r = 4, its PSNR is 2.78 dB higher than that of the shallow FSRCNN and 0.3 dB and 0.08 dB
higher than those of the deep IMDN and MSRN, and its SSIM reaches 0.9088. When r = 8,
its PSNR is 1.61 dB higher than that of the shallow FSRCNN and 0.21 dB and 0.03 dB higher
than those of the deep IMDN and MSRN, respectively, and its SSIM reaches 0.7744. It can
be seen that as r increases, the numerical gap between the MSRN-CB and the other three
network models increases, indicating that the MSRN-CB has a better reconstruction effect
for larger r.
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3.1.2. Benefits of Res2Net

To increase the receptive field of each network layer and enhance the multi-scale
feature extraction capability of the network, Res2Net was introduced as the MSRN-Res2Net
network. The experimental method, data, and comparison networks were the same as
those in the CB module experiment described in Section 3.1.1, and Figure 8 presents the
experimental results.

Figure 8. Comparison of the PSNRs of the MSRN (blue line), MSRN-Res2Net (green line), IMDN (purple line), and FSRCNN
(orange line) with training on the DIV2K dataset and up-sampling factors r values of (a) 2, (b) 3, (c) 4, and (d) 8.

The PSNR training curves of the deep network MSRN (blue line), MSRN-Res2Net
(green line), and IMDN (purple line) are much higher than that of the shallow network
FSRCNN (orange line). The MSRN-Res2Net has the highest PSNR curve and highest rising
speed. As r increases, the distinction between MSRN-Res2Net and the other three curves
becomes more obvious. To explain the necessity of adding Res2Net more effectively, Table 2
compares the four models according to the evaluation standard PSNR/SSIM.
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Table 2. Comparison of MSRN-Res2Net with MSRN, IMDN, and FSRCNN. The numbers in red and
blue represent optimal and suboptimal values, respectively.

Algorithm (Dataset) Scale
Manga109

PSNR/SSIM

FSRCNN [8] 2× 36.10/0.9695
MSRN [15] 2× 38.50/0.9766

MSRN-Res2Net 2× 38.68/0.9772
IMDN [16] 2× 38.47/0.9766

FSRCNN [8] 3× 30.76/0.9188
MSRN [15] 3× 33.51/0.9442

MSRN-Res2Net 3× 33.60/0.9454
IMDN [16] 3× 33.21/0.9420

FSRCNN [8] 4× 27.71/0.8633
MSRN [15] 4× 30.42/0.9083

MSRN-Res2Net 4× 30.65/0.9108
IMDN [16] 4× 30.19/0.9042

FSRCNN [8] 8× 22.82/0.7048
MSRN [15] 8× 24.40/0.7729

MSRN-Res2Net 8× 24.55/0.7790
IMDN [16] 8× 24.22/0.7656

MSRN-Res2Net has the largest value on the test set Manga109. When r = 2, its PSNR is
2.58 dB higher than that of the shallow FSRCNN and 0.21 dB and 0.18 dB higher than those
of the deep IMDN and MSRN, respectively, and its SSIM reaches 0.9772. When r = 3, its
PSNR is 2.84 dB higher than that of the shallow FSRCNN and 0.39 dB and 0.09 dB higher
than those of the deep IMDN and MSRN, respectively, and its SSIM reaches 0.9454. When
r = 4, its PSNR is 2.94 dB higher than that of the shallow FSRCNN and 0.46 dB and 0.23 dB
higher than those of the deep IMDN and MSRN, respectively, and its SSIM reaches 0.9108.
When r = 8, its PSNR is 1.73 dB higher than that of the shallow FSRCNN and 0.33 dB
and 0.15 dB higher than those of the deep IMDN and MSRN, respectively, and its SSIM
reaches 0.7790.

The numerical changes conclusively indicate that as r increases, the numerical gap
between the MSRN-Res2Net and the other three network models increases. Thus, the
network with Res2Net can also yield better reconstruction results when r is larger.

