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Abstract: To validate the iCOR atmospheric correction algorithm applied to the Sentinel-3 Ocean and
Land Color Instrument (OLCI), Top-of-Atmosphere (TOA) observations over land, globally retrieved
Aerosol Optical Thickness (AOT), Top-of-Canopy (TOC) reflectance, and Vegetation Indices (VIs)
were intercompared with (i) AERONET AOT and AERONET-based TOC reflectance simulations,
(ii) RadCalNet surface reflectance observations, and (iii) SYN Level 2 (L2) AOT, TOC reflectance,
and VIs. The results reveal that, overall, iCOR’s statistical and temporal consistency is high. iCOR
AOT retrievals overestimate relative to AERONET, but less than SYN L2. iCOR and SYN L2 TOC
reflectances exhibit a negative bias of ~−0.01 and −0.02, respectively, in the Blue bands compared to
the simulations. This diminishes for RED and NIR, except for a +0.02 bias for SYN L2 in the NIR. The
intercomparison with RadCalNet shows relative differences <±6%, except for bands Oa02 (Blue) and
Oa21 (NIR), which is likely related to the reported OLCI “excess of brightness”. The intercomparison
between iCOR and SYN L2 showed R2 = 0.80–0.93 and R2 = 0.92–0.96 for TOC reflectance and VIs,
respectively. iCOR’s higher temporal smoothness compared to SYN L2 does not propagate into a
significantly higher smoothness for TOC reflectance and VIs. Altogether, we conclude that iCOR is
well suitable to retrieve statistically and temporally consistent AOT, TOC reflectance, and VIs over
land surfaces from Sentinel-3/OLCI observations.

Keywords: atmospheric correction; iCOR; surface reflectance; Sentinel-3; OLCI; AERONET; 6SV;
SYN L2; RadCalNet

1. Introduction

The European Commission’s Copernicus Programme Sentinel-3 mission [1] was de-
signed to ensure the long-term collection and operational delivery of high-quality measure-
ments to Copernicus ocean, land, and atmospheric services. The mission’s main objective
is to measure ocean and land surface color, sea surface topography, and sea and land
surface temperatures with high accuracy and reliability to support ocean forecasting sys-
tems and environmental and climate monitoring. The mission’s definition is driven by
the need for continuity in provision of the European Remote Sensing Satellite (ERS, [2]),
the Environmental Satellite (ENVISAT, [3]) and Système Probatoire Observation de la
Terre—Végétation (SPOT-VGT, [4]) data, with improvements in instrument performance
and coverage.

Sentinel-3 currently comprises two satellites (Sentinel-3A and Sentinel-3B, hereafter
referred to as S3A and S3B), launched on 16 February 2016 and 25 April 2018, respectively.
Sentinel-3C and -3D are currently planned for launch no earlier than 2023 and 2025,
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respectively. S3A and S3B carry, among others, the Ocean and Land Color Instrument
(OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR).

The OLCI is the successor of the ENVISAT Medium Resolution Imaging Spectrom-
eter (MERIS) and has additional spectral channels, different camera arrangements, and
simplified on-board processing. It is a push-broom instrument with five camera modules
sharing the field of view, arranged in a fan-shaped configuration in the vertical plane,
perpendicular to the platform’s movement. Each camera has an individual 14.2◦ field of
view (FOV) and a 0.6◦ overlap with its neighboring cameras. The entire FOV is shifted
across-track by 12.6◦ away from the sun to minimize sun glint impact. OLCI’s native
acquisition resolution is ~300 m and is used to compute the Full Resolution (FR) product.

The OLCI is equipped with on-board calibration hardware based on sun diffusers and
performs observations in 21 Visible-Near-Infrared (VNIR) and Shortwave Infrared (SWIR)
spectral bands, covering the 0.4–1.1 µm range. As the instrument was designed for ocean
color purposes, the majority of applications have been reported from this field, for example
on chlorophyll-A retrievals over inland and coastal waters [5,6], seaweed distribution [7],
and sub-pixel water body mapping [8]. Over land surfaces, applications vary among others
from, e.g., Gross Primary Production (GPP) [9] and chlorophyll content estimates [10] to
the retrieval of other biophysical properties. Within the Copernicus Global Land Service
(CGLS), Sentinel-3 OLCI-based 300 m biophysical properties have been distributed to users
since late 2020, as a continuation of those from Project for On-Board Autonomy—Vegetation
(PROBA-V).

The principal aim of the SLSTR instrument is to maintain continuity with the (Ad-
vanced) Along Track Scanning Radiometer [(A)ATSR] series of instruments. This continuity
is enabled by incorporating AATSR’s basic functionality with the addition of more ad-
vanced features. These include a wider swath, new channels (including two channels
dedicated to fire detection), and a higher spatial resolution in some channels. SLSTR visible
and SWIR observations are used in the SYN L2 Aerosol Optical Thickness (AOT) retrieval.
Channels from S1 to S6 (i.e., from 0.555 µm to 2.250 µm), using both nadir and oblique
views, are considered in the SYN L2 processing chain. Only the S4 channel (1.375 µm) is
discarded from the processing, as this channel is fully dedicated to cloud detection.

OLCI Level-2 data products specific for marine and land application domains are
generated separately by the Sentinel-3 Payload Data Ground Segment (PDGS). Currently,
only for the marine domain the OLCI Level-2 products include surface reflectance (i.e.,
water-leaving reflectance) generated with the baseline atmospheric correction algorithm.
At present, OLCI surface reflectance products for the land domain are not directly available.
However, the Flemish Institute for Technological Research’s (VITO) publicly available
image CORrection for atmospheric effects (iCOR, [11]) has recently been extended to
perform an atmospheric correction to OLCI observations over both land and water surfaces.

iCOR was originally developed for the Landsat-8 Operational Land Imager (OLI) and
Sentinel-2 Multi-Spectral Instrument (MSI). The version modified for usage on Sentinel-
3/OLCI is hereafter referred to as iCOR4S3. Various references about iCOR’s usage on
Landsat-8/OLI and Sentinel-2/MSI can be found for both land [12] and water applica-
tions [11]. Further, iCOR has been part of the Atmospheric Correction Intercomparison
eXercises I and II (ACIX-I, [12] and -II), a framework conceived by the European Space
Agency (ESA) and the National Aeronautics and Space Administration (NASA). Because
iCOR4S3 was introduced in 2019, available literature references are still scarce and mainly
focusing on applications over water surfaces ([5,13]).

In order to obtain a globally and statistically robust indication on iCOR’s performance
over land surfaces, the iCOR4S3 validation study was conceived and carried out within
the Sentinel-3 Mission Performance Center (S3-MPC). This validation comprised inter-
comparisons with (i) Aerosol Robotic Network (AERONET, [14]) AOT observations and
AERONET-based simulated Top-of-Canopy (TOC) reflectances, (ii) RadCalNet [15] surface
reflectance observations, and (iii) SYN Level 2 (L2) AOT and TOC reflectances.
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In (i), a globally representative picture of the iCOR TOC reflectance retrieval accuracy
is obtained using ground-truth TOC reflectances obtained from OLCI TOA reflectance
observations and Radiative Transfer Model (RTM) simulations. AERONET AOT and
Total Column Water Vapor (TCWV) retrievals are used as auxiliary input for the TOA
to TOC inversion, assuming that the AERONET retrievals provide the most accurate
characterization of the atmospheric state. Similar approaches have been applied within
ACIX-I and -II. In (ii), the iCOR OLCI TOC reflectance retrievals are compared with
observed Bottom-of-Atmosphere (equivalent to TOC) reflectances at RadCalNet sites that
are convolved on the OLCI Spectral Response Functions (SRFs). Finally, in (iii), iCOR OLCI
TOC reflectances are intercompared to SYN L2 TOC reflectances on their statistical and
temporal consistency over five globally distributed Regions of Interest (ROIs).

