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Abstract: This work aims to validate the wide use of an algorithm developed using genetic pro-
graming (GP) techniques allowing to discern between water and non-water pixels using the near
infrared band and different thresholds. A total of 34 wetlands and shallow lakes of 18 ecological types
were used for validation. These include marshes, salt ponds, and saline and freshwater, temporary
and permanent shallow lakes. Furthermore, based on the spectral matching between Landsat and
Sentinel-2 sensors, this methodology was applied to Sentinel-2 imagery, improving the spatial and
temporal resolution. When compared to other techniques, GP showed better accuracy (over 85%
in most cases) and acceptable kappa values in the estimation of water pixels (κ ≥ 0.7) in 10 of the
18 assayed ecological types evaluated with Landsat-7 and Sentinel-2 imagery. The improvements
were especially achieved for temporary lakes and wetlands, where existing algorithms were scarcely
reliable. This shows that GP algorithms applied to remote sensing satellite imagery can be a valuable
tool to monitor water coverage in wetlands and shallow lakes where multiple factors cause a low
resolution by commonly used water indices. This allows the reconstruction of hydrological series
showing their hydrological behaviors during the last three decades, being useful to predict how their
hydrological pattern may behave under future global change scenarios.

Keywords: wetlands and shallow lakes; temporary and permanent lakes; Mediterranean; remote
sensing; Landsat-7; Sentinel-2; genetic programming; water cover detection

1. Introduction

The Mediterranean basin holds many wetlands of high ecological, social, and economic
value. Yet, many of these important natural assets have been notably degraded or even
destroyed, mainly during the 20th century [1]. The causes of the degradation of these
ecosystems are multiple: uncontrolled water extractions, artificial damming of feeding
watercourses, artificial water inputs, drainage structures, and aquifer overexploitation,
among others [2].

The importance of Mediterranean wetlands is acknowledged in multiple multilateral
environmental agreements, especially the Ramsar Convention on Wetlands [3,4], one of the
most influential agreements for the conservation of wetlands globally [5]. Furthermore,
several policies have been established to protect, conserve, and manage these ecosystems.
The Ramsar Convention [4], as well as the Habitats Directive (92/43/EEC) and the Water
Framework European Directive (2000/60/EC), and other worldwide, European, or national
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commitments, promote the assessment of the wetland conservation and ecological status
to achieve a favorable condition of these systems.

Mediterranean wetlands share a number of common natural characteristics, such as the
strong seasonality of the hydrological regime, consequence of the significant fluctuations
in water supplies and evapotranspiration among seasons, frequently leading to dry out
during the summer season. This seasonal nature is determined by the Mediterranean
climate, showing strongly marked seasons, warm and dry summers, and an irregular
rainfall regime. In order to apply the necessary measures for the conservation and recovery
of Mediterranean lakes and wetlands, a better understanding of the hydrological dynamics
is needed [6], since the water balance and hydrological variations in wetlands are closely
linked to the potential changes in the ecological functioning of these ecosystems.

Remote sensing technologies can provide a better understanding of the hydrological
variations in wetlands over space and time, as well as give access to information on
inaccessible areas where field data acquisition can be difficult. They can also be useful
to unveil the hydrological patterns of wetlands, and how these relate to meteorological
patterns in climates with strong seasonality, such as the Mediterranean climate. Mapping
the surface of water bodies allows for the investigation of the water balance dynamics by
providing information on the temporal and spatial variations of surface water coverage.
This becomes especially relevant under the current climate change scenario. For years,
efforts have focused on finding an approach to estimate the occurrence of water pixels at
different spatial and temporal scales [7–12]. For instance, images of satellite sensors such as
Landsat, QuickBird, or SPOT family have been commonly used, given their suitable spatial
resolution for the analysis of medium to small size water bodies [7,8,13–15]. Landsat-5 TM
(Thematic Mapper) and Landsat-7 ETM+ (Enhanced Thematic Mapper) imagery archives
provide a continuous cover monitoring for a 35-year period with a spatial resolution of 30
m. However, the 16-days temporal resolution of these sensors was a significant drawback
limiting the detection and interpretation of wetlands dynamics.

Copernicus is the name of the program for the Global Monitoring for Environment
and Security (GMES) [16]. This initiative of the European Union is led by the European
Commission (EC), in collaboration with the European Space Agency (ESA). Copernicus [16]
bases on the Sentinel missions, that provide a unique set of observations facilities to meet the
needs of its program. Sentinel-2 guarantees high spatial resolution (10–20 m) monitoring
in the VNIR (visible near infrared) range with a revisit time of 3–5 days. Its use will
certainly contribute to reducing uncertainties in the detection and interpretation of wetland
dynamics [5,12,17,18].

Although several methods to estimate water pixels from remote sensing sensors exist,
such as single-band thresholds [10,11,19,20], image transformation [17,21–25] or thematic
classifications [26–28], water indices are widely used, since they are considered as less
restrictive and more reproducible, especially for applications at large or even on a global
scale [29–31]. Water indices are based on the capability of the water spectrum response
in the near and middle infrared bands to identify flooded areas. In these ranges of the
spectrum, water shows very low reflectance values. For instance, the Normalized Difference
Water Index (NDWI) [32] uses the near infrared (NIR) and green bands to monitor changes
related to water content in water bodies, the NDWI proposed by Gao [33] uses the NIR and
short wave infrared (SWIR) bands to monitor changes related to water content in leaves,
whereas the modified version of the NDWI (MNDWI) [34] composed by the green and
SWIR bands is used to enhance open water features in remotely sensed imagery. The recent
Automated Water Extraction Index (AWEI) proposed by Feyisa et al. [35] displays two
versions to reduce errors in the classification due to shadows caused by the terrain, i.e., areas
where noisy results are expected because of the presence of shadows and built-up surfaces.
This index uses the green, NIR, and SWIR bands in its version for non-shadowed areas,
and blue, green, NIR, and SWIR bands for the shadowed areas version. The application of
these indices in temporary lakes showed that discrepancies may appear among those using
the middle infrared band in the detection of seasonal and permanent water. This is possibly
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due to the higher sensitivity of these wavelengths to the presence of water [13,19,20], thus
causing mistakes in the water-cover pixel identification.

More recently, Doña et al. [20] introduced a remote sensing methodology to estimate
the changes in water coverage of lenitic (standing waters) ecosystems using Landsat-7
ETM+ images. This approach was based on an algorithm developed using genetic pro-
graming (GP) techniques that allows to discern between water and non-water pixels using
the near infrared band of Landsat-7 and different thresholds. The selection of the GP
algorithm was based on a higher stability of the thresholds versus other methods, where in
GP, the algorithms differentiated for both playa lakes and non-playa lakes in permanent
and seasonal Mediterranean saline lakes. This algorithm was first developed to be applied
to shallow lakes, both permanent and temporary, of the Biosphere Reserve of La Mancha
Húmeda, Spain [20]. This approach might be a useful tool to monitor the hydrological
patterns of highly fluctuating seasonal and permanent lakes in semiarid areas, such as the
Mediterranean basin. Consequently, the aims of this work are: (1) to assess the performance
of the model and the stability of the thresholds proposed by Doña et al. [20] to estimate
water coverage in lenitic ecosystems focusing on several lake and wetland types, including
temporary lakes, located in semiarid regions of the Mediterranean basin of the Iberian
Peninsula; and (2) to study the adaptation of this methodology to Sentinel-2 imagery
improving the spatial resolution from 30 m to 10 m and the revisit time from 16 to 5 days.

2. Materials and Methods
2.1. Study Area

This study focuses on a set of wetlands located in the Mediterranean biogeographical
region of the Iberian Peninsula (Figure 1). According to the Ramsar Convention [4],
wetlands, in a broad sense, include lakes and rivers, underground aquifers, swamps and
marshes, wet grasslands, peatlands, oases, estuaries, deltas and tidal flats, mangroves and
other coastal areas, coral reefs, and constructed sites, such as salt pans.