3.2. Comparisons with State-of-the-Art Methods
3.2.1. Comparison of Evaluated Results

The PMSRN was applied to five public datasets and compared with the conventional
algorithms and nine state-of-the-art SR methods based on CNNs. These included the
Bicubic model, SRCNN [6], FSRCNN [8], ESPCN [9], VDSR [11], DRCN [12], LapSRN [13],
EDSR [14], MSRN [15], IMDN [16], and CFSRCNN [17]. Note that the FSRCNN, MSRN,
IMDN and PMSRN used the trained network parameters with r = 2 to initialise the training
networks of other r values and retrain them in the RGB space. For the EDSR [14] and
CFSRCNN [17], the data in the corresponding original papers were cited, and for the
other methods [6,9,11–13], the comparative data in [15] were cited. Table 3 presents the
comparison results. The PMSRN (proposed method) achieved excellent performance for
all five public datasets.

Consider the Set5 test set as an example. Compared with other SISR methods, the
PMSRN produces superior PSNR and SSIM values. In the SR case with 2× (r = 2), the PSNR
of the PMSRN is 0.03 dB higher than that obtained with the suboptimal EDSR method
and 0.08 dB higher than that of the basic MSRN. In the 3× (r = 3) SR case, the PSNR of the
PMSRN is 0.01 dB higher than that of the suboptimal EDSR method and 0.21 dB higher
than that of the basic MSRN. In the SR case with 4× (r = 4), the PSNR of the PMSRN is
the same as that of the suboptimal EDSR method and 0.28 dB higher than that of the basic
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MSRN. In the SR case with 8× (r = 8), the PSNR of the PMSRN is 0.14 dB higher than that
of the basic (suboptimal) MSRN.

Table 3. Quantitative comparison with state-of-the-art methods. The numbers in red and blue represent optimal and
suboptimal values, respectively.

Algorithm Scale
Set5 Set14 B100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 2× 33.69/0.9284 30.34/0.8675 29.57/0.8434 26.88/0.8438 30.82/0.9332
SRCNN [6] 2× 36.71/0.9536 32.32/0.9052 31.36/0.8880 29.54/0.8962 35.74/0.9661
FSRCNN [8] 2× 36.89/0.9559 32.62/0.9085 31.42/0.8895 29.73/0.8996 36.10/0.9695
ESPCN [9] 2× 37.00/0.9559 32.75/0.9098 31.51/0.8939 29.87/0.9065 36.21/0.9694
VDSR [11] 2× 37.53/0.9583 33.05/0.9107 31.92/0.8965 30.79/0.9157 37.22/0.9729
DRCN [12] 2× 37.63/0.9584 33.06/0.9108 31.85/0.8947 30.76/0.9147 37.63/0.9723
LapSRN [13] 2× 37.52/0.9581 33.08/0.9109 31.80/0.8949 30.41/0.9112 37.27/0.9855
EDSR [14] 2× 38.11/0.9601 33.92/0.9195 32.32/0.9013 -/- -/-
MSRN [15] 2× 38.06/0.9605 33.59/0.9177 32.19/0.8999 32.10/0.9285 38.42/0.9767
IMDN [16] 2× 37.89/0.9602 33.42/0.9164 32.09/0.8985 31.84/0.9256 38.41/0.9766
CFSRCNN [17] 2× 37.79/0.9591 33.51/0.9165 32.11/0.8988 32.07/0.9273 -/-
PMSRN (our) 2× 38.14/0.9610 33.85/0.9204 32.27/0.9007 32.51/0.9317 38.86/0.9776

