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Abstract: This article addresses the challenge of 6D aircraft pose estimation from a single RGB
image during the flight. Many recent works have shown that keypoints-based approaches, which
first detect keypoints and then estimate the 6D pose, achieve remarkable performance. However,
it is hard to locate the keypoints precisely in complex weather scenes. In this article, we propose
a novel approach, called Pose Estimation with Keypoints and Structures (PEKS), which leverages
multiple intermediate representations to estimate the 6D pose. Unlike previous works, our approach
simultaneously locates keypoints and structures to recover the pose parameter of aircraft through a
Perspective-n-Point Structure (PnPS) algorithm. These representations integrate the local geometric
information of the object and the topological relationship between components of the target, which
effectively improve the accuracy and robustness of 6D pose estimation. In addition, we contribute a
dataset for aircraft pose estimation which consists of 3681 real images and 216,000 rendered images.
Extensive experiments on our own aircraft pose dataset and multiple open-access pose datasets (e.g.,
ObjectNet3D, LineMOD) demonstrate that our proposed method can accurately estimate 6D aircraft
pose in various complex weather scenes while achieving the comparative performance with the
state-of-the-art pose estimation methods.

Keywords: 6D aircraft pose estimation; keypoints; structures; PnPS algorithm

1. Introduction

For airborne remote sensing, the accurate pose of the aircraft is very important. How-
ever, obtaining the pose just by the inertial devices is not reliable because of the error
accumulation. To track this problem, the global navigation satellite system (GNSS) is
used as an outer correction to correct the error. However, the GNSS cannot be used in the
GPS-denied environment. When the sensors used in the inertial navigation system (INS)
fail, it may cause serious consequences, such as the Boeing 737max crash caused by the
failure of the angle of attack sensor in recent years. Therefore, it is necessary to design
a new aircraft pose estimation method, which can precisely get the pose without using
GNSS and INS. In addition, an independent method can also improve the accuracy of pose
estimation when it is used with traditional methods. In recent years, with the development
of computer vision, vision-based methods have received wide attention, and we decide to
tackle this problem by vision-based methods.

As shown in Figure 1, we conduct a system to estimate the aircraft pose in real-
time during take-off and landing of the aircraft. This system consists of three parts: the
zoom camera subsystem, the pose estimation subsystem, and the servo control subsystem.
The zoom camera system captures the 2D image of the aircraft. Then the pose estimation
subsystem estimates the 6D pose parameter based on the captured image. Next, the servo
control subsystem controls the zoom camera subsystem to capture the next 2D image.
The figure of this system is shown in Figure 2. In this article, we focus on the pose
estimation subsystem and propose a new algorithm to estimate the aircraft pose quickly,
accurately, and robustly.
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Figure 1. Illustration of the aircraft pose estimation system. This system consists of three parts: the zoom camera subsystem,
the pose estimation subsystem, and the servo control subsystem. The zoom camera system is used to capture the 2D image.
The pose estimation subsystem is used to estimate the 6D pose parameter. The servo control subsystem is used to control
the zoom camera subsystem.

(a) zoom camera subsystem

(b) servo control subsystem (c) pose estimation subsystem

 

 

Aircraft Pose Estimation System

estimated pose

Figure 2. Figure of the real aircraft pose estimation system. (a) The zoom camera subsystem. (b) The servo control
subsystem. (c) The pose estimation subsystem.

Object pose estimation is a challenging task in the field of computer vision. In recent
years, researchers have designed many algorithms for different application scenarios,
such as robot control, virtual reality, augmented reality. However, there is no specific
method or dataset for the aircraft. In this article, we focus on estimating the 6D aircraft
pose, i.e., rotation and translation in 3D, from a single RGB image. This problem is quite
challenging from many perspectives, such as fog and haze, variations in illumination
and appearance, and the atmospheric jitter in the camera imaging process.

Traditionally, object pose estimation using RGB image is tackled by feature-
matching [1–3] or template-matching [4–9]. However, feature-based methods rely heavily
on the robustness of features, and they cannot handle texture-less objects. For the template-
matching methods, although they can effectively estimate the texture-less objects‘ pose,
they cannot handle occlusions between objects very well. With the development of deep
learning, many methods use convolutional neural networks (CNNs) to estimate the objects‘
pose. In References [10–16], researchers train end-to-end neural networks to directly
regress the pose, such as viewpoints, quaternions. Refs [17,18] cast the problem of 6D pose
estimation as classification into discrete angles. However, these direct methods not only re-
quire the networks to learn how to extract pose-related features but also force the networks
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to learn the complex perspective geometry for recovering the pose parameters directly
from the extracted features. In References [19–29], researchers first use CNNs to locate
2D keypoints and then recover the pose parameters using the Perspective-n-Point (PnP)
algorithms. These two-stages methods use keypoints as the intermediate representations
to indirectly estimate the 6D pose, which makes networks focus on learning how to extract
features related to keypoints, without considering the complex perspective geometry. Thus,
these methods achieve state-of-the-art performance. Inspired by these keypoint-based
methods, HybridPose [30] uses keypoints, edge, and symmetry correspondences to re-
cover the 6D pose and achieve remarkable performance. However, the edge vectors are
defined between the adjacent keypoints which means edge vectors and keypoints are not
independent of each other.

There are complex and changeable weather scenes during the aircraft flight. As shown
in Figure 3, when the weather is good, the aircraft in the image is clear and the keypoints
can be predicted precisely. However, when the weather is bad, it is hard to locate the
keypoints. Severe fog, haze, and atmospheric jitter blur the aircraft in the image, as a result,
the keypoints cannot be precisely located. In addition, over exposure causes dramatic
changes in the aircraft appearance and even a lack of texture information, making it more
difficult to locate the keypoints. Therefore, these methods which just rely on keypoints as
the intermediate representations may fail in complex weather scenes.

(b) fog and haze (c) atmospheric jitter  (d) over exposure(a) good weather

Figure 3. Complex weather scenes during the aircraft flight. As shown in (a), the weather is good, and the aircraft in the image is
clear. As shown in (b), severe fog and haze blur the aircraft in the image. As shown in (c), the atmospheric jitter in the camera imaging
process makes it hard to recognize the keypoints precisely. As shown in (d), over exposure causes a lack of texture information.