Figure 1. Location of the validation sites over Mediterranean biogeographical region of the Iberian
Peninsula: (1) Laguna de Llanos de la Herrada, (2) Galacho de la Alfranca de Pastriz, (3) Galacho de
El Burgo de Ebro, (4) Laguna del Arquillo, (5) Laguna Salada de Zorrilla, (6) Laguna de los Tollos,
(7) Laguna de El Hito, (8) Laguna de Caballo Alba, (9) Laguna Salada de Chiprana, (10) Ullal de
Baldoví, (11) Laguna de los Capellanes, (12) Laguna de Alcaparrosa,(13) Laguna de Judes, (14) Laguna
de Campillo, (15) Laguna de Palancoso, (16) Laguna de Talayuelas, (17) Laguna Grande de la Puebla
de Beleña, (18) Charca del Monte, (19) Laguna de Fuentillejo o La Posadilla, (20) Laguna de La
Carrizosa, (21) Laguna de Almodóvar, (22) Laguna Blanca de Armagasilla, (23) Laguna de Caracuel,
(24) Mallada de la Mata del Fang (l’Albufera), (25) Marjal de Pego-Oliva, (26) Marjal dels Moros,
(27) Filtre Biologic l’Embut, (28) L’Encanyissada, (29) Alfacs marshes, (30) Senillar de Moraira,
(31) Albufera Nueva de Adra, (32) Salinas de Calp, (33) Salinas de Cabo de Gata, and (34) Palmones
marshes. Brown area indicates the Mediterranean biogeographical region of the Iberian Peninsula.
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A total of 34 water bodies, of 18 different wetland types [36], were studied. Many of
them are included in Natura 2000 Network sites (European Habitats Directive (92/43/EEC))
and are Wetlands of International Importance for the Ramsar Convention [4]. The stud-
ied wetland types include freshwater and salt marshes, salt ponds, as well as saline or
freshwater, temporary or permanent lakes, among others (Table 1). These wetlands are
distributed within the Spanish regions of Andalucia, Aragón, Castilla y León, Castilla-La
Mancha, Catalunya, Extremadura, and Comunitat Valenciana.

Table 1. Lakes and wetlands studied, including the ecological type as classified following Camacho et al. [36].

Lake/Wetland Type and Ecosystem Type Code *1 Lake/Wetland *2

1.3.2.1.1 (L) Fluvial ponds and wetlands in middle-lower
reaches on floodplains Laguna de Llanos de la Herrada (1)

1.3.2.1.2 (S) Fluvial ponds and wetlands in middle-lower
reaches on abandoned meanders (Ox-bow lakes)

Galacho de la Alfranca de Pastriz (2)
Galacho de El Burgo de Ebro (3)

1.3.2.1.3 (L,S) Fluvial permanent ponds and wetlands originated
by natural damming, on upper reaches Laguna del Arquillo (4) †

1.3.2.5.1.C/R (L) Temporary shallow hypo-mesosaline lakes. Well
preserved (C) or restored (R)

Laguna Salada de Zorrilla (C) (5)
Laguna de El Hito(C) (7)
Laguna de los Tollos (R) (6)

1.3.2.5.3 (L) Temporary shallow soda lakes Laguna de Caballo Alba (8)

1.3.2.5.4 (S) Permanent saline lakes Laguna Salada de Chiprana (9)

1.3.2.6.1 (S) Non-saline shallow ponds and wetlands with
alkaline waters, permanent Ullal de Baldoví (10)

1.3.2.6.2 (L) Non-saline shallow ponds and wetlands with
alkaline waters, temporary

Laguna de los Capellanes (11)
Laguna de Alcaparrosa (12)
Laguna de Judes (13)

1.3.2.7.2 (L,S)
Non-saline shallow ponds and wetlands
(morphostructural origin) with low alkalinity
waters, temporary

Laguna de Campillo (14)
Laguna de Palancoso (15,
Laguna de Talayuelas (16)
Laguna Grande de la Puebla de Beleña (17) Charca
del Monte (18)

1.3.2.8.1 (L) Mountain volcanic lakes Laguna de Fuentillejo o La Posadilla (19)

1.3.2.8.2 (L) Piedmont shallow volcanic lakes Laguna de La Carrizosa (20)
Laguna de Almodóvar (21)

1.3.2.8.3 (L) Sedimentary basin shallow volcanic lakes Laguna Blanca de Armagasilla (22)
Laguna de Caracuel (23)

2.1.3.1.2.6 (S) Intradunal ponds (Humid dune slacks) Mallada de la Mata del Fang (l’Albufera) (24)

2.1.3.4.1 (S) Mediterranean marshes not connected to the sea
Marjal de Pego-Oliva (25)
Marjal dels Moros (26)
Filtre Biologic l’Embut (27)

2.1.3.4.2 (L,S) Mediterranean coastal lagoons
L’Encanyissada (28)
Senillar de Moraira (30)
Albufera Nueva de Adra (31)

2.1.3.3.2.1 (S) Mediterranean microtidal swampy plains Alfacs marshes (29)

2.1.3.5.1 (L) Naturalized or restored salt pans Salinas de Calp (32)
Salinas de Cabo de Gata (33)

2.2.1.1 (S) Atlantic tidal estuaries Palmones marshes (34)

*1 In brackets: satellite scenes: L corresponds to Landsat-7 ETM+ and S to Sentinel-2A/2B imagery. *2 In brackets. lake identification
number (as in Figure 1). † Lakes/wetlands with coincident Landsat-7 ETM+ and Sentinel-2 images.
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This work was developed in the framework of the CLIMAWET and CLIMAWET-
CONS projects. These projects aim to recognize the patterns of ecological functioning of
Iberian Mediterranean wetlands and the effect of its conservation status in order to study
their adaptation to climate change. This is addressed through the study, per ecological type,
of its biogeochemistry under natural conditions, then related to its conservation status
and management modes [37]. For all these purposes, the results of the flooded area and
the hydrological pattern obtained from our method provide essential information for the
conservation or recovery of these valuable systems.

Mediterranean wetlands show a wide diversity regarding its origin, geographic loca-
tion, hydroperiod, water chemistry, soil or sediment characteristics, and vegetation [38].
Despite this heterogeneity, Mediterranean wetlands share a number of common features,
for example their seasonality determined by the Mediterranean climate or, for many cases,
the flat topography of the area. In our case, some of the studied wetlands are temporary
lakes and their hydroperiods fluctuate as a result of the mixed Mediterranean-Continental
semiarid climate patterns [39]. Some of them have a marginal belt of ruderal or halophytic
plants, and some also have helophytic vegetation mainly in marginal areas. Furthermore,
the studied water bodies are distributed along a salinity gradient, ranging from freshwater
to hypersaline. Table 2 shows the main features of the studied water bodies.

2.2. Reference Data

High spatial resolution Google Earth Pro images were used as a reference dataset
to validate the water area estimated by the applied methods. Boundaries of the water
bodies and maximum flooded area were digitized manually using Google Earth Pro Tool.
A vector file was generated for each date, and then rasterized and resampled to the spatial
resolution of interest using ArcGIS Desktop, i.e., 30 m or 10 m in the case of Landsat-7
ETM+ or Sentinel-2 imagery, respectively. In situ testing of the delineated boundaries
were performed within field campaigns carried out during 2017–2018. In these seasonal
campaigns, a sort of ecological variables was determined, along with the study of the
carbon cycle [37], and ancillary in situ determinations of wetland surface (water and
vegetation cover) were also performed.