The paper’s outline is as follows. Section 2 introduces the iCOR and SYN atmospheric
correction algorithms, while Section 3 provides details on the validation data and methods,
respectively. Validation results are described and discussed in Sections 4 and 5, respectively,
and final conclusions are drawn in Section 6.

2. Atmospheric Correction Algorithms
2.1. iCOR

iCOR uses the Moderate-Resolution Atmospheric Radiance and Transmittance Model-
5 (MODTRAN5, [16]) for its radiative transfer calculations, works with Look-Up Tables
(LUTs) to speed up the retrievals, and is a surface adaptive atmospheric correction algo-
rithm. It identifies whether a pixel is water or land and subsequently applies a dedicated
atmospheric correction. iCOR runs without user interaction and derives the required
input parameters from the image. In August 2017, iCOR was released to the broader user
community as a Sentinel Application Platform (SNAP) toolbox plug-in for Landsat-8/OLI
and Sentinel-2/MSI. iCOR4S3 was released in 2019 and is also available as a SNAP plug-in.
An iCOR4S3 processing service is available at ESA’s Grid Processing on Demand for Earth
Observation Application (G-POD, https://gpod.eo.esa.int/).

The iCOR image based AOT retrieval divides a TOA reflectance image into macro-
pixels of about 15× 15 km2, being large enough to include high spectral variation and small
enough to assume spatial atmospheric homogeneity. In the first retrieval step, the lowest
TOA radiance values in the different visible bands are searched to determine an upper
AOT boundary value for each macro-pixel. Subsequently, this AOT value is refined based
on the spectral variation within the macro-pixel, using a multi-parameter end-member
inversion technique. Five pixels with high spectral contrast (selected on TOA NDVI values)
are represented by a linear combination of three pre-defined default vegetation spectra and
a soil spectrum.

If a macro-pixel contains too many clouds and/or if the internal spectral TOA re-
flectance variability is too small (i.e., no sufficient variability in the TOA NDVI values), no
AOT retrieval is performed and the AOT is obtained through a bilinear interpolation from
surrounding macro-pixels for which the retrieval was successful. Currently, for iCOR4S3
no maximum distance for this macro-pixel interpolation is set. However, in the version
available on G-POD users can set a scene-specific AOT for cases without successful macro-
pixel AOT retrieval. Further, currently no AOT fallback solution has been implemented
for iCOR4S3. For Sentinel-2/MSI, the operational iCOR workflow contains a fallback to
Copernicus Atmosphere Monitoring Service (CAMS) AOT data and it is foreseen that a
similar approach will be implemented in a future iCOR4S3 version. Finally, to up-scale the
macro-pixel values to the nominal pixel resolution, a cubic convolution method is used.
iCOR applies a rural aerosol model in the TOA to TOC reflectance conversion.

2.2. SYN L2

The Sentinel 3 operational SYNERGY processor is divided into two modules. First,
a SYN Level-1 (L1) module is dedicated to the co-registration of OLCI and SLSTR acqui-
sitions and to the production of internal datasets collecting all OLCI/SLSTR radiometric
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measurements and contextual parameters (e.g., meteorological input data, as well as geolo-
cation and angular data) on the same reference grid. Subsequently, these internal datasets
are considered as inputs to a SYN Level-2 (L2) module, including the aerosol retrieval and
aerosol correction processing steps.

In the atmospheric correction algorithm, the AOT is retrieved using collocated OLCI
and SLSTR TOA radiances. These acquisitions are filtered for cloud contamination and
averaged onto a coarser grid than the original images (15 × 15 pixels, i.e., ~4.5 × 4.5 km2).
The AOT retrieval is performed following an approach combining Dark Object and multiple
viewing angle methods derived from existing work for MERIS and AATSR [17]. For a given
atmospheric aerosol model (currently a continental model is used) and a parameterized
AOT computed at 0.55 µm, a set of surface reflectances is derived from OLCI/SLSTR
observations. The derived error metric is then minimized with respect to angular and
spectral constraints, using the Brent and Powell methods for univariate and multivariate
minimization, respectively. The 300 m AOT is obtained from the relative contributions of
the three surrounding super-pixel AOTs on a 15 × 15-pixel area centered at a given 300 m
pixel. This interpolated 300 m AOT is then used in the atmospheric correction to obtain the
SYNERGY Surface Directional Reflectance (SDR, equivalent to TOC reflectance).

The resulting AOT and SDR associated with all relevant SLSTR and OLCI channels
are projected on a regular 300 m resolution grid to be included in the SYN L2 product.

3. Data and Methods
3.1. Regions of Interest and iCOR Retrievals

Five regions of interests (ROIs, see Table 1) were defined, covering different types of
land cover and atmospheric conditions: Western Europe (WEUR), Northern Brazil (NBRA),
Central Africa (CAFR), Eastern China (CHIN), and Northern Australia (NAUS).

Table 1. Overview of the AERONET stations, the associated regions of interests (ROI) and land cover according to
Global Land Cover 2000 (GLC2000), geolocation, maximum allowed cloud cover per ROI, and the number of processed
PDUs per sensor. CUL = Cultivated areas and cropland, BEF = Broadleaved Evergreen Forest, OTH = Other (urban),
HER = Herbaceous cover, SHR = Shrubland.

Station Name ROI and Land
Cover Lat [◦] Long [◦] Max Cloud

Cover [%] Nr. PDUs S3A Nr. PDUs S3B

Alta Floresta NBRA CUL −9.8713 −56.1045 20 29 25

Amazon ATTO
Tower NBRA BEF −2.1442 −58.9999

XiangHe CHIN CUL 39.7536 116.9515 20 18 12

Beijng CAMS CHIN
URB 39.9333 116.3167

Bujumbura CAFR CUL −3.3800 29.3838 20 14 7

Chilbolton WEUR
CUL 51.1445 −1.4370 50 85 84

Aubière LAMP WEUR
OTH 45.7610 3.1110

Lille WEUR
OTH 50.6117 3.1417

Palaiseau WEUR
CUL 48.7116 2.2150

Lake Argyle NAUS
HER −16.1081 128.7485 5 63 52

Jabiru NAUS
SHR −12.6607 132.8931

TOTAL 209 180
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For January–September 2019, OLCI Level-1 Product Dissemination Units (PDUs,
3-min time frames) were processed by the iCOR4S3 implementation deployed on ESA’s
G-POD facility, using the standard iCOR4S3 settings [18]. This processing yielded AOT
and TOC reflectance retrievals for 16 of the 21 OLCI bands (see Figure 1), omitting the
spectral bands affected by oxygen (Oa13, Oa14, and Oa15) and water vapor absorption
(Oa19 and Oa20).
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To restrict the number of PDUs retrieved for the ROIs, the maximum cloud cover
percentage was arbitrarily set to 20% for CAFR, NBRA, and CHIN, 50% for WEUR, and
5% for NAUS (see Table 1). These percentages were chosen as a trade-off between having
sufficient PDUs for the analyses and reducing processing time. Cloud coverage percentages
vary between ROIs, as cloud occurrence differs between the ROIs. Therefore, to ensure
the automatic selection of a comparable number of PDUs for all ROIs, different thresholds
were applied.