In this article, we introduce Pose Estimation with Keypoints and Structures (PEKS),
a novel 6D pose estimation method that leverages multiple intermediate representations to
express the geometric information of target. Except for the conventional keypoints, PEKS
simultaneously utilizes the CNN to output geometric structures for reflecting each part
of target and its topological relationship. This type of representation has the following
advantages. First, it integrates more information of the target. As a kind of local geometric
feature, keypoints represent the points with rich geometric information while structures
encode the geometric relationship between different parts of the object globally. Second,
it improves the accuracy of pose estimation when the weather is poor with the help of
the robustness of structures to illumination and blurring. Third, it can be shown that
training the keypoints and structures jointly achieve better results than training separately.
We select 17 points with rich geometric information as keypoints and define the structures
as six line segments which represent the fuselage and plane wings separately.

Given the predicted keypoints and structures, the next step is to estimate the 6D pose
by these representations. Previous approaches recover the 6D pose by PnP algorithms,
such as EPNP, OPNP and DLT [31–33]. However, the PNP algorithms only work when
the input is a set of points and they are not suitable for line segments. To this end, we
extend the optimization objective of traditional PNP algorithms to make it applicable for
line segments. To be specific, we represent a line segment by a point which is on it and
its direction vector. The extended optimization objective can be deduced according to the
theory of multi-view.

We also collect a new dataset for aircraft pose estimation which consists of two parts,
one is the real data, containing 3681 images, and the other is the rendered data, containing
216,000 images. The real data are sampled from the aircraft flight videos under different
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pose and weather scenes. We evaluate our approach mainly on this dataset and it exhibits
great performances.

In summary, our work has the following contributions:

• We propose a novel approach for aircraft pose estimation. This approach combines
the keypoints and geometric structures as the intermediate representations to estimate
the 6D pose in complex weather scenes.

• We propose a PnPS algorithm, which recovers the 6D pose parameters based on
predicted keypoints and structures.

• We contribute a dataset for 6D aircraft pose estimation, which consists of 3681 real
images and 21,6000 rendered images.

The rest of this article is organized as follows. We review the related work in Section 2.
In Section 3, we present the detailed architecture of our approach. In Section 4, we describe
the datasets and metrics while Section 5 discusses the settings and experiments. Finally,
the conclusion with future work is given in Section 6.

2. Related Work

Methods for 6D object pose estimation from a single RGB image in the literature can
be roughly classified into classical methods and CNN-based methods. In this section, we
give a brief introduction to them.

2.1. Classical Methods

In classical methods, local features or templates are used to estimate the 6D pose.
In feature-based methods [1–3,33,34], local features are first extracted and the matched to
3D models for establishing the 2D-3D correspondences; thus, the 6D pose can be estimated
steadily. Features such as SIFT, SURF and ORB [34–36] are widely used in these methods
which are robust to illumination, scale, and rotation. A drawback of these methods is that
they are inadequate for addressing texture-less objects and their performance is susceptible
to scene clutter. In template-based methods [4–9], templates are constructed by rendering
the model of objects from different poses. Then these templates are matched against the
input image to determine the object pose in the image. Template-based methods are useful
for texture-less objects. However, they cannot handle occlusions between objects very well.
When the object is heavily occluded, the matching score is low which causes incorrect pose
estimation results.

2.2. CNN-Based Methods

With the development of deep learning, researchers begin to tackle the task of 6D
pose estimation by CNNs. In References [10–14,16], researchers train an end-to-end CNN
to directly regress the 6D pose. PoseNet [37] uses CNN to directly regress the pose of the
camera, which is similar to object pose estimation. Refs [17,18] discretize the 6D pose space
and cast the problem of 6D pose estimation as classification. Ref [13] trains the end-to-end
CNN by means of self-supervised learning. Ref [14] directly regresses 6D poses from
correspondences of 2D-3D points without PnP algorithm. However, these methods force
the networks to learn the complex perspective geometry to recover the pose parameters
directly from the extracted features which increases the difficulty of training.

With the development of perspective geometry, we can recover the pose parameters
by Perspective-n-Point (PnP) algorithm and what we only need to know is the 2D-3D
correspondences of keypoints. This casts the problem of 6D pose estimation as locat-
ing keypoints and many keypoint-based methods [19–29] are proposed in recent years.
These methods adopt a two-stage pipeline: they first use CNNs to locate the designed 2D
keypoints and then recover the pose parameters using the PnP algorithm. In other words,
these methods use keypoints as intermediate representations to indirectly estimate the 6D
pose, which makes networks focus on learning how to extract features related to keypoints,
without considering the complex perspective geometry. SSD-6D [19] employs the SSD
architecture to locate the 8 corners of the 3D bounding box and the center of the object.



Remote Sens. 2021, 13, 663 5 of 24

Similarly, ref [20] employs the YOLO architecture to locate these nine keypoints. However,
the 8 corners of the 3D bounding box are far away from the object pixels and are easily inter-
fered with the background which results in large localization errors. Ref [22] replaces these
8 corners with keypoints on the surface of the object selected by the 3D-SIFT algorithm [38].
PVNet [21] uses a pixel-wise voting network to locate the keypoints which are selected by
the farthest point sampling algorithm from the object surface. Furthermore, hybridPose
utilizes a hybrid intermediate representation to express different geometric information in
the input image, including keypoints, edge vectors, and symmetry correspondences.

Pose estimation methods are also widely used in unmanned autonomous vehicles.
Inspired by the recent success of deep learning, CodeSLAM [39] employs a neural network
to learn a compact latent representation for the structure of a scene conditioned on the RGB
image and achieved remarkable performance. KDP-SLAM [40] combines photometric and
geometric loss for frame-to-frame pose estimation. Probabilistic-VO [41] combines points
together with lines and planes for pose estimation while considering their uncertainties.

Deep learning methods have dominated human pose estimation tasks in recent years
and achieved remarkable performance [22,23]. The core of human pose estimation is how
to precisely predict the pixel location of important keypoints of the human body which is
similar to the keypoints based methods. Therefore, these methods are instructive to the
task of object pose estimation. Ref [23] locates the keypoints of indoor objects by Stacked
Hourglass Networks [42]. Reference [43] employs the Convolutional Pose Machine [44]
to estimate the object pose by locating the keypoints.

Inspired by these methods, we propose a novel two-stage approach for aircraft pose
estimation which locates the keypoints and structures of the aircraft by a CNN and then
recovers the 6D pose parameters by a PnPS algorithm.

3. Methodology

The major challenge of aircraft pose estimation comes from the complex weather
scenes during the flight, such as severe fog and haze, atmospheric jitter, and over exposure.
Targeting to overcome those challenges, we propose a novel approach for aircraft pose
estimation. Given an image, the task of aircraft pose estimation is to estimate the aircraft’s
rotation and translation in 3D. Specifically, the 6D aircraft pose is represented by 3D
rotation (R) and 3D translation (T) from the aircraft coordinate system to the camera
coordinate system.