2.3. Remote Sensing Data Collection and Pre-Processing

The availability of scenes for a specific wetland site depends on several factors such
as the geographical location or the weather conditions (e.g., clouds affecting images). On
the other hand, climatic and meteorological parameters become essential e.g., whether a
year is dryer or wetter determines the appropriate number of scenes required. For the time
course of the whole year hydroperiod, the combined use of satellites with different and
complementary visiting periods can guarantee a proper temporal coverage fitting with the
observation of the water cover dynamics. Just in cases of massive rainfall in small shallow
temporary lakes, some problems could arise because of the lack of temporal encompassing
of the satellite images and the eventually rapid filling, even though this could cause a
delay of just a few days in the detection timing. Both Landsat-7 ETM+ and Sentinel-2A/2B
imagery were used to conduct this study. Based on the spectral matching between Landsat-
7 ETM+ and Sentinel-2 sensors, the methodology to estimate water and non-water pixels
was applied to both sensors. The medium-high spatial resolution of these sensors enable to
study small-to-medium-sized water bodies. Moreover, Landsat images are available free of
charge at the United States Geological Survey (USGS) website (http://glovis.usgs.gov),
and the extensive historical archive available of these images allows studies of wetlands
hydrological dynamics since 1984. Sentinel images are available in the Copernicus Open
Access Hub (https://scihub.copernicus.eu/dhus/#/home), which provides complete, free
and open access to Sentinels user products. The images of Sentinel-2A/2B are available
since 2015 and 2017, respectively. The main features of these sensors are listed in Table 3.

http://glovis.usgs.gov
https://scihub.copernicus.eu/dhus/#/home
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Table 2. Main features of the study water bodies.

Type Subtype Lake/Wetland *1 Latitude
(0)

Longitude
(0)

Altitude
(m. a. s. l.)

Maximum
Depth

(m)

Total
Wetland Area

(ha)

Maximum
Flooded Area

(ha)

Seasonality
/Hydroperiod *2

Water
Electrical

Conductivity
(mS/cm)

Satellite
Scenes *3

Fluvial

Floodplains Laguna de Llanos de la
Herrada (1) 41.69 −2.37 1010 0.40 31.12 19.56 Semi-permanent 0.6 ± 0.3 L

Ox-bow

Galacho de la Alfranca de
Pastriz (2) 41.60 −0.76 184 1.50 7.51 4.48 Permanent 2.7 ± 0.1 S

Galacho de El Burgo de
Ebro (3) 41.58 −0.76 180 0.50 5.96 5.96 Ephemeral n.a. S

Dam Laguna del Arquillo (4) 38.75 −2.36 990 6.50 4.20 3.06 Permanent 0.5 ± 0.1 L-S

Saline

Hypo-
mesosaline
temporary

Laguna Salada de Zorrilla (5) 36.87 −5.87 104 2.00 31.02 17.24 Semi-permanent 35.2 ± 51.8 L
Laguna de los Tollos (6) 36.84 −6.02 56 1.50 109.99 71.68 Semi-permanent 29.0 ± 23.0 L
Laguna de El Hito (7) 39.87 −2.69 833 0.30 385.41 278.54 Short 3.1 ± 0.3 L

Soda lakes Laguna de Caballo Alba (8) 41.24 −4.60 769 0.30 19.62 15.00 Moderate 3.7 ± 1.5 L-S

Permanent Laguna Salada de
Chiprana (9) 41.24 −0.18 137 5.60 52.44 24.07 Permanent 87.0 ± 50.7 S

High
alkalinity

Permanent Ullal de Baldovi (10) 39.25 −0.32 2 2.50 5.20 1.52 Permanent 2.9 ± 0.2 S

Temporary

Laguna de los
Capellanes (11) 39.65 −2.61 777 0.40 4.63 2.41 Semi-permanent 2.5 ± 0.2 L

Laguna de Alcaparrosa (12) 37.05 −5.82 741 1.50 6.60 4.21 Long 11.8 ± 12.2 L-S
Laguna de Judes (13) 41.12 −2.22 1179 0.50 6.92 3.75 Ephemeral n.a. L-S

Low
alkalinity Temporary

Laguna de Campillo (14) 42.72 −4.77 1139 1.00 3.02 2.56 Long 0.2 ± 0.2 S
Laguna de Palancoso (15) 39.96 −5.51 268 0.20 17.81 8.12 Short 0.2 ± 0.2 S
Laguna de Talayuelas (16) 39.82 −1.24 899 1.70 8.48 6.04 Long 0.3 ± 0.1 L
Laguna Grande de la Puebla
de Beleña (17) 40.89 −3.25 947 1.20 34.38 21.42 Moderate 0.1 ± 0.0 L

Charca del Monte (18) 40.61 −5.77 913 0.30 0.28 0.12 Moderate † 0.2 ± 0.1 S

Volcanic
(temporary)

Mountain Laguna de Fuentillejo (19) 38.94 −4.05 638 1.00 16.01 10.63 Moderate 3.1 ± 2.6 L

Piedmont
Laguna de La Carrizosa (20) 38.84 −4.24 694 1.00 16.73 16.73 Moderate 0.4 ± 0.2 L
Laguna de Almodóvar (21) 38.71 −4.16 672 1.20 20.86 18.54 Long 16.8 ± 22.7 L

Sedimentary
basin

Laguna Blanca de
Argamasilla (22) 38.76 −4.08 663 0.40 41.17 35.40 Moderate 1.9 ± 1.4 L

Laguna de Caracuel (23) 38.83 −4.07 665 1.50 63.98 59.03 Long 1.7 ± 0.6 L
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Table 2. Cont.

Type Subtype Lake/Wetland *1 Latitude
(0)

Longitude
(0)

Altitude
(m. a. s. l.)

Maximum
Depth

(m)

Total
Wetland Area

(ha)

Maximum
Flooded Area

(ha)

Seasonality
/Hydroperiod *2

Water
Electrical

Conductivity
(mS/cm)

Satellite
Scenes *3

Coastal

Dune slacks Mallada Mata del Fang
(l’Albufera) (24) 39.34 −0.31 1 0.80 0.54 0.54 Permanent 1.8 ± 0.4 S

Marshes
unconnected
to the sea

Marjal de Pego-Oliva (25) 38.87 −0.05 1 0.55 356.19 33.57 Permanent 4.6 ± 1.4 S
Marjal dels Moros (26) 39.63 −0.26 1 1.30 260.18 28.63 Permanent 14.0 ± 7.6 S
Filtre Biològic l’Embut (27) 40.66 0.70 0.5 1.30 88.17 42.92 Permanent 2.2 ± 0.5 S

Coastal
lagoons

L’Encanyissada (28) 40.65 0.69 0.5 1.20 815.66 501.61 Permanent 31.3 ± 21.2 L-S
Senillar de Moraira (30) 38.69 0.13 1 1.40 0.67 0.15 Permanent 10.6 ± 2.6 S
Albufera Nueva de
Adra (31) 36.75 −2.95 2 3.75 32.04 26.57 Permanent 13.9 ± 3.7 L

Microtidal
marshes Alfacs marshes (29) 40.64 0.74 0.1 1.00 65.12 41.27 Permanent 56.6 ± 16.7 S

Salt pans Salinas de Calp (32) 38.64 0.06 2 0.80 20.80 19.07 Permanent 83.3 ± 15.8 L
Salinas de Cabo de Gata (33) 36.76 −2.22 2 0.80 355.01 213.70 Permanent 57.9 ± 11.7 L

Estuary Palmones marshes (34) 36.17 −5.44 0 0.20 88.99 29.51 Permanent 36.1 ± 15.1 S

*1 In brackets, lake identification number (as in Figure 1). *2 Long, Moderate, and Short refer to temporary systems with average flooding periods of more than 9 months, between 6–8 months, and less than
6 months on average, respectively. Ephemeral hydroperiod refers to those systems with no regular flooding, i.e., not directly linked with the immediate climate but to long-term aquifer dynamics. Semi-permanent
remain flooded the whole year or get dry in summer other years. *3 L corresponds to Landsat-7 ETM+ and S to Sentinel-2A/2B imagery. * n.a. non-available. † This is a naturally temporary lake that has been
morphologically altered.
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Table 3. Main features of Landsat-7 ETM+ and Sentinel-2A/2B.