Bicubic 3× 30.41/0.8655 27.64/0.7722 27.21/0.7344 24.46/0.7411 26.96/0.8555
SRCNN [6] 3× 32.47/0.9067 29.23/0.8201 28.31/0.7832 26.25/0.8028 30.59/0.9107
FSRCNN [8] 3× 33.03/0.9141 29.46/0.8253 28.47/0.7887 26.38/0.8065 30.87/0.9198
ESPCN [9] 3× 33.02/0.9135 29.49/0.8271 28.50/0.7937 26.41/0.8161 30.79/0.9181
VDSR [11] 3× 33.68/0.9201 29.86/0.8312 28.83/0.7966 27.15/0.8315 32.01/0.9310
DRCN [12] 3× 33.85/0.9215 29.89/0.8317 28.81/0.7954 27.16/0.8311 32.31/0.9328
LapSRN [13] 3× 33.82/0.9207 29.89/0.8304 28.82/0.7950 27.07/0.8298 32.21/0.9318
EDSR [14] 3× 34.65/0.9282 30.52/0.8462 29.25/0.8093 -/- -/-
MSRN [15] 3× 34.45/0.9276 30.40/0.8431 29.12/0.8059 28.29/0.8549 33.62/0.9451
IMDN [16] 3× 34.29/0.9266 30.23/0.8400 29.04/0.8037 28.05/0.8498 33.32/0.9429
CFSRCNN [17] 3× 34.24/0.9256 30.27/0.8410 29.03/0.8035 28.04/0.8496 -/-
PMSRN (our) 3× 34.66/0.9291 30.48/0.8456 29.20/0.8083 28.59/0.8616 33.92/0.9474

Bicubic 4× 28.43/0.8022 26.10/0.6936 25.97/0.6517 23.14/0.6599 24.91/0.7826
SRCNN [6] 4× 30.50/0.8573 27.62/0.7453 26.91/0.6994 24.53/0.7236 27.66/0.8505
FSRCNN [8] 4× 30.74/0.8702 27.68/0.7580 26.97/0.7144 24.59/0.7294 27.87/0.8650
ESPCN [9] 4× 30.66/0.8646 27.71/0.7562 26.98/0.7124 24.60/0.7360 27.70/0.8560
VDSR [11] 4× 31.36/0.8796 28.11/0.7624 27.29/0.7167 25.18/0.7543 28.83/0.8809
DRCN [12] 4× 31.56/0.8810 28.15/0.7627 27.24/0.7150 25.15/0.7530 28.98/0.8816
LapSRN [13] 4× 31.54/0.8811 28.19/0.7635 27.32/0.7162 25.21/0.7564 29.09/0.8845
EDSR [14] 4× 32.46/0.8968 28.80/0.7876 27.71/0.7420 -/- -/-
MSRN [15] 4× 32.18/0.8951 28.66/0.7835 27.61/0.7373 26.17/0.7887 30.53/0.9093
IMDN [16] 4× 32.07/0.8933 28.52/0.7800 27.52/0.7345 25.99/0.7825 30.25/0.9052
CFSRCNN [17] 4× 32.06/0.8920 28.57/0.7800 27.53/0.7333 26.03/0.7824 -/-
PMSRN (our) 4× 32.46/0.8982 28.76/0.7863 27.69/0.7403 26.47/0.7982 30.96/0.9146

Bicubic 8× 24.40/0.6045 23.19/0.5110 23.67/0.4808 20.74/0.4841 21.46/0.6138
SRCNN [6] 8× 25.34/0.6471 23.86/0.5443 24.14/0.5043 21.29/0.5133 22.46/0.6606
FSRCNN [8] 8× 25.82/0.7183 24.18/0.6075 24.32/0.5729 21.56/0.5613 22.83/0.7047
ESPCN [9] 8× 25.75/0.6738 24.21/0.5109 24.37/0.5277 21.59/0.5420 22.83/0.6715
VDSR [11] 8× 25.73/0.6743 23.20/0.5110 24.34/0.5169 21.48/0.5289 22.73/0.6688
DRCN [12] 8× 25.93/0.6743 24.25/0.5510 24.49/0.5168 21.71/0.5289 23.20/0.6686
LapSRN [13] 8× 26.15/0.7028 24.45/0.5792 24.54/0.5293 21.81/0.5555 23.39/0.7068
MSRN [15] 8× 26.93/0.7730 24.86/0.6388 24.78/0.5959 22.40/0.6144 24.45/0.7746
IMDN [16] 8× 26.72/0.7642 24.85/0.6363 24.74/0.5935 22.32/0.6096 24.29/0.7680
PMSRN (our) 8× 27.07/0.7803 24.99/0.6439 24.86/0.5995 22.60/0.6246 24.80/0.7865