As illustrated in Figure 4, we estimate the aircraft pose using a two-stage pipeline: we
first predict geometric features of the aircraft which serve as intermediate representations
and then recover the 6D pose parameters by the PnPS algorithm. Our innovations are the
new intermediate representations for pose estimation which combine the keypoints and
structures, as well as the PnPS algorithm.

Prediction 

networks

(c) intermediate representations

PnPS

predicted 

keypoints

predicted 

structures

(a) input image (b) Prediction Networks (d) PnPS algorithm (e)  estimated pose  

Figure 4. Pipeline of our approach. Given a single RGB image of an aircraft (a), we utilize prediction networks (b) to locate
the keypoints (red points) and structures (red structures) which serve as intermediate representation (c). Then the 6D pose
is estimated by the PnPS algorithm (d) based on the predicted results (e).

As illustrated in Figure 5, PEKS consists of a CNN block, a predictor block, and a pose
solve block. The CNN block utilizes a encoder and decoder structure to generate a set of
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heatmaps of keypoints φ = {Hpk} and a set of heatmaps of structures ψ = {Hls}. Then
the predictor block predicts a set of keypoints κ = {pk} and a set of structures η = {ls}
based on the generated heatmaps. κ and η are all expressed in 2D. In the following, we
denote 3D keypoint coordinates in the world coordinate system as Xk ∈ R3, 1 ≤ k ≤ K,
where K is the number of keypoints. We denote the 3D structures in the camera coordinate
system as Lcs ∈ R6, 1 ≤ s ≤ S, where S is the number of structures. To make notations
uncluttered, we denote the predicted keypoints as pk ∈ R2, 1 ≤ k ≤ K and predicted
structures as ls ∈ R4, 1 ≤ s ≤ S. The pose solve block optimizes the pose to fit the
intermediate representations by the PnPS algorithm.
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Figure 5. Block diagram of our approach. Given a single RGB image of an aircraft, we utilize a CNN block to generate the
heatmaps of the intermediate representation which are keypoints and structures. Then a predictor block is employed to
predict the keypoints and structures. The 6D pose parameters are estimated by the pose solve block by the PnPS algorithm.
For convenience, we denote keypoints as kpts and structures as strs in this figure.

3.1. Locate Keypoints and Structures
3.1.1. Keypoints Definition

The intermediate representations need to be defined based on the 3D aircraft model.
The first intermediate representation consists of keypoints κ = {pk}, which have been
widely used for pose estimation. Refs [19,20,45] use the eight corners of the 3D bounding
box as the keypoints which are far away from the object pixels and are easily interfered with
the background. Reference [22] selects keypoints from the surface of the object by 3D-SIFT
algorithm while Reference [21] by the farthest point sampling algorithm. However, simply
selecting keypoints from the aircraft surface through algorithms is unreliable because of
the complex weather scenes. Severe fog and atmospheric jitter blur the aircraft in the image
and the over exposure causes huge changes in the aircraft appearance and even leads
to a lack of texture information. To reduce the impact of the weather scenes, we select
17 points with rich geometric information rather than texture information from the aircraft
surface as keypoints. As shown in Figure 6, the selected keypoints are the apex of the
aircraft nose (1 point), the leftmost and the rightmost points of the flight compartment
windows (2 points), the tip of the left and right wings (2 points), the vertexes of two
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horizontal tails (8 points), and the vertexes of the vertical tail (4 points). The reason why
we do not select some other points, such as the points on the trailing edge, is that the
positions of these points change during the aircraft flight although these points have rich
geometric information.

(a) keypoints (b) structures

Figure 6. Keypoints and structures definition. As shown in (a), 17 points on the aircraft surface are defined as keypoints.
In (b), six segments which characterize the geometric relationship between different parts of the aircraft are defined
as structures.

3.1.2. Structures Definition

The second intermediate representations consist of structures. Reference [46] defines
the lines that represent the fuselage and the wings as the structures of the straight-wing
UAV which are simple and effective. However, we cannot estimate the pose parameters
just by them because T cannot be calculated. HybridPose [30] uses edge vectors to capture
correlations between keypoints and reveal the underlying structure of the object. However,
the edge vectors are defined between the adjacent keypoints which means edge vectors and
keypoints are not independent of each other. As shown in Figure 7, the aircraft is mainly
composed of six parts which are the fuselage, the left and right wings, the left, and right
horizontal tails, and the vertical tail. Based on the idea that each structure corresponds
to a part, we select six line segments to represent the topological structure of the aircraft.
The defined structures are shown in Figure 6.

Figure 7. The six parts of an aircraft: fuselage, the left and right wings, the left and right horizontal
tails, and the vertical tail.
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3.1.3. Locate Keypoints

As shown in Figure 8, the proposed network is a multi-stage architecture with inter-
mediate loss functions after each stage and it is similar to the Stacked Hourglass Networks
which is used to locate the keypoints of humans. A cropped image is fed to the network
and two hourglass components are used to generate heatmaps for each keypoints. The in-
tensity of the heatmaps indicates the probability of the respective keypoints to be located
at every pixel. As shown in Figure 9, each hourglass component first uses residual and
max-pooling layers to process features down to a very low resolution. At each max pool-
ing step, the resolution of the feature maps decreases by two. After reaching the lowest
resolution, the hourglass component begins to up-sample and combines the features across
multiple scales. At each up-sampling layer, the resolution of feature maps increases by two.
After reaching the output resolution of the network, one residual layer and two convo-
lutional layers are applied to produce the heatmaps of keypoints. The second hourglass
component is stacked to the end of the first to refine the predicted heatmaps. The input of
the second one consists of three parts: the input of the first one, the feature maps extracted
by the first one, and the heatmaps predicted by the first one.

feature-

keypoints

feature-

structures

heatmaps -

keypoints

heatmaps -

structures

input image

heatmaps

heatmaps

predicted keypoints

predicted structures

PnPS

estimated pose

Hourglass block

Residual block

Conv

Figure 8. Detailed architecture of the proposed method. The CNN predicts the keypoints and structures jointly by a two-
stage architecture. In the first stage of the network, the heatmaps of keypoints and structures are predicted for intermediate
supervision. In the second stage, the features and heatmaps of the first stage after merged is used as input. The final
outputs of the network are heatmaps predicted by the second stage. At each stage, an MSE loss is used which compared
the predicted heatmaps to the ground-truth heatmaps. After that, a PnPS algorithm is used to recover the 6D pose based on
the predicted keypoints and structures.

input output

residual block max-pool up-samplen-1 hourglass

Figure 9. The detailed architecture of n-hourglass block. The n-hourglass block consists of
residual, max-pooling, up-sampling, and n-1 hourglass layers.