Sensor Band Spectral Resolution
(nm)

Spatial Resolution
(m)

Temporal
Resolution (Days)

Landsat 7-ETM+

1 450–520 30

16

2 520–600 30
3 630–690 30
4 760–900 30
5 1550–1750 30
7 2080–2350 30

Sentinel-2A/2B

2 460–520 10

5

3 540–580 10
4 650–680 10
8 784–900 10
11 1565–1655 20
12 2100–2280 20

A total set of 53 images, of dates with reference data available, were selected for this
work (27 Landsat-7 ETM+ and 26 Sentinel-2A/2B). Satellite imagery dates were selected
concurrent to reference data availability (Tables S1 and S2). Only satellite images close in
time with the reference data were considered to reduce the errors associated to water cover
changes. Hence, coincident images (same day) were considered for lakes/wetlands with
short hydroperiod and a temporal window of a week was considered for lakes/wetlands
with permanent hydroperiod. In the case of Landsat-7 ETM+, images corresponding
to Level 2 product were downloaded. This product provides information on surface
reflectance, already corrected atmospherically by means of the radiative transfer code 6S
(sr) following Vermonte et al. [40]. The Landsat paths and rows covering all locations in
our study area are: 198/32-33, 199/35, 200/31-34, 201/32-33, and 202/31,34. The scan line
corrector (SLC) failure affecting the Landsat-7 ETM+ images was corrected following the
methodology proposed by Scaramuzza et al. [41]. In the case of the Sentinel-2 imagery, the
atmospherically corrected, Level-2A surface reflectance product, was also used. Sentinel
bands 11 and 12 were resampled to 10 m pixel size, using the technique of the next neighbor,
which is the least changing pixel value original. After this pre-processing, all images were
ready for the application of the method designed to estimate the water area.

2.4. Water Mapping Method

As mentioned above, in this work we explored the robustness of the methodology
developed by Doña et al. [20], to detect and monitor water cover within a sort of Mediter-
ranean shallow lakes and wetlands. However, the novelty of this paper goes further, into
the intercomparison of the performance with a wide range of other indicators and water
indices used in the literature, as well as for the variety of wetlands considered throughout
the Mediterranean region for this study. This approach is based on an algorithm devel-
oped using genetic programing (GP) techniques that allows to discern between water and
non-water pixels using the near infrared band of Landsat-7 ETM+ and different thresholds,
both for playa and non-playa lakes (Equation (1)). Based on its accuracy assessment by
intercomparison of the performance with a wide range of other indicators and indices used
in the literature, such as water and vegetation indexes, single band thresholds, supervised
and unsupervised classification methods, and machine learning methods such as artificial
neural networks and support vector machine, the GP algorithm was selected as the most
appropriate method.

The estimation of water pixels across a set of 13 shallow lakes, most of them temporary,
showed a kappa value of 0.98 and a low error of 2%, both in training and validation. The
selection of the GP algorithm was precisely based on a higher stability of the thresholds for
the assayed approach versus other methods. Doña et al. [20] reported the need to modify
the threshold for the GP algorithm only under the presence of playas in the studied water
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bodies. Values < −0.05 for water pixels in playa lakes, and <0.1 in the case of lakes without
playas, were obtained in that work.

GPRw = cos ((0.003 · NIR)1/4) (1)

In the present study, the performance of the GP algorithm was also compared to the
results obtained through water indices techniques in a comparative study. The evaluated
indices were the Normalized Difference Water Index (NDWI) [32]; the Automated Water
Extraction Index (AWEI) proposed by Feyisa et al. [35], in its two versions, AWEInsh for
areas not affected by shadows, as well as AWEIsh for areas with presence of shadows
or built-up surfaces; the Water Ratio Index (WRI) [42]; and the Water Turbidity Index
(WTI) [43]. A confusion matrix was obtained for each of the applied methods. This matrix
is a standard tool for evaluating statistical models by means of the kappa coefficient (κ).
This index varies from −1 to 1, where values higher than 0.4 are considered acceptable [44].
The confusion matrix is also used to generate the user commission and omission error, as
well as the accuracy. The commission error is the percentage of pixels wrongly assigned to
a certain class by the classifier, while user accuracy is the probability that a pixel assigned
to a class by the classifier correctly corresponds to that class. The omission error is the
percentage of pixels that actually belong to the class but were incorrectly classified, and the
accuracy of the producer is the probability that the classifier has correctly assigned a class
given by the reference data.

3. Results
3.1. Landsat-7 ETM+ Imagery

Due to the spatial resolution of Landsat-7 ETM+, the presence of clouds in the scenes,
and the availability of coincident images with the reference data, only 11 of the 18 studied
wetland types were analyzed using Landsat-7 ETM+ imagery (Table 1). Table S1 shows
the acquisition dates for the Landsat-7 ETM+ images used in this work. The total number
of pixels classified as covered by water by each of the different methods studied showed
a wide range of results in comparison to all the reference data set, composed of a total
of 13,583 water pixels (Figure 2). In order to determine the optimal threshold for each
water index tested, multiple thresholds to differentiate between water and non-water pixels
were considered. The NDWI and WRI indices showed the best results with the thresholds
proposed by the original authors to assign water pixel values, i.e., values > 0 in the case
of the NDWI and values > 1 for the WRI [32,42]. The threshold obtained for the AWEIsh
has a good agreement with results obtained by the authors [35], showing values > 0 to
assign water pixels. In the case of the AWEInsh, the best results were obtained with a
threshold of −0.45 and 0.2 for the WTI. Overall, the best performance was found when
using the GP0.1 method proposed by Doña et al. [20] and the AWEInsh method proposed
by Feyisa et al. [35], showing kappa values of 0.6 in both cases, and overall accuracy values
of 85% and 90%, respectively (Figure 2). As shown in Figure 2, both methods presented
a slight overestimation in the number of water pixels as compared with the reference
data. The GP-0.05 and WTI also showed an overestimation in the number of water pixels.
However, in this case, both the kappa coefficient and overall accuracy were much lower,
with values of 0.4 and 75%, and 0.2 and 70%, for GP-0.05 and WTI, respectively. Figure 2
also shows that the NDWI, AWEIsh, and WRI results showed the opposite trend than the
other methods, i.e., these methods showed an underestimation in the number of water
pixels as compared with the reference data. In this case, the AWEIsh showed kappa and
overall accuracy values of 0.5 and 85% followed by the WRI and NDWI with kappa and
overall accuracy values of 0.4 and 80%, and 0.3 and 75%, respectively.
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Figure 2. Accumulated number of water pixels estimated by the different methods tested, for the
entire dataset using Sentinel-2A/2B (S) and Landsat-7 ETM+ (L) imagery. Black and blue lines
indicate the water pixel number of the reference data at the 10 m (S) and 30 m (L) spatial resolution,
respectively. k refers to the kappa coefficient value and O.A to the overall accuracy value.