Next, consider Set14 as an example. In the SR case with 2× (r = 2), the SSIM of PMSRN
is the best, and the PSNR value of the PMSRN is suboptimal. The PSNR is 0.07 dB lower
than that of the optimal EDSR method, and the PSNR of the MSRN is 0.26 dB lower than
that of the PMSRN. In the case of SR with 3× (r = 3), the SSIM and PSNR of the PMSRN are
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both suboptimal. The PSNR is 0.04 dB lower than that of the optimal EDSR method and
0.08 dB higher than that of the basic MSRN. In the case of SR with 4× (r = 4), the SSIM and
PSNR of the PMSRN are both suboptimal, and the PSNR is 0.04 dB lower than that of the
optimal EDSR method and 0.1 dB higher than that of the basic MSRN. In the SR case with
8× (r = 8), the PSNR of the PMSRN is 0.13 dB higher than that of the basic (suboptimal)
MSRN, and the SSIM of the PMSRN is the best.

Using B100 as an example, in the SR cases with 2× (r = 2), 3× (r = 3), and 4× (r = 4),
the PSNRs and SSIMs of the PMSRN are both suboptimal, although the PSNR of the
PMSRN is 0.08 dB higher than that of the basic MSRN. In the cases of SR with 2× (r = 2)
and 3× (r = 3), the PSNRs of the PMSRN are 0.05 dB lower than those of the optimal EDSR
method. Moreover, in the case of SR with 4× (r = 4), the PSNR of the PMSRN is 0.02 dB
lower than that of the optimal EDSR method. In the case of SR with 8× (r = 8), the PSNR
and SSIM of the PMSRN are both optimal, and its PSNR is 0.08 dB higher than that of the
basic MSRN (suboptimal).

Taking Urban100 as an example, the PSNR and SSIM of the PMSRN are both optimal
compared with those of other SISR methods. In the cases of SR with 2× (r = 2), 3× (r = 3)
and 4× (r = 4), and 8× (r = 8), the PSNR of the PMSRN is 0.41 dB, 0.3 dB, and 0.2 dB higher
than that of the basic (suboptimal) MSRN, respectively.

Considering Manga109 as an example, the PSNR and SSIM of the PMSRN are both
optimal compared with those of other SISR methods. In the cases of SR with 2× (r = 2),
3× (r = 3), 4× (r = 4), and 8× (r = 8), the PSNR of the PMSRN is 0.44 dB, 0.3 dB, 0.43 dB,
and 0.35 dB higher than that of the basic (suboptimal) MSRN, respectively.

Among all r values, compared with the conventional Bicubic technique, the recon-
struction network using deep learning yielded the maximum increase in PSNR of 8.04 dB,
and the maximum SSIM was 0.9776. Compared with the shallow network SRCNN and
FSRCNN, the PMSRN exhibited a significant improvement in SSIM, with an average
improvement in PSNR of ~1.3 dB. Compared with the deep network, the PSNR/SSIM
of PMSRN were only slightly lower than those of EDSR on test sets Set14 and B100, but
training the EDSR model required more memory and space. In contrast, the number of
parameters in our model was much smaller than the EDSR model. For more details, please
refer to Section 3.2.3.

To show that the PMSRN has an excellent reconstruction effect on images, the visual
effect was further analysed quantitatively.

3.2.2. Visual Effect Comparison

Figure 9 visually compares the PMSRN with the basic MSRN and conventional Bicubic
technique, which are among the methods listed in Table 3. It can be clearly observed that com-
pared with the Bicubic technique, the PMSRN and MSRN yield higher SR image definition.

In the enlarged region, it is apparent that PMSRN produces finer details, such as
scarf stripes in 2× (r = 2, Figure 9a) and that the reconstructed SR image contains details
that closely match the detailed information in the HR image. In the images with larger
r, the performance of the PMSRN is prominent. For example, in the upper-left red frame
of the enlarged areas in the SR images with r = 3 and r = 4 (Figure 9c,d), the images
reconstructed by the PMSRN are similar to the HR images. However, when r = 4, the
MSRN reconstructs stripes with incorrect detail. In the red frame area with r = 8 (Figure 9d),
the reconstructed image effects of the PMSRN is substantially higher than that of the Bicubic
method. Compared with the MSRN, the PMSRN shows more detailed edge information.
The excellent performance of the PMSRN in terms of visual effects is consistent with the
quantitative analysis results in Section 3.2.1.