Assuming we have K ground-truth heatmaps for a training sample, an MSE loss is
applied to compare the predicted heatmaps to the ground-truth heatmaps. The ground-
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truth heatmaps define the position of keypoints subjects to 2D Gaussian distribution.
The loss of keypoints is given by

Lkpts =
1
K

K

∑
i=1
‖yi − fi(x)‖2 (1)

where x denotes a training sample, yi denotes the i− th ground-truth heatmap for x, fi(x)
denotes the i-th predicted heatmap. The MSE loss is computed over all pixels in the
heatmap, and we write ‖a− b‖2 instead of ∑x∈Ω ‖a(x)− b(x)‖2 for the MSE loss.

What is more, intermediate supervision is applied at the end of the first component,
which can provide a richer gradient to the first hourglass component and guide the learning
procedure towards a better optimum. For each predicted heatmap, we consider the pixel
with the maximum probability as the location of the keypoint. The value of this pixel is
regarded as the confidence of this keypoint.

3.1.4. Locate Structures

As shown in Figure 8, the proposed network not only predicts the keypoints but also
the structures. As shown in Section 4, locating the keypoints and structures simultaneously
can significantly improve the accuracy of pose estimation when the weather is good. When
the weather is bad, the pose can also be estimated accurately by the combination of these
two kinds of geometric features, while it is not possible just by locating keypoints. Similar
to keypoints, we locate structures by predicting heatmaps of them. A new branch is applied
for locating structures, which consists of a residual layer and two convolutional layers.

Assuming we have S ground-truth heatmaps for a training sample, an MSE loss is
applied to compare the predicted heatmaps to the ground-truth heatmaps. The ground-
truth heatmaps define the positions of structures subject to Gaussian distribution. To be
specific, the probability function p(e), returns a probability value for each pixel denoted by
e based on its distance to the structures. Formally, we define the probability function p(e)
as follows:

p(e) =

{
exp

(
−DT(e)

2σ2

)
i f DT(e) < 3σ

0 otherwise
(2)

the distance function DT(e) is defined as the distance from pixels to structures. Similar to
keypoints, the loss of structures is given by

Lsts =
1
S

S

∑
i=1
‖yi − gi(x)‖2 (3)

where gi(x) denotes the ith predicted heatmap of structures. For each heatmap, we fit
the structure by the least square method. We first select pixels with values bigger than a
certain threshold, then we use the least square method to recover the fittest structure. The
reciprocal of the mean distance from pixels to the recovered segment is the confidence of
the structure.

In addition, locating the keypoints and structure simultaneously can significantly
improve the accuracy of pose estimation regardless of the weather scenes. When the two
tasks are trained together, the multi-task loss for the network is then expressed as:

Ltotal = αLkpts + βLsts (4)

3.2. PnPS Algorithm

Given the keypoints’ locations in the 2D image as well as their correspondences on
the 3D model, one approach is to apply the PnP algorithm to solve the 6D pose parameters,
such as DLT, EPNP. However, we not only have the 2D-3D correspondences of keypoints
but also the 2D-3D correspondences of structures, and existing PnP algorithms are designed
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only for keypoints. Inspired by the PnP [31–33] and PNL [47] algorithms, we propose a
new algorithm that can recover the 6D pose parameters based on keypoints and structures.

For keypoints, the basic idea of PnP algorithms is to minimize the reprojection error:

arg min
R,T

∑K
k=1‖x̃k − pk‖2

x̃k = π(R, T, Xk)
(5)

where pk is the estimated coordinate of the keypoint, Xk is the 3D coordinate of the keypoint,
x̃k is the 2D projection of Xk, and π is the perspective projection function.

For structure L, we represent it by a point P which is on it and its direction vector d:

L = [d, P] (6)

As shown in Figure 10, Lc = [dc, Pc] represents the structure in the camera coordinate
system, l represents the projection of the structure, and ω is the projection plane while vc is
the normal vector of ω. Assuming the camera calibration matrix K is known, the plane ω
can be expressed as:

ω = KTl (7)

and υc can be calculated from the equation of the plane, which can be represented as:

υc = λst(l) (8)

In addition, υc is perpendicular to Lc:

υc
T Lc = 0 (9)

According to the rigid transformation from the object coordinate system to camera
coordinate system, Lc can be expressed as:

Lc = [dc, Pc] = τ(R, T, Lo) = [Rdo, RPo + T] (10)

where τ represents the rigid transformation from the object coordinate system to the camera
coordinate system, Lo = [do, Po] represents the structure in object coordinate system. The
orthogonality relationship can be expressed as:

υc
T Lc = 0 ⇔

[υc
Tdc, υc

TPc] = [υc
TRdo, υc

T(RPo + T)] = [0, 0]
(11)

The optimization objective for structures is:

arg min
R,T

S
∑

s=1

∥∥υcs
TLcs

∥∥2

Lcs = τ(R, T, Los)
υcs = λst(ls)

(12)

We also take the confidence of keypoints and structures into account. Similar to Ref-
erence [24], we naturally multiply the confidence of the keypoints and structures to the
reprojection error, and the final optimization objective is:

arg min
R,T

(
K

∑
k=1

ck‖x̃k − µk‖
2+

S

∑
s=1

cs‖υsLcs‖
2) (13)

where c represents the confidence calculated by heatmaps.
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cZ

cY

cX

ω

O Z f=

cν cL

cd

cP
l

Figure 10. The schematic diagram of Equation (7) to Equation (12). Lc represents the structure, l
represents the projection of Lc, and w is the projection plane while vc is the normal vector of w.
The basic idea of Equation (6) is to minimize the reprojection error of structures.

4. Material
4.1. Dataset
4.1.1. Aircraft-Pose-Estimation Dataset

In this article, we introduce a new dataset especially for aircraft pose estimation which
contains 3681 real images and 216,000 rendered images, called the APE dataset. All the
images in this dataset have the size 1920 × 1080. The dataset contains most kinds of scenes
that the aircraft may encounter during flight and can effectively evaluate the robustness of
the methods for aircraft pose estimation. For real images, we sampled them from 79 videos
captured by our cameras at different airports. These images are under different poses, such
as taking off, landing, hovering, taxiing, and different weather scenes. The annotations
include the focal and the pixel size of the camera, the 2D bounding box, the 6D pose,
the projection of the 3D bounding box, the projection of the keypoints, the projection of the
structures, and the weather scenes. We divide the images into four categories according to
the weather: good weather, fog and haze, atmospheric jitter, and over exposure. Examples
of real images are illustrated in Figure 11. What is more, we also generated 21,6000 rendered
images for training. The rendered images were created by placing the 3D aircraft model
in front of background images with the help of OpenGL. Background images were chosen
from the sky images took manually under different weather scenes and road images from
the KITTI dataset [48] which simulate the scenes when the aircraft is hovering in the sky and
taxiing on the ground. Examples of rendered images are illustrated in Figure 11. On this
dataset, we randomly select 80% of examples for training, 50 instances for validation,
and the rest for testing.