Figure 3 shows the results, sorted by lake/wetland type, of both the kappa coefficient
and the overall relative accuracy (OA), including all the methods tested. As shown, GP-0.05,
GP0.1, and AWEInsh showed the best performance in the estimation of water pixels for
the studied lake/wetland types (with mostly k > 0.7 and OA > 90%) e.g., (i) GP’s for type
1.3.2.5.1C/R-Temporary shallow hypo-mesosaline lakes; (ii) GP0.1 and AWEInsh for type
1.3.2.6.2-Non-saline shallow ponds and wetlands with alkaline waters, temporary and;
(iii) AWEInsh for type 1.3.2.7.2-Non-saline shallow ponds and wetlands (morphostruc-
tural origin) with low alkalinity waters,. Furthermore, it is noteworthy that AWEInsh
shows, in general, acceptable results for non-saline lake/wetland types, with k > 0.6 and
OA > 80%, (e.g., types 1.3.2.1.1, 1.3.2.1.3, 1.3.2.6.2 - and 1.3.2.7.2), also including all types of
volcanic lakes (1.3.2.8.1, 1.3.2.8.2 and 1.3.2.8.3). AWEInsh also showed acceptable results
for permanent saline lake/wetland types (k > 0.6 and OA > 80%), including the type
2.1.3.5.1-Naturalized or restored salt pans. The AWEIsh and WRI water indices presented
similar performance, showing acceptable results (k > 0.6 and OA > 80%) for lake/wetland
types 1.3.2.8.1 (mountain volcanic lakes), 2.1.3.4.2 (Mediterranean coastal lagoons), and
2.1.3.5.1 (naturalized or restored salt pans). For the NDWI and WTI indices, results showed
kappa values above 0.6 and OA > 80% only for the Mediterranean coastal lagoons (2.1.3.4.2)
and for naturalized or restored salt pans (2.1.3.5.1) for the NDWI, and for fluvial perma-
nent ponds and wetlands originated by natural damming on upper reaches (1.3.2.1.3) for
the WTI.

With regards to the GP methods, the GP0.1 behaved better than the GP-0.05, showing
kappa coefficient values above 0.8 and OA values close to 100% in 4 of the 12 assayed
lake/wetland types. For GP- 0.05, kappa showed values above 0.8 only for 3 types. Aside
from non-saline lake/wetland type, the GP in its two versions showed acceptable results
for temporal and permanent saline lake/wetland types (k > 0.6 and OA > 80%), as in the
case of the type 1.3.2.5.1, as well as for types 2.1.3.4.2, corresponding to Mediterranean
coastal lagoons and for naturalized or restored salt pans (2.1.3.5.1). Nevertheless, GP-0.05
showed the best results in the estimation of water pixels for two wetland types (1.3.2.5.1.R
and 1.3.2.8.1). These results agree with those reported by Doña et al. [20], where the
threshold of -0.05 showed acceptable results for lakes with playas. In this case, the type
1.3.2.5.1.R is represented by the restored Laguna de los Tollos, a hypo-mesosaline lake
with playas, whereas type 1.3.2.8.1 is represented by Laguna de Fuentillejo, a mountain
volcanic lake displaying playas when the water level drops. Contrasting to type 1.3.2.5.1.R,
corresponding to restored hypo-mesosaline lakes, the type 1.3.2.5.1.C corresponding to
well-preserved hypo-mesosaline lakes showed its best results when using GP0.1. This
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different performance could be determined by the presence or absence of playas in the
studied water bodies at the sampled dates. For instance, type 1.3.2.5.1.C includes Laguna
Salada de Zorrilla, without playas, and Laguna de El Hito, which was dry for most available
dates. In general, for saline playa lakes, GP-0.05 is expected to give better results than
GP0.1. Despite these differences as a function of the threshold, both GP methods yielded
better results than the rest of the methods for hypo-mesosaline lakes of type 1.3.2.5.1. (both
well-preserved, C, and restored, R).

Figure 3. Kappa coefficient (crosses) and overall relative accuracy (triangles) for the different methods tested and the
different lake/wetland types as listed in Table 1, for the Landsat-7 imagery. In blue is indicated the number of reference
water pixels and the best results for each type are marked in red.

Similar results (Figure 3) were obtained for the Mediterranean coastal lagoons (type
2.1.3.4.2) and the naturalized or restored salt pans (type 2.1.3.5.1). Although all methods,
except GP-0.05 and WTI, presented acceptable kappa values in these cases (k > 0.4), the
GP0.1 and the AWEIsh showed higher kappa and OA values (k > 0.6 and OA > 70%) for
both types. However, low kappa values (k < 0.4), indicative of poor performance, were
found for GP0.1 and AWEIsh for type 1.3.2.5.3, corresponding to temporary soda lakes,
whereas the AWEIsh additionally showed kappa values lower than 0.4 for the type 1.3.2.1.1
corresponding to fluvial ponds and wetlands in middle-lower reaches on floodplains.
Although GP0.1 and AWEInsh presented kappa values close to 0.6 for type 1.3.2.1.1, the
other methods showed kappa values close to 0. These results could be due to the effects
of the strips created by the SLC failure in the original ETM+ images, which affected the
images used for the studied lake. Regarding the type 1.3.2.5.3 (soda lakes), among the
studied lakes this includes exclusively Laguna de Caballo Alba, a very shallow lake with
typical depth values of just a few centimeters. In this case, the poor performance of all
the tested methods is likely linked to the limitation in discerning between water and
non-water pixels for extremely shallow waters (Figure 4a). The classification outputs of
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AWEInsh, AWEIsh and WRI (Figure 4a.4–a.6) showed that these methods were capable
of estimating the presence of water in Laguna Caballo de Alba, albeit with a considerable
underestimation in the classification of water pixels in comparison with the reference image
(Figure 4a). Meanwhile, GP-0.05, GP0.1, NDWI, and WTI could not discern between water
and non-water pixels (Figure 4a.1–a.3 and a.7) in this lake type (1.3.2.5.3).

Figure 4. Results of the classification (right) using the GP0.1 (a.1,b.1), GP-0.05 (a.2,b.2), NDWI (a.3,b.3) AWEInsh (a.4,b.4),
AWEIsh (a.5,b.5), WRI (a.6,b.6) and WTI (a.7,b.7) for (a) Laguna de Caballo Alba and (b) Laguna del Arquillo for the
Landsat image dates of 20 June 2015 and 29 July 2017, respectively and the reference dates (left) of 19 June 2015 (a) and
29 July 2017 (b), respectively.

Typically accepted errors in wetland water coverage assessment studies at a single
site range 10–20% [5]. According to this assessment, Table 4 lists the methods showing
acceptable mean uncertainties in the estimation of water pixels for each lake/wetland type
using Landsat 7 imagery. Total error refers to the sum of the commission and omission
errors. Following this criterion, eight lake/wetland types presented total errors lower
than 20%. The GP method showed acceptable total error values ranging from 3% to 17%
for seven of these eight types. Results obtained for each GP version showed acceptable
total error values for four and six types, for GP-0.05 and GP0.1, respectively (both GP-
0.05 and GP0.1 for types 1.3.2.1.3, 1.3.2.8.3, and 2.1.3.5.1; GP-0.05 for type 1.3.2.8.1; and
GP0.1 for types 1.3.2.5.1.C, 1.3.2.6.2, and 2.1.3.4.2). The GP methodology was followed,
in performance, by the AWEI methods, with total error values ranging from 2% to 18%
for six of these eight types. Results obtained for each AWEI version showed acceptable
total error values for four and six types, for AWEIsh and AWEInsh, respectively (both
AWEIsh and AWEInsh for types 1.3.2.8.1, 1.3.2.8.3, 2.1.3.4.2, and 2.1.3.5.1, and additionally
types 1.3.2.6.2 and 1.3.2.7.2 for AWEInsh). In the case of WRI, NDWI, and WTI, the results
showed acceptable total error values for four, two, and two of these eight types, respectively.
WRI showed total error values ranging 7% to 16% for types 1.3.2.8.1, 1.3.2.8.3, 2.1.3.4.2, and
2.1.3.5.1; whereas NDWI and WTI showed total error values of 14% and 5%, respectively,
for type 1.3.2.8.3, NDWI a total error of 17% for type 2.1.3.4.2, whereas WTI showed a total
error of 15% for type 2.1.3.5.1.
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Table 4. Summary of accuracy assessments of the different water-cover estimation methods applied using Landsat-7 ETM+
imagery. Note that only those yielding total error (omission + commission) values lower than 20% are listed.