3.2.3. Comparison of Network Scales

Figure 10 compares our method with the state-of-the-art models when applied to Set5
(2×, r = 2) with respect to the PSNR and the number of parameters.



Remote Sens. 2021, 13, 666 17 of 25

It can be observed that the number of parameters of PMSRN has only half of the
EDSR model, but that the PMSRN performs the best in terms of the PSNR. This finding
demonstrates that our model has a more effective structure and achieves a better balance
between performance and model size.

3.3. Comparison of Reconstruction Effects of Different Training Sets

To study the effects of the DIV2K and AID training sets on the PMSRN model, compar-
ative experiments were conducted on the evaluation results and subjective visual effects.
Using 846 remote-sensing images from the AID training set as the test set, the model
reconstruction effects of the same algorithm when trained on the DIV2K and AID training
sets were compared. Table 4 summarises the evaluation results in terms of the PSNR/SSIM.
The names of the datasets are given in parentheses.

Figure 9. Cont.
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Figure 9. Visual comparison of the super-resolution (SR) images obtained using the PMSRN, MSRN,
and Bicubic technique using DIV2K as the training set and different r values. Each group of images is
shown from left to right, including the HR, Bicubic, MSRN, and PMSRN images. Compared with the
other methods, the PMSRN produced an SR image with higher definition. The up-sampling factors r
values are (a) 2, (b) 3, (c) 4, and (d) 8.

Figure 10. Comparison of our method with the state-of-the-art models when applied to Set5
(2×, r = 2) with respect to PSNR and the number of parameters (‘M’ represents the number of
parameters in millions).

Although the resolution of each HR image in the DIV2K training set is higher than
that in the AID training set, the PSNRs and SSIMs of the PMSRN (DIV2K) are lower than
those of the PMSRN (AID) and even lower than those of the MSRN (AID). Therefore, when
reconstructing remote-sensing images, the PMSRN (AID) had a better reconstruction effect.

Several groups of images were randomly selected to compare the visual effects of the
SR images reconstructed by the PMSRN (DIV2K) and PMSRN (AID) (Figure 11).
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Table 4. Comparison of SR image evaluation results of different training set reconstruction models.
The numbers in red and blue represent optimal and suboptimal values, respectively.

Algorithm (Dataset) Scale
AID-Test

PSNR/SSIM

MSRN(DIV2K) 2× 35.55/0.9403
MSRN(AID) 2× 35.91/0.9436
PMSRN(DIV2K) 2× 35.65/0.9413
PMSRN(AID) 2× 36.00/0.9444

MSRN(DIV2K) 3× 31.50/0.8634
MSRN(AID) 3× 31.89/0.8711
PMSRN(DIV2K) 3× 31.58/0.8656
PMSRN(AID) 3× 32.02/0.8737

MSRN(DIV2K) 4× 29.30/0.7917
MSRN(AID) 4× 29.68/0.8028
PMSRN(DIV2K) 4× 29.39/0.7950
PMSRN(AID) 4× 29.79/0.8068

MSRN(DIV2K) 8× 25.67/0.6299
MSRN(AID) 8× 25.87/0.6399
PMSRN(DIV2K) 8× 25.74/0.6342
PMSRN(AID) 8× 25.93/0.6440

Figure 11. Cont.
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Figure 11. Comparison of the reconstruction effect of the PMSRN with different training sets (DIV2K
and AID) in each group of images for all r values. (Left to right) HR, Bicubic, PMSRN (DIV2K), and
PMSRN (AID) images. Compared with the other methods, the SR image obtained using the PMSRN
(AID) is closer to the HR. The up-sampling factors r value is (a) 2, (b) 3, (c) 4, and (d) 8.

For 2× (r = 2), the quality of the reconstructed images obtained using the PMSRN
(DIV2K) and PMSRN (AID) is much higher than that of the LR images. Accordingly, the
PMSRN (AID) clearly shows more detailed information about the bow deck in the red
frame. For 3× (r = 3), 4× (r = 4), and 8× (r = 8), the reconstruction effects of the PMSRN
(DIV2K) and PMSRN (AID) in the red box are significantly different. It can be clearly
observed that the SR images acquired using the PMSRN (AID) are closer to the HR images.
Therefore, the PMSRN (AID) was used as the final SR reconstruction network.