3.2. Validation Data
3.2.1. AERONET

AERONET is a network of ground-based Sun photometers that measure atmospheric
aerosol properties. The measurement system comprises a solar-powered CIMEL Electron-
ique 318A spectral radiometer that measures Sun and sky radiances at a number of fixed
wavelengths within the visible and near-infrared (VNIR) spectrum. AERONET provides
continuous cloud-screened observations of spectral AOT, TCWV, and inversion aerosol
products in various aerosol regimes. For more than 25 years, AERONET has provided
long-term, continuous, and readily accessible public domain databases of aerosol optical,
microphysical, and radiative properties for aerosol research. The applications are among
others the characterization and validation of satellite retrievals, as well as providing syn-
ergy with other aerosol databases. The network requires the standardization of instruments
and calibration procedures, as well as unified processing and data distribution. AERONET
provides globally distributed spectral AOT observations, aerosol inversion (optical proper-
ties) products, and TCWV data for various aerosol regimes. The Version 3 AOT data are
computed at three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened
and quality controlled), and Level 2.0 (quality-assured). In this study, Level 1.5 data were
used. Table 1 provides a list of selected AERONET stations, the corresponding ROIs, the
maximum set cloud cover, and the amount of processed OLCI frames.

3.2.2. 6SV Simulations Using AERONET Observations

The earlier introduced TOC reflectance simulation approach was adapted from the
Atmospheric Correction Intercomparison Exercise [12], using the Second Simulation of
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a Satellite Signal in the Solar Spectrum [19] Vector (6SV) V2.1 RTM, downloaded from
http://6s.ltdri.org/, accessed 15 April 2020. The 6SV AERONET input data were the AOT,
converted to 0.55 µm using the Ångström parameter between 0.44 and 0.675 µm, as well as
TCWV and ozone concentrations. To obtain an indication on aerosol model impact to the
iCOR retrievals, 6SV was run for its four standard aerosol models: continental, maritime,
urban, and desert. See [20] for an overview of the 6SV aerosol models’ optical properties
and relative contributions of dust-like, water-soluble, oceanic, and soot components. The
simulations were performed over AERONET stations with different land surface types
(e.g., homogeneous and heterogeneous vegetation, bare soils, urban areas, desert areas,
etc.). In total, 11 AERONET sites from the existing list of the ACIX-II AERONET land sites
were selected (see Table 1) as a trade-off between global distribution, land surface type,
and OLCI versus AERONET matchup availability.

Starting from the list of iCOR G-POD runs (see Table 1 for their distribution over
the five ROIs), for each AERONET station and OLCI frame for which iCOR was run, the
corresponding Sentinel-3A or -3B OLCI Level-1 TOA reflectance, geolocation, angular files,
and SYN flags file were collected. Subsequently, when all files were available and the
AERONET station was confirmed to be located in the given OLCI frame, the AERONET
station’s Level 1.5 data were read and checked for available AOT, TCWV, and ozone
observations within +/−30 min of the OLCI frame time stamp.

The AERONET AOT at 0.44 µm and Ångström coefficient derived over the 0.44–0.675
µm spectral range were used to calculate the AOT at 0.55 µm:

AOT0.55 = AOT0.44

(
λ

λo

)−α

(1)

With λ and λo being 0.55 µm and 0.44 µm, respectively, and α the Ångström coefficient.
The median AOT0.55 value obtained in the 60 min around the OLCI frame time stamp
was taken as 6SV input. For ozone and TCWV, the arithmetic means of the available
observations were used.

6SV input files were composed for OLCI frames for which the AERONET input data
were available. The following variables are required by 6SV:

• Angular configuration: Solar zenith angle (SZA), solar azimuth angle (SAA), viewing
zenith angle (VZA), and viewing azimuth angle (VAA)

• Date (day and month)
• AERONET AOT, TCWV, and ozone concentrations

• AERONET station altitude [m], obtained from the information available at https:
//aeronet.gsfc.nasa.gov/

• OLCI SRF information at 2.5 nm spectral resolution
• OLCI-observed TOA radiance

6SV V2.1 was installed on a Linux User Virtual Machine in VITO’s Mission Exploitation
Platform (MEP) and run for 3 × 3 pixels centered at the AERONET stations’ geolocations.
It is emphasized that the distribution of 6SV simulations over the AERONET stations was
heavily weighted by the respective stations’ Level 1.5 data availability. As a result, the
majority of the simulations were performed over stations located in WEUR [Lille, Palaiseau,
Aubière (all France), and Chilbolton (UK)].

3.2.3. RadCalNet Observations

The Radiometric Calibration Network (RadCalNet) is an initiative of the Committee on
Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV)
and the Infrared Visible Optical Sensors Subgroup (IVOS). RadCalNet automatically collects
in-situ measurements of the bottom of atmosphere (BOA, equivalent to TOC) reflectance at
nadir-view and atmospheric parameters, such as surface pressure, TCWV, columnar ozone,
AOT, and the Ångström coefficient. The RadCalNet processor ingests in-situ reflectance

http://6s.ltdri.org/
http://6s.ltdri.org/
https://aeronet.gsfc.nasa.gov/
https://aeronet.gsfc.nasa.gov/
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and atmospheric observations to derive TOA reflectance that is generally used for post-
launch radiometric calibration and validation of optical imaging sensor data [15]. In this
study, only TOC reflectance data were considered and intercompared with iCOR TOC
reflectances. The TOC reflectance from RadCalNet is provided at 10 nm spectral intervals
from 0.4–2.5 µm (depending on the site’s instrumentation). It is acquired every 30 min
between 09:00 and 15:00 Local Standard Time (LST) and only in cloud-free conditions
(Table 2). The network currently includes four sites located in the USA, France, China, and
Namibia. A new sandy site in China called Baotou has recently been added.

Table 2. RadCalNet site descriptions.

Site Name Site Owner Instrumentation
Maintenance Location Spectral

Range (µm)

Surface Reflectance
Variability at

500 × 500 m (%)

Railroad
Valley(RVUS)

United States Bureau
of Land Management

(BLM)

Remote Sensing Group-
College of Optical Sciences

University of Arizona (USA)
Nevada, USA 0.4–2.5 1

Gobabeb (GONA) Gobabeb Research
and Training Centre

National Physical Laboratory
(UK)

Naukluft National
Park, Namibia

0.4–1.81
1.92–2.3 3

In this study, the choice of sites suitable for the intercomparison analysis is based on
the assessment of the “surface reflectance variability” at 500 × 500 m2. Considering that
a Sentinel-3 OLCI FR pixel is approximately 300 m, a surface reflectance variability less
than 3% is considered acceptable for the analysis, resulting in only the Gobabeb (GONA,
Lat: 23.600◦S, Lon: 15.119◦E) and Railroad Valley (RVUS, Lat: 38.497◦N, Lon: 115.690◦W)
sites considered suitable for this research. GONA and RVUS are desert sites, characterized
by sand and gravel with some widely scattered dry grass, and by a high-desert playa
surrounded by mountains, respectively. The current uncertainty estimates in the in-situ
surface reflectance measurements are 3.5–5.3% for RVUS and 3.5–5.0% for GONA. Figure 2
shows the average and standard deviation in TOC reflectance measured at GONA (black)
and RVUS (red) over the considered time over the two sites. The plots demonstrate a
high reflectance stability over time, with standard deviations of ~0.02 at GONA and ~0.03
at RVUS.
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Figure 2. Average surface reflectance and standard deviation over time at the GONA (black) and
RVUS (red) site. Values for RVUS are slightly shifted towards larger wavelengths for clarity reasons.
RadCalNet observations were resampled to the OLCI spectral bands, see text for more details.