4.1.2. ObjectNet3D

To verify the generalization of our model, we test PEKS on this dataset. OBJECTNET-
3D [49] is a large dataset that contains real images of 100 object categories. From all of
them, we simply select images which class is airplane to evaluate our model. The selected
subset contains 1013 images which include not only the manually annotated keypoints but
also the viewpoints from aligned 3D shapes. For keypoints, we use these annotations as
ground-truth. However, the structures cannot be reprojected from the annotated viewpoints
because of the inaccuracy of the 3D shapes. Instead, we annotated the structures manually.
On this dataset, we do not fine-tune our model, and all the 1013 images are used for testing.
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Figure 11. Examples of images in the APE dataset. The first three rows are real images which are under different pose and
weather scenes. The fourth row is rendered images which are under different pose and backgrounds.

4.1.3. LineMOD

The LineMOD dataset [50] is one of the standard datasets for 6D pose estimation.
It consists of 13 sequences, which contain ground-truth poses for a single object of interest
in a cluttered environment and the accurate CAD models. The ground-truth keypoints and
structures can be obtained through reprojection according to the annotated poses and the
CAD models. Different from other literature, we selected just five sequences to evaluate
our algorithm which are cat, lamp, bench vise, cam, and driller. For other objects, their
structures are not obvious and our algorithm is not suitable for them. On this dataset,
we randomly select 80% of examples for training, 20 instances for validation, and the rest
for testing.

4.2. Evaluation Metrics

We evaluate our method using five common metrics: Percentage of Correct Keypoints
(PCK) [43], Percentage of Correct Structures (PCS), 2D reprojection metric [24], ADD(-S)
metric [50], and ∆R and ∆T metric [43].

PCK—This metric computes the percentage of keypoints that fall within a normalized
Euclidean distance of the corresponding ground-truth. An estimated keypoint is valid if
the distance is below α×max(w, h), where w and h are the width and height of the object’s
bounding box, respectively.

PCS—To evaluate the accuracy of the estimated structures, we proposed a new metric
on the base of the PCK. An estimated structure is valid if the distance with respect to the
corresponding ground-truth is below α×max(w, h). The distance between two structures
is defined as follow:

Dstructure =
∆dsp + ∆dep

2
(14)

where sp and ep are the start point and the end point of the structure.
2D reprojection metric—This metric computes the mean Euclidean distance between

the projections of 3D vertices given by the ground-truth pose and the estimated pose.
Formally,

∆2D−reproj−error =
1
|M| ∑

x∈M

∣∣|K(Rx + T)−K(R̂ x + T̂)
∣∣| (15)
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where M is the set of model vertices, R and T are the ground-truth rotation matrices and
translation matrices, R̂ and T̂ are the predicted ones, and K is the camera calibration matrix.

ADD(-S) metric—This metric computes the mean 3D distance between the model
vertices transformed by the ground-truth pose and the estimated pose. Formally,

∆ADD = avg
x∈M

∥∥(Rx + T)− (R̂ x + T̂)
∥∥

2 (16)

To handle the symmetric objects, the ADD metric can be extended as follow:

∆ADD−S = avg
x2∈M

min
x1∈M

∥∥(Rx1 + T)− (R̂ x2 + T̂)
∥∥

2 (17)

which computes the mean 3D distance between the closest vertex of the model transformed
by the estimated pose with the ground-truth transformation.

∆R and ∆T metric—This metric computes the rotation error and translation error
between the predict pose and the ground-truth pose. Formally,

∆R =

∥∥∥∥ log(RT R̂)

2

∥∥∥∥, ∆T =
∥∥T − T̂

∥∥ (18)

5. Experimental Results and Discussion

In this section, we first give the details of the experiment, then we evaluate the perfor-
mance of our method, and compare it with several popular pose estimation algorithms.
Section 5.1 gives the detailed description of the experiments. Section 5.2 quantitatively
and qualitatively evaluate PEKS. Section 5.3 compares PEKS with other pose estimation
methods. Section 5.4 analyzes the effectiveness of PEKS.

5.1. Experiments Detail

There are K keypoints pk and S structures ls for the target, PEKS takes the H ×W × 3
as input, and outputs the H × W × K tensor representing the heatmaps of keypoints and
H ×W × S tensor representing the heatmaps of structures. The location and the confidence
of keypoints and structures can be calculated from the heatmaps. The 6D pose is then
estimated by the PnPS algorithm. The CNN architecture is implemented with Pytorch 1.2.0
and CUDA 10.0 and runs on an i5-10400 CPU @2.90Ghz with an NVIDIA Geforce RTX
2080Ti. The PnPS algorithm is implemented with Python using Numpy and OpenCV.

5.1.1. Training Setting

We train keypoints and structures using MSE loss as discussed in Section 3. We first
train our model on synthetic data using stochastic gradient descent for optimization,
with the learning rate initially set as 0.001 and divided by 10 after every 10,000 iterations.
Then we train our model on the real data with freezing the hourglass layers and the learning
rate initially set as 0.00025 and divide by 10 every 4000 iterations. The batch contains 32
samples per iteration which are sampled randomly. α and β in Equation (4) are set to 1 and
0.5, respectively.

5.1.2. Data Augmentation

The accuracies of the bounding box in different poses are different which would
draw to an error in keypoints and structures location. Therefore, we do a bounding
box augmentation in bias and scale with the limitation that the targets are all within the
bounding box. What is more, we also apply data augmentation including rotation, scaling,
and color jittering in training. We avoid flipping the image horizontally because it may
cause a strange geometric relationship between keypoints and structures and confuse the
network. Take the aircraft as an example, as shown in Figure 12, in the original image,
the tip of the right-wing (number 4) is in the left half of the image, however, in the flipped
image, this keypoint is in the right half of the image which should be the tip of the left-wing
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from the perspective of the model. The reason for this confusion is that mirroring the
image causes the 3D model mirrored which puzzles the network by the two similar models.
A similar situation exists in the structures.