Lake/Wetland
Type Water Body Method Kappa

Coefficient
Overall
Accuracy (%) Total Error (%)

1.3.2.1.3 Laguna del Arquillo (4) GP-0.05 0.9 92 17
GP0.1 0.9 94 16

1.3.2.5.1.C Laguna Salada de Zorrilla (5)
Laguna de El Hito (7) GP0.1 0.8 95 16

1.3.2.6.2
Laguna de los Capellanes (11)
Laguna de Alcaparrosa (12)
Laguna de Judes (13)

GP0.1 0.8 96 10

AWEInsh 0.9 98 5

1.3.2.7.2
Laguna de Talayuelas (16)
Laguna Grande de la Puebla de
Beleña (17)

AWEInsh 0.7 92 10

1.3.2.8.1 Laguna de Fuentillejo (19)

GP-0.05 0.8 90 14
AWEInsh 0.8 92 10
AWEIsh 0.8 89 14
WRI 0.7 88 16

1.3.2.8.3
Laguna Blanca de Armagasilla (22)
Laguna de Caracuel (23)

GP-0.05 0.6 97 3
GP0.1 0.6 96 4
NDWI 0.4 88 14
AWEInsh 0.7 98 2
AWEIsh 0.5 94 7
WRI 0.5 94 7
WTI 0.5 95 5

2.1.3.4.2
L’Encanyissada (28)
Albufera Nueva de Adra (31)

GP0.1 0.6 87 15
NDWI 0.7 86 17
AWEInsh 0.6 87 14
AWEIsh 0.7 90 12
WRI 0.7 88 15

2.1.3.5.1
Salinas de Calp (32)
Salinas de Cabo de Gata (33)

GP-0.05 0.4 88 13
GP0.1 0.7 91 11
AWEInsh 0.6 86 18
AWEIsh 0.6 90 13
WRI 0.6 88 15
WTI 0.6 88 15

It is noteworthy that the GP method, including both versions, showed total error
values above 20% only in one of the eight types. This occurred for the type 1.3.2.7.2 (tempo-
rary non-saline shallow ponds and wetlands with low alkalinity waters, morphostructural
origin), which includes, among others, Laguna Grande de la Puebla de Beleña. This poor
performance was caused by an overestimation of water pixels for this water body, mainly
when the lake was dry. This might be due to the large amount of organic matter in its
sediments. This characteristic causes misinterpretation by the algorithm as consequence of
the dark color of the lake bottom when it is dry. In this case, AWEInsh was the sole method
capable of detecting the dry condition of the lake. However, AWEInsh showed a total error
above 20% for types 1.3.2.1.3 (permanent lakes formed by river damming in upper course),
represented by Laguna del Arquillo (Figure 4), and 1.3.2.5.1.C (temporary hypo-mesosaline
shallow lakes, well preserved). In this case, AWEInsh underestimated the water pixels for
Laguna del Arquillo (Figure 4b), whereas this method was unable to detect total dryness in
Laguna Salada de Zorrilla.

3.2. Sentinel-2 Imagery

As a result of the availability of coincident reference data and the presence of clouds, a
total of 10 lake/wetland types could be finally tested using Sentinel-2 imagery (Table 1). In
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this case, 3 of the 10 lake/wetland types coincide with the types evaluated with Landsat-7
ETM+ imagery (1.3.2.1.3, 1.3.2.7.2, and 2.3.4.2 corresponding to fluvial permanent ponds
and wetlands originated by natural damming, on upper reaches, non-saline shallow ponds
and wetlands—morphostructural origin—with low alkalinity waters, temporary, and
Mediterranean coastal lagoons, respectively). Table S2 shows the acquisition dates for the
Sentinel-2A/2B images used in this work. Results obtained for GP0.1 and WRI to classify
water pixels showed similar results as those obtained with Landsat-7 ETM+ imagery
(Figure 2) for these methods, with kappa coefficient and overall accuracy values of 0.6–85%
and 0.4–85%, respectively. In the case of all other tested methods, kappa coefficient and
overall accuracy values showed, in general, lower values than those obtained with Landsat-
7 ETM+ imagery. In this case, results showed a clear overestimation of the number of water
pixels estimated by GP-0.05, AWEInsh and WTI methods, in comparison with the reference
data composed of a total of 76,511 water pixels. As in the Landsat-7 ETM+ results, the
GP0.1 developed by Doña et al. [20] yielded the best kappa and overall accuracy values.
Furthermore, these results agree with those obtained with Landsat-7 ETM+ imagery, as
mentioned above, where the same kappa value of 0.6 and overall accuracy values of
85% were achieved for GP0.1. Contrastingly, for the GP-0.05, AWEInsh, AWEIsh and
WRI methods, kappa and overall accuracy showed lower values than those obtained by
applying these methodologies to Landsat-7 ETM+ imagery. Kappa and overall accuracy
values decreased from 0.4 to 0.3 and from 75% to 60%, respectively, for GP-0.05, from 0.5 to
0.4 and from 85% to 80% in the case of AWEIsh, while they dropped from 0.6 to 0.5 and
from 90% to 80% for AWEInsh. In contrast, the NDWI increased its kappa and overall
accuracy values from 0.3 to 0.5 and from 75% to 90%, respectively, when applying this
method to Sentinel-2 imagery compared to Landsat-7 ETM+.

Figure 5 shows the results, in terms of both the kappa coefficient and the overall
accuracy for the different lake/wetland types. In general, GP0.1 showed the best results
compared to the other tested methods. GP0.1 showed kappa coefficient and overall ac-
curacy values above 0.6 and 80% for 6 of the 10 evaluated types. As shown in Figure 5,
GP0.1 and AWEInsh showed the best performance in the estimation of water pixels for
shallow lake/wetland types (k > 0.6 and OA > 80%), e.g., GP0.1 and AWEInsh for type
1.3.2.6.1—non-saline shallow ponds and wetlands with alkaline waters, permanent, and
GP0.1 for type 1.3.2.7.2—non-saline shallow ponds and wetlands (morphostructural origin)
with low alkalinity waters, temporary. These results are in agreement with those obtained
with Landsat-7 ETM+ imagery. Moreover, the GP0.1 showed acceptable results for tempo-
ral/permanent and saline/non-saline lake/wetland types (k > 0.6 and OA > 80%), (e.g.,
types 1.3.2.1.3—fluvial permanent ponds and wetlands originated by natural damming,
on upper reaches, 1.3.2.5.4—permanent saline lakes, 2.1.3.4.2—Mediterranean coastal la-
goons, and 2.2.1.1—Atlantic tidal estuaries. The best results with GP0.1 were obtained for
lakes without presence of playas such Laguna Salada de Chiprana, a permanent saline
lake (1.3.2.5.4.). On the other hand, as for Landsat-7 ETM+ results, AWEInsh showed,
in general, acceptable results for non-saline lake/wetland types (k > 0.6 and OA > 80%),
(e.g., types 1.3.2.1.2—fluvial ponds and wetlands in middle-lower reaches on abandoned
meanders—Ox-bow lakes, 1.3.2.1.3—fluvial permanent ponds and wetlands originated by
natural damming on upper reaches). Moreover, AWEInsh also showed acceptable results
for permanent saline lake/wetland types (k > 0.6 and OA > 80%) as the type 1.3.2.5.4—
permanent saline lakes. The GP-0.05 showed acceptable results (k > 0.63 and OA > 80%)
for types 1.3.2.1.3 and 1.3.2.5.4. For the latter, which is represented by the permanent saline
Laguna Salada de Chiprana, GP0.1 showed the best result when using Sentinel imagery.
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Figure 5. Kappa coefficient (crosses) and overall relative accuracy (triangles) for the different methods tested and the
different lake/wetland types as listed in Table 1, for the Sentinel-2 imagery. In blue is indicated the number of reference
water pixels and the best results for each lake/wetland type are marked in red.