More information on RadCalNet, its instrumentation, and analysis procedures can be
found in [15].
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3.2.4. Sentinel-3 SYN L2

Sentinel-3 Synergy L2 (SYN L2) products are provided in Non-Time Critical timeliness
(NTC, available 30–48 h after acquisition) and include daytime and land-only datasets. Sur-
face reflectance and aerosol parameters are provided on a 300 m regular ortho-geolocated
grid, similar to the OLCI L2 products. Some sub-sampled annotations (solar and viewing
azimuth/zenith angles) and meteorological data (mean sea-level pressure, total column
ozone, and water vapor, all derived from ECMWF data) are also provided in the OLCI tie
points data grids.

TOC reflectances and their associated error estimates are provided for each solar
SLSTR and OLCI channel, except for the oxygen absorption bands Oa13, Oa14, and Oa15,
the water vapor absorption bands Oa19 and Oa20, and the dedicated SLSTR S4 cloud
detection band. Aerosol parameters, such as AOT at 0.550 µm (referenced as T550) and
Ångström coefficient around this wavelength (referenced as A550) are included in separate
files and are also provided on a 300 m resolution grid. The datasets are associated with
contextual parameters, such as geographical position, time stamps, quality flags concerning
the SYN L2 processing and OLCI and SLSTR input quality, and classification flags.

3.3. Validation Methods
3.3.1. Sampling Strategy

For the intercomparison of iCOR and SYN L2 TOC retrievals with corresponding 6SV
TOC reflectance simulations, for each AERONET station and OLCI band only dates at which
iCOR, SYN L2, and the AERONET data (to calculate the 6SV reference TOC reflectance)
were available were selected. Subsequently, for the three datasets the arithmetic mean and
standard deviation were computed for those pixels in the 3 × 3-pixel area centered at the
station’s geolocation for which both SYN L2 and iCOR had valid values.

In the pairwise data extraction for the statistical consistency analysis at frame level,
systematic subsampling was performed to reduce the number of data points, extracting
every 10th pixel in the X and Y directions. For the statistical analysis over all ROIs and
PDUs, an additional random sampling of 2% was applied.

The CLOUD_flags layer as included in the SYN L2 product (CLOUD, CLOUD_AMBIG
UOUS, CLOUD_MARGIN, and SNOW_ICE) is used to exclude observations perturbed
by clouds or snow/ice. Because currently no list of recommended flags when interpreting
SYN L2 data is available, no additional flagging based on SYN L2 flag bands was applied.
However, SYN L2 observations with negative AOT at 0.55 µm (~0.002% of the pixels)
were discarded.

3.3.2. Vegetation Indices

Per iCOR and SYN L2 frame and for each extraction, the Normalized Difference
Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Enhanced
Vegetation Index (EVI) were computed, based on the Oa03 (Blue), Oa09 (Red), Oa17 (NIR)
and Oa21 (SWIR) bands.

NDVI =
NIR− Red
NIR + Red

(2)

NDWI =
NIR− SWIR
NIR + SWIR

(3)

EVI =
2.5∗ (NIR− Red)

NIR + 6 ∗ Red + 7.5 ∗ Blue + 1
(4)

By applying the ratios in these vegetation indices (VIs), any ‘noise’ resulting from the
observation geometry (directionality) is expected to be reduced, because these directional
effects are similar in the visible and near-infrared bands [21], thereby providing a better
indication on the temporal variations.
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3.3.3. RadCalNet Intercomparison

The methodology adopted for comparing iCOR OLCI TOC reflectances with in-situ
RadCalNet observations followed an approach similar to [22]. First, OLCI Level-1 data were
selected considering cloud-free conditions over the RadCalNet sites and satellite in -situ
data availability. OLCI-L1 FR selected data were then processed using iCOR4S3 deployed
on ESA’s G-POD. Afterwards, the iCOR OLCI TOC reflectance and satellite acquisition
time from the pixel over the RadCalNet sites were extracted. Finally, the RadCalNet TOC
reflectance data were convolved using the OLCI mean SRF and interpolated in time to the
satellite overpass time, before comparing the two datasets. A description of the workflow
is provided below, while the workflow is depicted in Figure 3.
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1. RadCalNet TOC reflectances were cubically interpolated from 30 min to 1 sec for
every wavelength;

2. TOC reflectance values at different wavelengths were extracted at the sensor overpass
time;

3. TOC reflectances from point 2 were cubically interpolated from 10 nm to 0.1 nm (ρH
λ );

4. TOC reflectances from point 3 were convolved with the OLCI mean SRF (SRFλ), using
Equation (5) [22]:

ρRC =
∑λ2

λ1
ρH

λ × SRFλ

∑λ2
λ1

SRFλ

(5)

In Equation (5), ρH
λ is the interpolated TOC reflectance, SRFλ is the mean OLCI SRF,

and λ1 and λ2 define the OLCI band delimitation wavelengths at Full Width at Half
Maximum (FWHM). Finally, ρRC is the convolved RadCalNet TOC reflectance converted
into the OLCI spectral bands.

3.3.4. Validation Metrics

The validation metrics used in the intercomparison are listed in Table 3. To quantify
the deviation between iCOR, SYN L2 TOC reflectances and the 6SV reference simulations,
and between iCOR or SYN L2 AOT and the AERONET AOT, the Accuracy, Precision, and
Uncertainty (often abbreviated as APU) statistical metrics [23] were calculated. For these
cases, X refers to the reference (6SV, RadCalNet or AERONET), and Y to iCOR or SYN L2.

To identify the relationship between iCOR and SYN L2 TOC reflectances and AOT, the
geometric mean (GM) regression model is used. Such an orthogonal (model II) regression
is appropriate, because—unlike when comparing to an absolute reference—both datasets
are subject to noise. By applying an eigen decomposition to the X (SYN L2) and Y (iCOR)
covariance metrics, two eigenvectors are obtained that describe the principal axes of the
point cloud [24], i.e., the regression line. The GM regression intercept and slope value
are added as quantitative information related to the scatterplots. The Root Mean Squared
Difference (RMSD) expresses the difference magnitude between two datasets from 0 and is
an expression of the overall difference, similar to the Uncertainty.
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Table 3. List of validation metrics, with n the number of valid samples used for the comparison, σ(X) and σ(Y) the standard
deviation of X and Y, σ(X, Y) the co-variation of X and Y, and X̂ and Ŷ estimated using the GM regression model. P(di),
P(di+1) and P(di+2) are three consecutive observations on dates di, di+1, and di+2.