(a) orignal image (b) flipped image

Figure 12. Flipping the image horizontally may cause confusion. Original image (a) and flipped image (b).

5.2. Qualitative and Quantitative Results of Airplane Pose Estimation

We conduct experiments on the APE dataset to evaluate the performance of our method.
As shown in Table 1, we first evaluate our method in terms of the 2D reprojection

metric. A pose is considered correct if the average of the 2D distances is less than 20 pixels.
The reason why the threshold value is 20 instead of 5 is that we calculate the 2D reprojec-
tion error under the size of 1920× 1080. Under this metric, PEKS can estimate the pose
parameters precisely and achieve 95.6% accuracy in total. When the weather is good, PEKS
can even reach 98.3% accuracy. When the weather scene is terrible, although the accuracy
of the algorithm decreases, it still has a correct rate of more than 90%, which shows the
robustness and accuracy of the algorithm. When over exposure occurred during camera
imaging, the aircraft appearance changes dramatically, and some texture information is
hard to extract. However, PEKS still achieves 95.8% accuracy, which thanks to our selection
of keypoints with rich geometric information rather than keypoints with texture informa-
tion. When the weather scene is fog and haze, the aircraft in the image is blurred, and the
situation is more serious when atmospheric jitter occurred. Our method still can reach
91.3% and 90.2% accuracy with the help of structures which reflect the topology of the
aircraft and robustness to these scenes.

Table 1. Qualitative result of Pose Estimation with Keypoints and Structures (PEKS) on APE dataset
under different metrics.

Metric 2D Reprojection ADD ∆R

good
weather 98.3 75.9 98.2

fog and haze 91.3 69.7 90.7
atmospheric

jitter 90.2 66.8 89.2

over
exposure 95.8 70.7 95.3

total 95.6 72.7 95.2

Then we evaluate our method in terms of the ADD metric. A pose is considered correct
if the average of the 3D distance is less than 10% of the aircraft’s size. In this experiment,
the size of the aircraft is about 34.8 m, so the threshold of ADD metric is 3.48 m. Under this
metric, PEKS can reach 72.7% accuracy in total, which is much less than the results under
2D reprojection metric. As shown in Table 3, the state-of-the-art methods even get worse
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results. However, this does not mean our method cannot estimate the pose parameters
accurately. We analyze the reasons why these algorithms failed on this dataset and find
that the ground-truth T and the focal of the image in the APE dataset are much bigger than
the benchmark datasets. For the APE dataset, during the flight of the aircraft, the distance
between the camera and the aircraft varies greatly, and the ground-truth T ranges from
100 m to about 5 km. While in other benchmark datasets, take the LineMOD dataset for
example, ground-truth T is about 1 m. It is unreasonable to evaluate the accuracy of the
algorithm with a threshold of 10% of the model’s size. In addition, a zoom lens camera
was used to capture the aircraft clearly during the flight, and the focal ranges from 30 mm
to 1000 mm. While in other benchmarks, also take the LineMOD dataset for example,
the focal is no more than 100 mm. The long focal makes it difficult to accurately estimate
pose parameters especially the T.

The perspective projection geometry during the imaging process is shown as follows,{
x = f X

Z
y = f Y

Z
(19)

where x and y are the coordinates in the image coordinate system, X,Y,Z are the coordinates
in the camera coordinate system, f is the focal of the camera. Equation (19) shows that
even a small location error may cause a great error for T when the focal is long. In other
words, the effect of T is reduced by the focal because of the perspective projection geometry.
Therefore, it is hard to estimate T precisely even with the accurate location of intermediate
representations when the focal is long. The terrible results of our method on APE dataset
in terms of ADD metric are understandable. In addition, the inaccuracy of it does not mean
that our network cannot locate the keypoints and structures precisely which can be proved
by the results under 2D reprojection metric.

To ignore the effect of T and focal, we evaluate our method in terms of ∆R metric.
A pose is considered correct if the rotation error is less than 5◦. Similiar with results under
2D reprojection metric, PEKS can estimate the pose parameters precisely and achieve 95.2%
accuracy in total. When the weather scene is good, PEKS reaches 98.2% accuracy. When
the weather scene is fog and haze, PEKS reaches 90.7% accuracy. When over exposure and
atmospheric jitter occurred, PEKS can still estimate the rotation precisely with an accuracy
of 95.3% and 89.2%, respectively.

Figure 13 shows some qualitative results on APE dataset where the yellow points
are the keypoints and the purple segments are the structures predicted by the networks.
The first line of images is captured under good weather, the second line is under severe fog
and haze, the third line is under atmospheric jitter, and the final line is under over exposure.
Even the weather is bad our method robustly predicts the keypoints and structures.

Figure 13. Qualitative results for the proposed method on the APE dataset. The yellow points are the keypoints and
the purple segments are the structures.
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5.3. Comparisons with State-of-the-Art Methods
5.3.1. Performance on the APE Dataset

We first compare our method with the state-of-the-art methods on the APE dataset.
To compare PEKS with them, we re-implement the same pipeline as [20,25], both of which
estimate the 6D pose by regressing the eight corners of the 3D bounding box.

In Table 2, we compare our method with Bb8 [25] and YOLO-6D [20] in terms of the
2D reprojection metric. Bb8 and YOLO-6D choose the eight corners of the 3D bounding box
and the center of the aircraft as keypoints and locate them by regression while our method
locates the keypoints and structures by predicting their heatmaps. As shown in Table 2,
our method outperforms them by 10.8% and 6.3%, respectively. When the weather is good,
both YOLO-6D and our methods achieve great results. However, when the weather is
bad, the accuracy of Bb8 and YOLO-6D drops significantly, while our method still works
well. The reason why Bb8 and YOLO-6D fail when the weather is bad is that the eight
corners of the 3D bounding box cannot locate precisely and estimating the 6D pose by the
PnP algorithm with keypoints that have large location error is not reliable. In the contrast,
although the accuracy is lower than under good weather, our method still works well
thanks to the combination of keypoints and geometric structures.

Table 2. Comparison with the state-of-the-art methods in terms of the 2D reprojection metric on APE
dataset. Bold number indicates the best results.

2D Reprojection Error Bb8 YOLO-6D OURS

good weather 88.7 94.5 98.3
fog and haze 78.8 81.6 91.3

atmospheric jitter 73.4 73.5 90.2
over exposure 86.7 92.1 95.8

total 84.8 89.3 95.6

As shown in Table 3, both the state-of-the-art methods and our method work badly in
terms of the ADD metric because of the effect of focal and T as we discussed in Section 5.2.
Despite that, PEKS still outperforms Bb8 and YOLO-6D by 43.2% and 29.5%, respectively.
Similar to Section 5.2, we also compare our method with state-of-the-art methods in terms
of ∆R metric to ignore the effect of T and focal. As shown in Table 4, PEKS outperforms
them by 14% and 6.1% in total and works well in all scenes.