The AWEIsh, NDWI, and WRI water indices showed similar results among them
with acceptable kappa coefficient values (k > 0.5) and overall accuracy values over 70%
for types 1.3.2.1.2—fluvial ponds and wetlands in middle-lower reaches on abandoned
meanders (Ox-bow lakes), 1.3.2.5.4—permanent saline lakes, 2.1.3.4.2—Mediterranean
coastal lagoons, and 2.2.1.1—Atlantic tidal estuaries. The AWEIsh, NDWI, and WTI showed
kappa and overall accuracy values over 0.5 and 70%, respectively, for type 1.3.2.1.3—fluvial
permanent ponds and wetlands originated by natural damming, on upper reaches, and
WTI also showed acceptable values (k > 0.6 and OA > 80%) for lake/wetland type 1.3.2.5.4—
Permanent saline lakes.

Wetland types 2.1.3.1.2.6 (intradunal ponds), 2.1.3.3.2.1 (Mediterranean microtidal
swampy plains), and 2.1.3.4.1 (Mediterranean marshes not connected to the sea) showed
the lowest kappa values for all the applied methods (k < 0.4) (Figure 5). In these cases,
both GP methods, as well as AWEInsh and WTI, showed an overestimation of water pixels
for all studied water bodies. The opposite trend was found for these types for the NDWI,
AWEIsh, and WRI methods. On the other hand, all the methods, except NDWI, presented
an overestimation of water pixels in Mallada de la Mata del Fang (l’Albufera) (intradunal
ponds, type 2.1.3.1.2.6). In this case, the NDWI was unable to discern between water and
non-water pixels, as it got that the water body was permanently dry. Figure 6b shows the
thematic maps obtained for Filtre Biologic l’Embut (type 2.1.3.4.1.) where the differences
among the results of the application of the different methods tested with Sentinel 2 imagery
are displayed. Although the thematic maps, at least for the case of NDWI, AWEInsh,
AWEIsh, and WRI (Figure 6b.3–b.6), are apparently good, the total error obtained in the
classification of water pixels using these methods was around 30%. Furthermore, the type
1.3.2.7.2 (temporary non-saline shallow lakes and wetlands with low alkalinity) showed
unacceptable kappa values for all the assayed methodologies, using Sentinel imagery,
except for the GP0.1. This comes mainly from an overestimation of water pixels in Charca
del Monte and Laguna de Campillo. For the latter, the NDWI, AWEIsh, and WRI could not
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even discern between water and non-water pixels, and they described these lakes as dry
(Figure 6a.3, a.5 and a.6) when they actually presented some flooding (Figure 6a).

Figure 6. Results of the classification (right) from the GP0.1 (a.1,b.1), GP-0.05 (a.2,b.2), NDWI (a.3,b3), AWEInsh (a.4,b.4),
AWEIsh (a.5,b.5), WRI (a.6,b.6) and WTI (a.7,b.7) for (a) Laguna de Campillo and (b) Filtre Biologic l’Embut for the Sentinel
image dates of 30 August 2019 and 15 June 2017, respectively, and the reference dates (left) of 30 August 2019 (a) and
14 June 2017 (b), respectively.

Table 5 shows the methods showing acceptable mean uncertainties (lower than 20%) in
the estimation of water pixels for each lake/wetland type when applied to Sentinel-2A/2B
imagery. Total error refers to the sum of the commission and omission errors. Only 4 types,
of up to 10 assayed, presented total errors lower or equal than 20% (Table 5). The GP0.1
method showed acceptable total error values ranging from 11% to 20% for these four types,
followed by the AWEInsh and the NDWI for which the total error values range from 13%
to 20% for two types. In the case of AWEIsh and WRI, the results showed acceptable total
error values for two and one types, respectively. Contrasting to the Landsat-7 ETM+ results,
the Mediterranean coastal lagoons (2.1.3.4.2), that includes L’Encanyissada, Senillar de
Moraira, and Albufera Nueva de Adra, showed unacceptable values in the classification
of water pixels, with total error values above 20% in the classification results when all the
different methods were applied to Sentinel 2 imagery. This result could be due to the low
kappa values shown by Senillar de Moraira, which were lower than 0.4 for all the assayed
methods, mainly due to the small flooded surface corresponding only to 10 pixels, most of
them mixed (water, vegetation, and soil).
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Table 5. Summary of accuracy assessment of the different water estimation methods using Sentinel-
2A/2B imagery. Note that only those yielding total error (omission + commission) values lower than
20% are listed.

Lake/
Wetland

Type
Water Body Method Kappa

Coefficient

Overall
Accuracy
(%)

Total
Error (%)

1.3.2.1.3 Laguna del Arquillo (4)
GP-0.05 0.9 95 13
GP0.1 0.9 96 11
AWEInsh 0.9 94 17

1.3.2.5.4
Laguna Salada de
Chiprana (9)

GP0.1 0.9 96 10
NDWI 0.9 95 14
AWEInsh 0.9 95 13

1.3.2.7.2
Laguna de Campillo (14)
Laguna de Palancoso (15)
Charca del Monte (18)

GP0.1 0.8 99 20

2.2.1.1 Palmones marshes (34)

GP0.1 0.7 90 20
NDWI 0.8 92 20
AWEIsh 0.8 92 20
WRI 0.8 91 20

The analysis of the results for 1.3.2.1.3 (permanent lakes formed by river damming in
upper course) is of particular interest due to the availability of coincident Landsat-7 ETM+
and Sentinel-2 A/B images for this type. It is noteworthy that the application of the different
methodologies for the type 1.3.2.1.3 responded in a similar way when using both Landsat-7
ETM+ and Sentinel-2A/2B imagery (Figure 7). GP0.1, GP-0.05, and AWEInsh were the
only methods capable of estimating the water pixels for this type 1.3.2.1.3 with acceptable
errors (<20%). Very similar results were obtained for GP and AWEInsh, with kappa values
of 0.9 in the estimation of water pixels. Water cover was underestimated in this case by
both GP0.1 and AWEInsh approaches, whereas the opposite trend, overestimation, was
observed for GP-0.05 (Figure 7).

Figure 7. Results of the classification from the GP0.1, GP-0.05, and AWEInsh for Laguna del Arquillo
from both Landsat-7 ETM+ and Sentinel-2 images, corresponding to dates 29 and 28 July 2017,
respectively. The reference map for date 29 July 2017 is also shown.
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This was not the case for the type 1.3.2.7.2., though for this type, the studied lakes
as determined by the availability of images and reference data were different i.e., those
studied with Landsat-7 ETM+ imagery were Laguna de Talayuelas and Laguna Grande de
la Puebla de Beleña, while those studied with Sentinel-2 imagery were Laguna de Campillo,
Laguna de Palancoso and Charca del Monte.