Validation Metric Formula

Accuracy (Acc) or mean bias Acc = 1
n

n
∑

i=1
Xi −Yi

Precision (Prec) or repeatability Prec =

√
1

n−1

n
∑

i=1
(Xi −Yi − Acc)2

Uncertainty (Unc) or Root Mean Squared Difference (RMSD) Unc = RMSD =
√

MSD =

√
1
n

n
∑

i=1
(Xi −Yi)

2

Root of the unsystematic mean product difference (RMPDu) RMPDu =
√

MPDu =

√
1
n

n
∑

i=1

(∣∣Xi − X̂i
∣∣)(∣∣Yi − Ŷi

∣∣)
Root of the systematic mean product difference (RMPDs) RMPDs =

√
MSD−MPDu

Coefficient of determination (R2) R2 =
(

σ(X,Y)
σ(X)·σ(Y)

)2

Temporal smoothness (δ) δ(di) =
∣∣∣P(di+1)− P(di)−

P(di)−P(di+2)
di−di+2

(di − di+1)
∣∣∣

Time series smoothness index (TSI) TSI =

√
∑n−2

i=1 δ(di)
2

n−2

Relative difference [∆, %] ∆[%] = Xi−Yi
Yi

The GM regression model is also used to differentiate between systematic and ran-
dom differences, providing additional information on the difference’s nature between two
datasets. In order to be comparable to the RMSD’s magnitude, the root of the systematic
and unsystematic mean product difference is used (RMPDs and RMPDu). The coeffi-
cient of determination (R2) indicates the agreement or covariation between two datasets
with respect to the linear regression model, summarizing the total explained variance by
this model.

The temporal smoothness δ [21,25] of AOT, TOC reflectance, and the VI time series is a
measure for its consistency throughout time. Temporal smoothness is evaluated by taking
three consecutive observations and by computing the absolute difference value between
the center P(dn+1) and the corresponding linear interpolation between the two extremes
P(dn) and P(dn+2) The Time Series Smoothness Index (TSI) is an estimate of the time series
noise [26], and is defined such that a lower value indicates less temporal noise and thus a
smoother time series profile.

4. Results
4.1. Intercomparison with 6SV Simulations Using AERONET Input

Figure 4 shows the AOT and TOC reflectance intercomparison between iCOR and
SYN (Y axis) with AERONET and 6SV, respectively (X axis), for S3A (left column) and
S3B (right column) and for OLCI bands Oa03, Oa09, Oa17, and Oa21. Table 4 presents the
number of selected data points included for the intercomparison, separated for S3A and
S3B. Note that for CAFR (Bujumbura) no collocations were found for both S3A and S3B,
resulting from both quasi-persistent cloud coverage and irregular AERONET observations
in general. In the TOC reflectance scatterplots, the error bars in the X direction span the
standard deviation of the 6SV-simulated TOC reflectances over the four aerosol models
(continental, maritime, urban, and desert).
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(a,c,e,g,i) S3A and (b,d,f,h,j) S3B OLCI bands (c,d) Oa03, (e,f) Oa09, (g,h) Oa17, and (i,j) Oa21. SYN
and iCOR values are indicated by red and blue dots, respectively. The black dashed lines indicate
the 1:1 line, while the red and blue solid lines denote the GM linear regressions for SYN and iCOR,
respectively. The error bars in the X direction span the standard deviation of the 6SV-simulated TOC
reflectances for the four aerosol models: continental, maritime, urban, and desert. The legend text
presents the APU values, as well as the GM linear regression equations and corresponding R2 values.
Note the different X and Y axis ranges for Oa03, Oa09 and Oa17, Oa21.

Table 4. Number of selected data points for the intercomparison of iCOR and SYN with AERONET
and 6SV. The number of data points before filtering on AERONET data availability are given be-
tween parentheses.

ROI S3A S3B TOTAL

WEUR 90 (194) 57 (164)
NAUS 3 (51) 9 (66)
NBRA 4 (41) 2 (32)
CHIN 9 (25) 6 (12)

TOTAL 106 (311) 74 (374) 180 (685)

The scatterplots show that both iCOR and SYN AOT retrievals overestimate relative
to AERONET for both S3A and S3B, but that the SYN AOT overestimation is substantially
larger. Further, the SYN AOT retrievals for S3B have a larger overestimation than for S3A.
Another observation is that for S3B, iCOR AOT > SYN AOT for very low AERONET AOT
(<~0.1). The larger overestimation for SYN compared to iCOR also reflects in higher (less
favorable) APU values than iCOR. For S3A, the APU values for iCOR (SYN) are 0.12 (0.29),
0.09 (0.16), and 0.15 (0.33), while for S3B these values for iCOR (SYN) are 0.11 (0.24), 0.06
(0.16), and 0.13 (0.28).

For the Blue band (Oa03) TOC reflectances, both SYN and iCOR generally exhibit
an underestimation, with the SYN underestimation being larger, especially for S3B. This
underestimation gradually reduces with increasing wavelength, due to decreasing aerosol
contribution to atmospheric scattering and absorption. Further, the sometimes large error
bars for the 6SV TOC reflectance indicate a large spread in the obtained 6SV TOC reference
reflectances when different aerosol models are applied. This aerosol model susceptibility
indicates that additional research on dynamic aerosol model application for iCOR (which
currently uses the MODTRAN rural aerosol model) could be beneficial to further optimize
the iCOR TOC reflectance retrieval performance. For Oa09 (Red), the SYN and iCOR
TOC reflectances are generally in good agreement with their 6SV counterparts, with a
marginal positive bias (Acc = 0–0.002) for SYN, while iCOR shows a slight negative bias
(Acc = ~−0.01). For Oa17 and Oa21 (NIR), agreement between SYN, iCOR, and 6SV has
increased, which can be expected due to the small aerosol contributions in these bands.
iCOR results show virtually no bias relative to 6SV, while for SYN a slight positive bias is
seen (Acc = +0.017 and Acc = +0.021 for S3A and S3B, respectively).

The APU and R2 spectral signatures are shown in Figure 5. The results are presented
separately for S3A and S3B in the left and right columns, respectively. For all statistical
metrics, a similar signature can be seen for S3A and S3B. For Accuracy, SYN has lower
negative values (larger negative bias) than iCOR up to ~0.5 µm. Further, the SYN negative
bias changes into positive from ~0.55 µm onwards, while for iCOR a small negative bias
remains until 0.8 µm, becoming slightly positive beyond this wavelength. The Precision
evolution for iCOR and SYN is similar, especially for S3A. However, for S3B differences
in Precision are larger, with SYN > iCOR up to ~0.65 µm and iCOR > SYN beyond this
wavelength, with differences further increasing (i.e., more scattered TOC reflectance re-
trievals) for λ > 0.75 µm. Uncertainty is larger for SYN compared to iCOR in the BLUE and
NIR channels, which indicates a larger spread for SYN. The R2 increases towards 1 for both
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iCOR and SYN with increasing wavelength, with SYN having lower values than iCOR at
λ < 0.55 µm, with this difference being more prominent for S3B.
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Figure 5. (a–f) APU and (g,h) R2 for iCOR (blue) and SYN (red) TOC reflectances relative to 6SV
TOC reflectances for bands Oa01—Oa12, Oa16—Oa18, and Oa21. Results are presented separately
for (a,c,e,g) S3A and (b,d,f,h) S3B.

4.2. Intercomparison with RadCalNet Observations

iCOR OLCI TOC reflectances were intercompared with convolved RadCalNet TOC re-
flectances at the GONA and RVUS sites, following the methodology described in Section 3.3.4.
Initially, to reduce any Bi-directional Reflectance Distribution Function (BRDF) impact,
only satellite images over the RadCalNet sites with VZA < 10◦ were considered. However,
this constraint provided only a few matchups. Thanks to an ad-hoc processing by the
Centre National d’Études Spatiales (CNES) that provided BRDF-corrected data in OLCI ac-
quisition geometry [27], all possible VZAs could be considered, which allows for inclusion
of more matchups in the analysis. The former approach was applied to the RVUS site, the
latter to the GONA site. Table 5 shows the datasets used in the analysis for the two sites.