Table 3. Comparison with the state-of-the-art methods in terms of the ADD metric on APE dataset.
Bold number indicates the best results.

ADD-10% Bb8 YOLO-6D OURS

good weather 30.2 45.9 75.9
fog and haze 28.8 42.1 69.7

atmospheric jitter 26.6 30.9 66.8
over exposure 29.9 43.5 70.7

total 29.5 43.2 72.7

Table 4. Comparison with the state-of-the-art methods in terms of the ∆R metric on APE dataset.
Bold number indicates the best results.

5° Bb8 YOLO-6D OURS

good weather 85.4 92.9 98.2
fog and haze 75.2 84.2 90.7

atmospheric jitter 70.7 79.6 89.2
over exposure 82.2 89.1 95.3

total 81.2 89.1 95.2
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5.3.2. Performance on the ObjectNet3D Dataset

There are a few types of aircrafts in the APE datasets. To verify the generalization
of our model to different aircraft shapes, we test PEKS on the ObjectNet3D dataset. As
a result that the ObjectNet3D dataset does not provide the precise CAD aircraft model
in each image, it is impossible to accurately estimate the 6D aircraft pose. Therefore, we
evaluate our method by comparing the accuracy of the intermediate representations.

In Table 5, we compare our method with the VpKp and JVK [43,51] in terms of the
PCK. An estimated keypoint is considered correct if the PCK is less than 0.1. In VpKp and
JVK, the network jointly estimated the keypoints and viewpoints. In PEKS, the network
jointly predicted the keypoints and structures. In JVK-KP and PEKS-KP, the network was
trained to just predict the keypoints. Compared with methods which jointly predicted
keypoints and viewpoints, our methods achieve SOTA result and outperform them with a
large margin. On average, we are better than VpKp by 13.3%, JVK by 7.9%. In addition,
as shown in Table 6, we evaluate the accuracy of the estimated structures by PCS and
reached 98.9% of correct structures which shows the precision of our methods on locating
the structures. In addition, as shown in Tables 5 and 6, training the keypoints and structures
jointly achieve better results than training separately.

Table 5. Comparison with the state-of-the-art methods in terms of the Percentage of Correct Keypoints
(PCK) metric on ObjectNet3D dataset. Bold number indicates the best results.

PCK-0.1 VpVk JVK-KP JVK PEKS-KP PEKS

aero 84.1 87.7 89.5 97.4 98.9

Table 6. Comparison with the state-of-the-art methods in terms of the Percentage of Correct Structures
(PCS) metric on ObjectNet3D dataset. Bold number indicates the best results.

PCS-0.1 PEKS-S PEKS

aero 97.1 98.7

The main difference between our method and JVK or VpKp is the different inter-
mediate representations. For viewpoint, it reflects the direction of the coordinate axes
of the object. However, the viewpoint is just a value that cannot reflect the shape of the
object under the pose directly. While for structure, it not only reflects the direction of
the axes but also characterizes the geometric relationship between different parts of the
object. With more information encoded, it is not strange that structure works better than
viewpoint. Qualitative results on ObjectNet3D dataset are shown in Figure 14.

Figure 14. Qualitative results for the proposed method on ObjectNet3D dataset. The yellow points are the keypoints and
the purple segments are the structures.
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5.3.3. Performance on the LineMOD Dataset

Different from other literature, we selected just five sequences to evaluate our algo-
rithm which are bench vise, cat, lamp, can, and driller. As discussed in Section 3, we
manually select keypoints and structures for these five objects. For bench vise, we select
eight keypoints and 5 structures that have rich geometric information, and the pose can
be estimated by the combination of these intermediate representations. Similar to the
bench vise, we select seven keypoints and four structures for the can, 10 keypoints and six
structures for the cat, 11 keypoints and four structures for the driller, and nine keypoints
and eight structures for the lamp. For other objects, their structures are not obvious and our
algorithm is not suitable for them. The definition of keypoints and structures are shown in
Figure 15.

bench vise cat lamp can driller

Figure 15. Keypoints and structures definition of bench vise, cat, lamp, can, and driller. The red points represent the selected
keypoints, and the green line segments represent the selected structures.

In Table 7, we compare our method with the state-of-the-art methods in terms of the
2D reprojection metric. A pose is considered correct if the average of the distances is
less than 5 pixels. Both our method and SOTA methods use keypoints as intermediate
representations to estimate the 6D pose. Bb8 and YOLO-6D use detection frameworks
to predict the corners of the 3D bounding box, while PVNET localizes the keypoints by
regressing pixel-wise unit vectors and our method jointly estimates the keypoints and
structures. On average, our approach is better than Bb8 by 10.12%, YOLO-6D by 8.24%.
Compared with PVNET, our method is only 1.5% worse and wins in the driller class.

Table 7. Comparison with the state-of-the-art methods in terms of the 2D reprojection metric on
LineMOD dataset. Bold number indicates the best results.

2D Reprojection Error Bb8 YOLO-6D PVNET OURS

bench vise 90.1 95.1 99.8 98.2
can 91.2 97.4 99.9 98.5
cat 98.8 97.4 99.9 98.6

driller 80.9 79.4 96.9 97.0
lamp 75.8 76.8 98.3 95.1
total 87.4 89.2 99.0 97.5

In Table 8, we compare our method with the state-of-the-art methods in terms of the
ADD metric. A pose is considered correct if the average of the distances is less than
10% of the model’s diameter. We first compare with methods in which no refinement
is used. DPOD [52] by predicting the dense multi-class 2D-3D correspondence maps.
Our method outperforms YOLO-6D, Zhao, and DPOD by a significant margin on the
majority of the objects, and only slightly worse than PVNET. Compared with methods
in which pose refinement is used, our method also shows competitive results. Similar
to our method, HybridPose also combines multiple intermediate representations which
are keypoints, edges, and symmetry correspondences. In HybridPose, edge vectors are
defined as vectors connecting each pair of keypoints, while in PCK, the structures and
keypoints are independent and unrelated. This is the main difference between our method
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and HybridPose. In addition, in the experiment, HybridPose uses eight keypoints and
28 edges to estimate 6D pose which is much greater than the number of intermediate
representations in our method. Considering that our method achieves similar results with
HybridPose without using pose refinement, and wins on lamp class, we believe that the
structure can better express the geometric information in the input image than the edge.
Qualitative results on LineMOD dataset are shown in Figure 16.