4. Discussion

All the above experimental results are based on the down-sampling of HR images to
obtain LR images. However, in practical applications, LR remote-sensing images are di-
rectly collected by sensors. Therefore, it is necessary to discuss further the SR reconstruction
effect of the proposed method on actual LR images.

For this reason, in the absence of corresponding high-spatial-resolution images, we
firstly selected a remote-sensing image with a spatial resolution of 16 m and randomly
selected four areas for experimentation. The methods based on the Bicubic model, MSRN,
and PMSRN were used to perform SR reconstruction. Figure 12 presents the results of SR
reconstruction with different r values.
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Figure 12. Cont.
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Figure 12. Performance comparison of the Bicubic model, MSRN, and PMSRN when applied to remote-sensing images in
each group of pictures, for all r values. From left to right are the Bicubic, MSRN, and PMSRN results. Compared with other
methods, the PMSRN SR image exhibits the best edge detail. The up-sampling factors r values are (a) 2, (b) 3, (c) 4, and (d) 8.

Owing to the lack of corresponding high-spatial-resolution images, the reconstruction
effects can only be evaluated by comparing the SR image definition of the three methods.
Based on observation, it was found that the SR image quality based on deep learning
(MSRN and PMSRN) is better than that of the Bicubic method. Compared with the
MSRN SR image, the PMSRN SR image exhibits more details, fuller colour, and clearer
contour stripes.

In addition, ignoring the fact that different wavelengths have different reflectivities in
the same area [31], we selected different wavebands belonging to the same remote-sensing
image to combine them and obtain HR images with a spatial resolution of 1 m and LR
images with spatial resolutions of 2 m and 4 m. We randomly selected two areas for
experimentation, as shown in Figure 13.
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Figure 13. Selection of different bands belonging to the same remote-sensing image to combine them, yielding a spatial
resolution of 1 m for the high-resolution (HR) image and spatial resolutions of 2 m and 4 m for the low-resolution (LR)
images. Comparison of the SR reconstruction effects of the Bicubic model and PMSRN. (Left to right) Images with 1 m
spatial resolution, Bicubic model results, and PMSRN outcomes. The up-sampling factors r value is (a) 2 and (b) 4.

The images on the left of Figure 13a,b show images with a spatial resolution of 1 m,
which are only used as HR images for visual comparison. The images in the middle of
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Figure 13a,b present SR images reconstructed using the Bicubic model, and the images on
the right of Figure 13a,b depict SR images reconstructed by the PMSRN. It can be observed
that the outline of SR images reconstructed by the PMSRN is clearer than that of Bicubic
and closer to the images on the left of Figure 13. Because the ground features are too fuzzy
and complex, the reconstructed image in the images on the right of Figure 13b is not as
good as that in Figure 13a. However, the definition of the image on the right of Figure 13b
is significantly higher than that of the image in the middle of Figure 13b. These results
further verify that the PMSRN is of significant value in remote-sensing image research.

5. Conclusions

In this report, we proposed an efficient SR reconstruction network called the PMSRN,
which is an improved method of the MSRN. The main modules of the PMSRN include
MSDRBs and a CB. MSDRBs use numerous residual networks both internally and externally,
which can enhance the detection ability of image features on multiple scales and fully
utilise image feature information. Furthermore, the network introduces global and local
CB when reconstructing SR images, which helps improve the network stability, prevent
information loss, and improve the use of original LR image feature information. In addition,
comparison of the reconstruction effects of the PMSRN when trained using DIV2K and
AID data conclusively indicated that the AID training set is more suitable for remote-
sensing image reconstruction. Comparison of the remote-sensing SR images reconstructed
by PMSRN (AID) with the high-spatial-resolution remote-sensing images acquired by a
satellite indicated that PMSRN (AID) yielded satisfactory results.

Compared with other networks, the PMSRN achieved impressive reconstruction
performance on RGB data sets that ignore noise. In future work, it will be necessary to
investigate the effects of noise on SR reconstruction as well as the SR reconstruction of
non-RGB band images.
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