Given the OLCI FR data 300 m resolution and the surface reflectance variability at the
RadCalNet sites, the iCOR TOC (surface) reflectance values were extracted for 1 pixel at
GONA and for an average of 3 × 3 pixels centered at RVUS.
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Table 5. Number of Sentinel-3 products selected considering the in-situ data availability and
cloud-free conditions. (*) Sentinel-3 OLCI-L1 B reprocessed data by Centre National d’Études
Spatiales (CNES).

Sensor RVUS GONA RVUS Time Interval GONA Time Interval

OLCI S3A 17 63 04/09/2016–09/07/2020 21/07/2017–01/10/2019

OLCI S3B - 38 * - 15/12/2018–08/10/2019

Figure 6 shows the average relative difference and standard deviation at (a) GONA
and (b) RVUS, together with (c,d) the corresponding APU values for GONA and RVUS,
respectively. Band Oa01 (0.4 µm) was excluded from the analysis, because the RadCalNet
acquisitions start from 0.400 µm and the OLCI SRF for Oa01 starts from 0.388 µm.
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Figure 6. Average relative difference and standard deviation (vertical bars) for iCOR on S3A (black) and S3B (red) versus
S3-convolved TOC reflectances at (a) GONA and (c) for S3A over RVUS. Values for S3B are slightly shifted towards larger
wavelengths for clarity reasons. Accuracy, Precision, and Uncertainty for iCOR on S3A (solid lines) and S3B (dashed lines)
versus S3-convolved TOC reflectances at (b) GONA and (d) for S3A over RVUS.

In general, at GONA the average relative differences are within ±6% for all bands,
except for Band Oa02 (0.412 µm) and Oa21 (1.02 µm). The larger relative difference of these
two bands relate to OLCI S3A having an “excess of brightness”, mainly in the Blue bands
and the Oa21 (NIR) band (see https://sentinel.esa.int/web/sentinel/technical-guides/
sentinel-3-olci/mission-performance, accessed 18 November 2020). It is emphasized that,
because in the comparison with the 6SV TOC reflectance simulations (see Section 4.1) both
iCOR and 6SV start from the OLCI Level 1B data, the excess of brightness is present in
both datasets and is thus cancellated in the intercomparison results. iCOR on OLCI S3A
and OLCI S3B show similar values, also when the dataset contains a different number
of products. Figure 6b shows that the Accuracy and Uncertainty for bands Oa17, Oa18,
and Oa21 are higher (implying less agreement) than for the other bands, reaching Oa21

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/mission-performance
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/mission-performance
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Accuracy (Uncertainty) peak values of 0.039 (0.041) and 0.044 (0.046) for iCOR on S3A and
S3B, respectively.

At the RVUS site (Figure 6c,d), the average relative differences are within ±6% for all
bands, similar to GONA, except for Oa21 (+8%). Band Oa02 shows a negative difference
(−3.5%) in comparison with the GONA TOC reflectances. This means that for Oa02 iCOR
surface reflectance overestimates at GONA and underestimates at RVUS. Concerning the
APU, Accuracy and Uncertainty show a gradual increase with wavelength. Accuracy
(Uncertainty) maximum values are 0.029 (0.032) for band Oa21. The Precision shows values
<0.01 for all bands.

4.3. Intercomparison with Sentinel-3 SYN L2
4.3.1. Statistical Consistency iCOR Versus SYN L2

Figure 7 shows (a) the iCOR versus SYN L2 AOT boxplot, (b) GM regression density
plot, and (c) the bias frequency histogram. The boxplot shows a slightly lower median
AOT for iCOR and a larger AOT interquartile range for SYN L2. In addition, the SYN
L2 AOT maximum value is much higher, with outliers up to AOT = 3.2. Similar results
were observed over all ROIs, except for NAUS, where AOT is generally low, interquartile
ranges very small, and iCOR having slightly higher AOT than SYN L2. The GM regression
density plot indicates relatively good AOT consistency for values around 0.2. iCOR exhibits
higher values than SYN L2 for AOT <~0.2, while the opposite occurs at larger AOT. As
for the boxplots, similar results are observed over all ROIs, except for NAUS. The AOT
bias frequency histogram shows that the histogram is skewed towards positive values,
indicating for a relatively large proportion of pixels with SYN L2 AOT > iCOR AOT. Table 6
summarizes the validation metrics overall and per ROI. For all ROIs, intercepts are above
0 and slopes are below 1. Bias is lowest for NAUS and highest for CHIN. The systematic
differences (RMPDs) are large compared to the RMSD, i.e., the difference between the
regression line and the 1:1 line is large.
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Figure 7. Pairwise iCOR AOT versus SYN L2 AOT: (a) boxplot, (b) GM regression density plot, and (c) AOT bias frequency
histogram (SYN L2—iCOR).

Table 6. Validation metrics for the iCOR versus SYN L2 AOT intercomparison.

ROI N Intercept Slope R2 RMSD RMPDu RMPDs

All 8.87 × 106 0.079 0.581 0.533 0.144 0.125 0.072
WEUR 1.48 × 107 0.113 0.401 0.323 0.176 0.142 0.104
NAUS 1.48 × 107 0.104 0.403 0.141 0.098 0.097 0.013
CAFR 3.20 × 106 0.125 0.537 0.335 0.146 0.132 0.062
NBRA 8.04 × 106 0.028 0.799 0.706 0.130 0.119 0.052
CHIN 3.42 ×106 0.131 0.515 0.382 0.190 0.158 0.105

TOC reflectance boxplots per band (Figure 8) show that for all ROIs the iCOR in-
terquartile range is larger than SYN L2 in bands Oa01–Oa05. Except for NAUS, the iCOR
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TOC reflectances are slightly higher in bands Oa01–Oa03. NAUS is a particular case be-
cause the AOT in general is very low and the iCOR AOT values are higher than SYN L2
AOT (see Figure 7). For bands Oa06–Oa21, iCOR has a lower value range, and the TOC
reflectances are lower. These findings are in line with the intercomparison results over the
AERONET sites (Figure 4).
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The GM regression density plots over all ROIs (Figure 9) show intercepts close to 0,
indicating that high consistency is achieved for low TOC reflectance values. Slopes are gen-
erally below 1, i.e., with increasing reflectance values SYN L2 becomes increasingly higher
than iCOR. These differences at higher reflectances are larger at the shorter wavelengths.
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The bias frequency histograms (Figure 10) show that the bias between SYN L2 and
iCOR reflectances is centered around 0, except for Oa06 and Oa09, indicating a systematic
bias for these intermediate wavelengths. This is confirmed in Figure 11, which shows
the overall systematic (RMPDs) and unsystematic difference (RMPDu) as functions of
wavelength. The systematic bias (the difference between the regression line and the
1:1 line) is relatively low for the Blue bands and beyond ~0.75 µm and shows a peak at
intermediate wavelengths, whereas the unsystematic bias (i.e., scatter) is virtually unrelated
to wavelength. For both RMPDs and RMPDu, examination of the separate ROIs (plots are
not shown) indicate that the spectral evolutions are similar, except for NAUS, where the
systematic bias remains low at longer wavelengths.