Table 8. Comparison with the state-of-the-art methods in terms of the ADD reprojection metric on
LineMOD dataset. Bold number indicates the best results.

w/o Refinement w/ Refinement

Object YOLO-6D Zhao PVNET OURS Bb8 CDPN [53] DPOD HybridPose
bench vise 81.8 85.7 99.9 95.5 91.8 97.8 98.5 99.6

can 68.8 85.2 95.5 93.6 64.1 95.9 99.7 93.6
cat 41.8 73.9 79.3 75.9 62.6 83.8 94.7 93.5

driller 63.5 77 96.4 97.0 74.4 96.2 98.8 97.2
lamp 71.1 98.1 99.3 97.1 76.5 97.9 96.8 96.9
total 65.4 84 94.1 91.8 73.9 94.3 97.7 96.2

bench vise can cat driller lamp

can

Keypoints

And 

Structures

6D pose

Figure 16. Qualitative results for the proposed method on LineMOD dataset. The yellow points are the keypoints and the
purple segments are the structures.

5.4. Discussion

We conduct discussion on Keypoints Designation, Network Architecture Comparison,
and Joint Keypoints and Structures Estimation. All the experiments are conducted on
the APE dataset.

5.4.1. Keypoints Designation

We first analyze the keypoints selection schemes used in YOLO-6D and in our methods.
As shown in Table 9, we compare the results based on different keypoints set. In ‘SH-Bbox’,
we use the eight corners of the 3D bounding box and the center of the aircraft as the
keypoints, while in ‘SH-9Kp’, we use nine points selected from the surface as keypoints
which are the apex of the aircraft nose, the tips of the left and right wings, the uppermost
vertex of the vertical tail, the bottom vertex of the belly, the backmost vertex of the tail and
the center of the aircraft. The 3D bounding box can be easily estimated with these nine
keypoints. In addition, whether in ‘SH-Bbox’ or ‘SH-9Kp’, we predict the keypoints by the
proposed CNN architecture. On average, ‘SH-9Kp’ outperforms ‘SH-Bbox’ by 1.4%. As a
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result that these two methods differ only in the position of keypoints, selecting keypoints
as we discussed in Section 3 results in better performance.

Table 9. Discussion on APE dataset. Bold number indicates the best result.

2D Reprojection Error YOLO-6D SH-Bbox SH-9Kp SH-17Kp SH-23Kp SH-17Kp+Str

good weather 95.1 95.3 96.8 97.5 97.7 98.3
fog and haze 97.4 83.2 84.6 85.9 85.9 91.3

atmospheric jitter 97.4 76.4 78.4 84.7 84.8 90.2
over exposure 79.4 92.6 93.2 93.3 93.3 95.8

total 76.8 86.9 88.3 90.4 90.4 93.9

Then we conduct a quantitative experiment to show the relationship between the pose
estimation accuracy and the number of keypoints. As shown in Figure 17, it is obvious
that with the increase of the keypoints’ number the accuracy of pose estimation improves.
However, when the number increase from 17 to 23, the accuracy barely improved which
indicates that these 17 keypoints have fully represented the aircraft geometry. The reason
why we only choose 23 keypoints at most is that it is hard to select other points on the
aircraft surface which have as much rich geometric information as these points. If we select
some points with rich texture information, the algorithm may fail when over exposure
as we discussed in Section 3. These selected 23 points are the apex of the aircraft nose,
the leftmost and the rightmost points of the flight compartment windows, the vertexes
of the two wings, the vertexes of two horizontal tails, the vertexes of the vertical tail,
the backmost vertex of the tail, and the center of the aircraft. What is more, it is impossible
to select a continuous number of keypoints because of the aircraft geometry. For example,
it is hard to add a point to the keypoints on the basis of ‘SH-9Kp’ because of the symmetry
of the aircraft.
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Figure 17. Discussion on different keypoints numbers for pose estimation on the APE dataset. These
results are accuracies in terms of the 2D reprojection metric. With the increase of the keypoints’
number the accuracy of pose estimation improves.
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5.4.2. Network Architecture Comparison

As shown in Table 9, we compare our network architecture with YOLO-6D. The ‘SH-
Bbox’ and ‘YOLO-6D’ represent the results of our network architecture and YOLO-6D,
respectively and they both use the eight corners of the 3D bounding box and the center of
the aircraft as keypoints. It is obvious that our network architecture works better in the
task of aircraft pose estimation.

The most critical design element of our network is the stacked architecture which
allows the network to implicitly learn the topological relationship between the keypoints
and structures in a way similar to the attention mechanism. In addition, the combination
of bottom-up and top-down processing in the hourglass element makes the network locate
the keypoints and structures by the consolidation of features across different scales. The
application of intermediate supervision at the end of each model can provide a richer
gradient signal to the network and guide the learning procedure to a better optimum.
These advantages make our network architecture work better than YOLO which is used
in YOLO-6D.

5.4.3. Joint Keypoints and Structures Estimation

As shown in Table 9, we explore the influence of the structures on pose estimation
through three experiments. The SH-17Kp+Str’ represents the result of estimating pose
by keypoints and structures. Compared with the ‘SH-17Kp’ which just uses keypoints,
the combination of keypoints and structures outperforms by 2.5% on average, and when
the weather is bad, it works much better especially in the condition of atmospheric jitter
which confirms the robustness of structures. To eliminate the effect of the number of inter-
mediate representations, we compare ‘SH-17Kp+Str’ with ‘SH-23Kp’ which have the same
number of intermediate variables and find that what can improve the performance of pose
estimation is the structures not the number of features.

It can be inferred that, compared with the keypoints, the methods based on multi-
feature fusion can get better results in the task of 6D pose estimation because of the robust-
ness of different kinds of geometry features. In the following research, we will adapt more
geometric features such as contour to the task of 6D pose estimation.

6. Conclusions

In this article we study the pose estimation of aircraft targets and propose a new
approach for this task, called PEKS. First, we leverage multiple intermediate representations
to express the geometric information of the target. Keypoints encode the local geometric
information and structures encode the geometric relationship between different parts
of the object globally. Next, we also propose a PnPS algorithm to recover the 6D pose
parameters by keypoints and structures. Experiments show that our method gains a
superior performance than the previous keypoints based methods and can estimate the 6D
pose accurately in complex weather scenes. What is more, we also introduce a dataset for
aircraft pose estimation which is quite challenging because of the complex weather scenes.
In the future, we would like to adopt more geometric features to our model and extend our
approach to other aircrafts, such as UVA.
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