The NDVI, NDWI, and EVI bias frequency histograms SYN L2—iCOR (Figure 12)
indicate that primarily iCOR NDVI is higher than SYN L2 NDVI. This bias is also visible,
although less obvious, for EVI. For NDWI, a slight positive bias (i.e., iCOR NDWI < SYN
L2 NDWI) is observed. The mean (standard deviation) differences are −0.019 (0.054), 0.003
(0.008), and −0.001 (0.052) for NDVI, NDWI, and EVI, respectively.

The observed bias results from the band combinations. In both NDVI and EVI, band
Oa09 is used, for which the systematic bias iCOR–SYN L2 is smaller compared to the other
bands. For the NDWI, only bands Oa17 and Oa21 are used, which both show a similar bias
between iCOR and SYN L2. In this case, the band combination thus neutralizes the bias
between the TOC reflectances.



Remote Sens. 2021, 13, 654 18 of 24
Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 10. Bias frequency histograms (SYN L2—iCOR) for (a) Oa01, (b) Oa03, (c) Oa06, (d) Oa09, (e) Oa17, and (f) Oa21. 

 
Figure 11. Systematic (RMPDs, blue) and unsystematic (RMPDu, green) difference between iCOR 
TOC reflectances and SYN L2 as function of wavelength, based on pairwise comparisons. 

The NDVI, NDWI, and EVI bias frequency histograms SYN L2—iCOR (Figure 12) 
indicate that primarily iCOR NDVI is higher than SYN L2 NDVI. This bias is also visible, 
although less obvious, for EVI. For NDWI, a slight positive bias (i.e., iCOR NDWI < SYN 
L2 NDWI) is observed. The mean (standard deviation) differences are −0.019 (0.054), 0.003 
(0.008), and −0.001 (0.052) for NDVI, NDWI, and EVI, respectively. 

The observed bias results from the band combinations. In both NDVI and EVI, band 
Oa09 is used, for which the systematic bias iCOR–SYN L2 is smaller compared to the other 
bands. For the NDWI, only bands Oa17 and Oa21 are used, which both show a similar 
bias between iCOR and SYN L2. In this case, the band combination thus neutralizes the 
bias between the TOC reflectances. 

Figure 10. Bias frequency histograms (SYN L2—iCOR) for (a) Oa01, (b) Oa03, (c) Oa06, (d) Oa09, (e) Oa17, and (f) Oa21.

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 10. Bias frequency histograms (SYN L2—iCOR) for (a) Oa01, (b) Oa03, (c) Oa06, (d) Oa09, (e) Oa17, and (f) Oa21. 

 
Figure 11. Systematic (RMPDs, blue) and unsystematic (RMPDu, green) difference between iCOR 
TOC reflectances and SYN L2 as function of wavelength, based on pairwise comparisons. 

The NDVI, NDWI, and EVI bias frequency histograms SYN L2—iCOR (Figure 12) 
indicate that primarily iCOR NDVI is higher than SYN L2 NDVI. This bias is also visible, 
although less obvious, for EVI. For NDWI, a slight positive bias (i.e., iCOR NDWI < SYN 
L2 NDWI) is observed. The mean (standard deviation) differences are −0.019 (0.054), 0.003 
(0.008), and −0.001 (0.052) for NDVI, NDWI, and EVI, respectively. 

The observed bias results from the band combinations. In both NDVI and EVI, band 
Oa09 is used, for which the systematic bias iCOR–SYN L2 is smaller compared to the other 
bands. For the NDWI, only bands Oa17 and Oa21 are used, which both show a similar 
bias between iCOR and SYN L2. In this case, the band combination thus neutralizes the 
bias between the TOC reflectances. 

Figure 11. Systematic (RMPDs, blue) and unsystematic (RMPDu, green) difference between iCOR
TOC reflectances and SYN L2 as function of wavelength, based on pairwise comparisons.

Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 12. NDVI, NDWI, and EVI bias frequency histograms (SYN L2—iCOR). 

A similar conclusion can be drawn from the Geometric Mean Regression (GMR) den-
sity plots (Figure 13). Over all ROIs, all VIs show a very high coefficient of determination 
(R2 = 0.92–0.96). The systematic bias between iCOR and SYN L2 NDVI is relatively large 
(0.01–0.03), resulting from an intercept well above 0 (except for NAUS) and slopes close 
to 1. The systematic bias is lower for EVI (0.00 to 0.02) and very low for NDWI (below 
0.005). The unsystematic bias (i.e., scatter around the regression line) is also larger for 
NDVI (0.02–0.07) and EVI (0.01–0.07), compared to NDWI (within 0.01). 

 
Figure 13. GM density plots comparing iCOR (Y) with SYN L2 (X) for (a) NDVI, (b) NDWI, and (c) EVI. 

4.3.2. Temporal Consistency iCOR vs. SYN L2 
Based on the temporal evolution plots, the TSI was computed over the common valid 

observations for the 11 AERONET sites. Results are presented in Figure 14 and show that 
iCOR values are considerably lower than those of SYN L2, indicating a higher AOT tem-
poral smoothness. However, this higher iCOR AOT temporal smoothness does not prop-
agate into a significantly higher temporal smoothness in the TOC reflectance and VI. 

 

Figure 12. NDVI, NDWI, and EVI bias frequency histograms (SYN L2—iCOR).

A similar conclusion can be drawn from the Geometric Mean Regression (GMR) den-
sity plots (Figure 13). Over all ROIs, all VIs show a very high coefficient of determination
(R2 = 0.92–0.96). The systematic bias between iCOR and SYN L2 NDVI is relatively large
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(0.01–0.03), resulting from an intercept well above 0 (except for NAUS) and slopes close
to 1. The systematic bias is lower for EVI (0.00 to 0.02) and very low for NDWI (below
0.005). The unsystematic bias (i.e., scatter around the regression line) is also larger for
NDVI (0.02–0.07) and EVI (0.01–0.07), compared to NDWI (within 0.01).
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4.3.2. Temporal Consistency iCOR vs. SYN L2

Based on the temporal evolution plots, the TSI was computed over the common valid
observations for the 11 AERONET sites. Results are presented in Figure 14 and show
that iCOR values are considerably lower than those of SYN L2, indicating a higher AOT
temporal smoothness. However, this higher iCOR AOT temporal smoothness does not
propagate into a significantly higher temporal smoothness in the TOC reflectance and VI.
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Figure 14. Temporal Smoothness Index (TSI) boxplots for (a) AOT, (b) TOC reflectance, and (c) Vegetation Indices. Results
were obtained for 11 AERONET sites and 4 aerosol models.

An AOT, TOC reflectance, and VIs timeseries example is given in Figure 15 for Aubière
LAMP (France, WEUR). For each AERONET station, the TSI was computed over the com-
mon valid observations. Figure 15 shows the earlier discussed persistent overestimation of
SYN L2 AOT compared to AERONET. In addition, iCOR tends to overestimate AOT, but
the difference compared to AERONET AOT is smaller than for SYN L2. This confirms the
results presented in Figure 4. For the TOC reflectances, similar temporal patterns for iCOR
and SYN L2 are seen. Some outliers are visible, which are possibly related to undetected
thin clouds or cloud shadows. In addition, the temporal plots for the VIs show a high
degree of similarity. Timeseries over AERONET stations in other ROIs (not shown) reveal
a consistent behavior.
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(g) NDWI, and (h) EVI] over the Aubière LAMP AERONET site (France, WEUR, Long: 45.7610◦, Lat: 3.1110◦). The TSI was
computed for common valid observations in the iCOR, SYN L2, and 6SV datasets.

5. Discussion

The various intercomparisons generally show a high agreement between iCOR AOT,
TOC reflectance, and VIs with the corresponding reference datasets. For AOT, iCOR has a
higher agreement with AERONET observations than SYN L2. However, although iCOR has
a slightly better agreement with 6SV than SYN L2 for the TOC reflectances, the differences
are considerably smaller than for AOT. Despite AOT being important in the atmospheric
correction, its impact appears rather limited on the differences between iCOR and SYN
L2. iCOR and SYN L2 apply different aerosol models, rural and continental, respectively.
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As was shown in the 6SV intercomparison results in Figure 4, applying a different aerosol
model can substantially affect the obtained TOC reflectance. The rural aerosol model used
by iCOR comprises 70% water-soluble and 30% dust-like particles [28], whereas the SYN
L2 continental aerosol model from 6S is composed of 29% water-soluble, 70% dust-like, and
1% soot particles [20]. The resulting single scattering albedos are 0.94 and 0.89 for iCOR and
SYN L2, respectively, which implies that more of the incoming and outgoing reflected solar
irradiance is absorbed for SYN L2, especially in case of multiple interactions within the
land surface-atmosphere system. However, it is not straightforward to assess the final effect
of this difference, as it depends on, among others, the underlying surface, the AOT (higher
probability of multiple scattering events), and atmospheric absorption becoming dominant
over scattering with increasing wavelength (see e.g., [29]). The RadCalNet intercomparison
shows that over bare desert surfaces iCOR provides consistent results for all bands, except
for larger differences in the Blue bands and Oa21 (NIR). However, these larger differences
for the mentioned bands can be attributed to the reported “excess of brightness” for OLCI
on S3A. As this excess of brightness was observed on various intercomparisons of OLCI-
A and OLCI-B TOA observations, any aerosol influence in the Blue would impact both
sensors. More information on OLCI-A and -B performance is available in [30]. In the iCOR
versus SYN L2 intercomparison, primarily for NDVI a systematic bias was shown, related
to the relatively high systematic bias for band Oa17 and low bias for Oa09. In the case of
NDWI, the combination using bands Oa17 and Oa21, which have a similar bias, results in a
neutralization, thereby resulting in good consistency.

Because iCOR and SYN L2 are currently the only known atmospheric correction
algorithms that are applied to Sentinel-3/OLCI observations, any conclusions that arise
from this study are preliminary. Nevertheless, as iCOR has participated in ACIX-I [12] and
its successor ACIX-II, some additional performance indication for usage on Sentinel-2/MSI
is available. In ACIX-I, an AOT overestimation for AERONET AOT <~0.5 was found, which
decreased for larger AOT values, resulting in an overall mean AOT difference of 0.15± 0.15.
For surface reflectance, its retrievals exhibited a small bias compared to AERONET-based
6S TOC reflectance < ~0.2, which increased for brighter surfaces, and resulted in an overall
Accuracy (bias) of 0.000 (band 2, 0.492 µm)–0.032 (band 8, 0.833 µm).

6. Conclusions

This paper presented the validation of the iCOR atmospheric correction algorithm
applied to Sentinel-3A and -B Ocean and Land Colour Instrument (OLCI) observations
over land. iCOR-retrieved Aerosol Optical Thickness (AOT), Top-Of-Canopy (TOC) re-
flectance, and resulting Vegetation Indices (VIs) were compared with Aerosol Robotic
Network (AERONET) AOT, AERONET-based Second Simulation of a Satellite Signal in
the Solar Spectrum Vector (6SV)-simulated TOC reflectance, RadCalNet TOC reflectance
observations, and corresponding SYN Level 2 (L2) retrievals. The comparisons were per-
formed over 11 AERONET stations and 389 OLCI frames over 5 ROIs: Western Europe
(WEUR), Northern Brazil (NBRA), Central Africa (CAFR), Eastern China (CHIN), and
Northern Australia (NAUS). The comparisons focused on the statistical and temporal
consistency of the retrieved reflectances and VIs. Further, the OLCI iCOR TOC reflectances
were compared with collocated and convolved RadCalNet TOC reflectances at the Gobabeb
(GONA, Namibia) and Railroad Valley (RVUS, USA) sites.

The intercomparison with observed AOT and 6SV-simulated reference TOC reflectances
over AERONET stations reveals that for AOT both iCOR and SYN L2 overestimate relative
to AERONET, with the SYN L2 overestimation being larger than for iCOR. For the TOC
reflectances in band Oa03 (Blue), both SYN and iCOR generally underestimate, which
gradually reduces with increasing wavelength due to the decreasing aerosol contribution
on atmospheric scattering and absorption. For Oa09, SYN, iCOR, and 6SV TOC reflectances
are generally in good agreement, with only marginal positive and negative bias for SYN
and iCOR, respectively. For the NIR bands (Oa17 and Oa21), the iCOR retrievals show
virtually no bias relative to 6SV, while SYN shows a slight positive bias.
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The intercomparison of iCOR TOC reflectances with RadCalNet convolved TOC
reflectance observations showed that there is good consistency for all bands for both S3A
and S3B, except for the Oa02 (Blue) and Oa21 (NIR) bands. For the NIR bands, there is an
overestimation of iCOR compared to RadCalNet. In Oa02, an over- and an underestimation
are seen at GONA and RVUS, respectively.

The statistical consistency analysis between iCOR and SYN L2 confirms the higher
AOT for SYN L2 and a larger AOT dynamic range, except for NAUS, where AOT is
generally very low. In general, a high consistency between iCOR and SYN L2 is observed
at low TOC reflectance values. At higher reflectance values, SYN L2 reflectances are larger
than iCOR. Systematic bias is relatively low for the Blue bands and around 0.7 µm. Except
for NAUS, the iCOR TOC reflectances are slightly higher in bands Oa01–Oa03. For bands
Oa06–Oa21, iCOR has a lower dynamic range and TOC reflectances are lower than SYN L2.
Temporal AOT evolution plots from iCOR4S3, SYN L2, and AERONET show a consistent
overestimation of SYN L2 AOT, and—to a lesser extent—iCOR relative to AERONET. For
the TOC reflectances and VIs, temporal patterns for iCOR and SYN L2 are similar. The
iCOR AOT TSI is considerably lower (indicative of less noise) than SYN L2 AOT and is
comparable to that of AERONET, but the smoother temporal iCOR AOT pattern does not
result in a significantly smoother iCOR TOC reflectance and VIs time series than those of
SYN L2.

In conclusion, after the successful validation of iCOR over inland waters, this vali-
dation study shows that iCOR applied to Sentinel-3/OLCI also performs well over land
surfaces. Overall, a good consistency with the SYN L2 TOC reflectance products is ob-
served. In addition, in comparison to SYN L2, iCOR AOT and TOC reflectance values are
shown to be in better agreement with the AERONET AOT and simulated 6SV TOC re-
flectance reference, respectively. Future iCOR developments will involve: (i) the possibility
to include additional aerosol models, and (ii) include Copernicus Atmospheric Monitoring
Service (CAMS) AOT data for cases in which the AOT retrieval does not converge to a
solution, using a similar approach as for iCOR on Sentinel-2/MSI.

iCOR’s previous operational applications, continuous development, and agility to differ-
ent processing infrastructures ensure a stable, efficient, and high-quality processing perfor-
mance, thereby making iCOR suitable for various additional operational implementations.
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