4. Discussion

In this study, we widely tested the robustness of the methodology proposed by
Doña et al. [20] a specific algorithm developed by genetic programming (GP) which al-
lows to discern between water and non-water pixels by use of NIR band of Landsat-7
ETM+ sensor. In general, the GP was shown to assess flooding accurately, particularly in
temporal shallow lakes/wetlands. These results are consistent with those published by
Doña et al. [20], as GP was developed from shallow lakes, most of them temporary. Fur-
thermore, the GP was capable of distinguishing better than other methods between water
and non-water pixels for some saline/non-saline and temporal/permanent lake/wetland
types. GP showed acceptable kappa coefficient values (K > 0.6) and overall accuracy values
above 90% for 7 of the 11 lake/wetland types evaluated with Landsat-7 ETM+ imagery
(types 1.3.2.1.3, 1.3.2.5.1C/R, 1.3.2.6.2, 1.3.2.8.1, 1.3.2.8.3, 2.1.3.4.2, and 2.1.3.5.1) and for 6
of the 10 lake/wetland types evaluated with Sentinel-2 imagery (types 1.3.2.1.3, 1.3.2.5.4,
1.3.2.6.1, 1.3.2.7.2, 2.1.3.4.2, and 2.2.1.1). As was expected, the GP-0.05 showed better results
than GP0.1 for playa lakes (e.g., Laguna de los Tollos and Laguna de Fuentillejo). These
findings are in line with those reported by Doña et al. [20] where they observed different
thresholds between non-playa and playa lakes.

The comparison among the GP methodology with several standard water indices
found in the literature, such as NDWI [32], AWEI [35], WRI [42], and WTI [43], revealed
that GP and AWEI methods estimate the surface water in the studied lake/wetland types
more accurately than the other tested methods, especially for temporary shallow lakes.
GP was originally developed and tested across several water bodies including temporary
shallow lakes [20], whereas AWEI was tested by its authors under a wide range of envi-
ronmental conditions and water body types, such as small freshwater reservoirs, large
lakes, harbors, and the sea [35]. In our study, AWEI presented better results for permanent
lake/wetland types than for temporary lake/wetland types, which could possibly be ex-
plained by the fact that it was developed and tested with permanent water bodies [45–48].
In general, AWEInsh behave better than AWEIsh, mainly due to the absence of shadows
in the scenes [35]. However, AWEIsh showed better accuracy results in the estimation of
water pixels (k = 0.8 and OA = 92%) than those of AWEInsh in Palmones marshes site.
This result agrees with those obtained by Fisher et al. [46], where AWEIsh achieved greater
accuracy in the estimation of water pixels for images with urban areas, as is the case of
Palmones marshes site.

NDWI, WRI, and WTI indices assessed surface water coverage with lower accuracy
than GP and AWEI methods [12,20,35,46]. The water cover estimation errors by the former
were basically linked to the spectral characteristics of the water bodies themselves. As these
water indices were developed from permanent waters, the spectral features of this water
bodies are close to the typical spectral reflectance for clear water, with low concentration
of sediments compared to the high rates characteristic of the seasonal shallow water
bodies [13].

Knowing that typically accepted errors in wetland water coverage assessment studies
at a single site range 10–20% [5], among all methods tested, GP was the method that
showed the best accuracy in the estimation of water pixels, showing good results for
7 of the 11 lake/wetland types evaluated with Landsat-7 ETM+ imagery and for 4 of
the 10 lake/wetland types evaluated with Sentinel-2 imagery. For all the applied meth-
ods, results showed some discrepancies (k < 0.4) in the estimation of water cover in
lakes/wetlands with presence of high coverage of helophytic vegetation and an irregular
and highly fluctuating distribution of flooded areas along the water bodies. Recently,
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Pena-Regueiro et al. [46] found that the best performing index for four representative
coastal wetlands with this characteristics was the NDWI with a threshold value of −0.3,
which showed overall accuracy and kappa coefficient results above 75% and 0.5 for all the
wetlands studied, respectively.

The spatial resolution of Landsat-7 ETM+, 30 m, facilitates the mixture of land-cover
types, this effect being more significant in edge pixels, resulting in difficulties for mapping
flooded areas in heterogeneous wetlands [12,20,46]. Furthermore, as was mentioned in the
results section, the SLC failure of Landsat-7 imageries caused errors in the estimation of
the total water area of some lakes and lakes/wetlands presenting irregular shapes could
be more vulnerable to this problem. However, Sentinel-2, with higher spatial resolution
(10 m) than Landsat 7-ETM+, is capable of defining with more accuracy the boundary of
water surfaces reducing the number of pixels with a mixture of land covers such as soil,
vegetation, or water. In other cases, such as the application of the different methodologies
for the type 1.3.2.1.3—permanent lakes formed by river damming in upper course, the
performance using both Landsat-7 ETM+ and Sentinel-2A/2B imagery was similar, as
published by Lefebvre et al. [14], who identified similar threshold values for Landsat and
Sentinel-2 imagery in several land cover types in the Camargue wetlands (southern France).

GP was tested for several lake/wetland types, showing that chemical and biophysical
features in the water bodies could affect the performance [20]. Although better results in
the discrimination between water and non-water pixels were obtained by the GP algorithm
in comparison with other water indices in this work, further evaluations and refinements
of the methodology are required to widen its effectiveness under a variety of water and
environmental conditions. More detailed studies are needed for the intradunal ponds, the
Mediterranean microtidal swampy plains, and the Mediterranean marshes not connected
to the sea, where the thresholds proposed for GP were unable to accurately distinguish
between water and non-water pixels, mainly due to the presence of high coverage of
helophytic vegetation and an irregular and highly fluctuating distribution of flooded areas
along the water bodies.

Mapping flooded areas is essential, since wetland biodiversity reacts to flooding
regimes [49–51], both in terms of water cover area and hydrological cycles. Wetland’s
biogeochemistry, including the carbon cycle and their exchanges of greenhouse gases
(GHG) with the atmosphere, are also intimately linked to the water regime [52,53]. Overall,
the hydroperiod is a crucial indicator for ecological trends in ecology features, functions
and services of Mediterranean wetlands [5]. The use of Landsat imagery is especially
attractive due to the extensive historical archive available that allows for the reconstruction
of the hydrological patterns of wetlands over the last three decades. This might be useful
for describing the hydrological patterns of these lakes/wetlands related to the annual
meteorological pattern, among other reasons, and this, in turn, allows to forecast their
behavior in future climate scenarios. Furthermore, the spectral band similarity with
Sentinel-2 showed the continuity to the GP algorithms designed for Landsat imagery.
Moreover, applying this methodology to Sentinel-2 imagery offers the opportunity to
continue the monitoring of hydrological patterns, but improving the revisit cycle from
16 to 5 days and the spatial resolution from 30 m to 10 m. The higher spatial and temporal
resolution gained with Sentinel-2 is especially important to monitor the hydrological
patterns of patchy and highly fluctuating seasonal and permanent lakes and wetlands in
semiarid areas, such as the Iberian Mediterranean basin. Note that a revisit frequency
of five days might not be sufficient to capture the water changes in extremely dynamic
water bodies, but it can fairly accomplish the monitoring requirements for the majority
of lakes/wetlands types, even those temporary, in the Mediterranean Basin of the Iberian
Peninsula. This might strengthen management strategy-linked lake conservation, and help
to accomplish the goals of both the European Water Framework Directive (2000/60/EC)
and the Habitats Directive(92/43/EEC), but also could be useful for the improvement of
its role as carbon sinks under a climate change scenario [52,53] where the role of flooding,
as well as that of macrophytes [49–51], would be of great relevance.
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5. Conclusions

An approach for water mapping based on an algorithm developed using genetic
programing (GP) developed by Doña et al. [20] has been evaluated in this study, applied to
Landat-7 ETM+ and Sentinel-2A/2B imagery. Results show the potential of this method to
be used for a wide variety of lakes and wetlands within the Mediterranean basin, improving
traditional water mapping methods using water indices, especially for temporary shallow
lakes and wetlands. The assessment of the GP approach across a set of 34 water bodies
of 18 lake/wetland types in the Mediterranean biogeographical region of the Iberian
Peninsula resulted in kappa values above 0.7 and total error values lower than 20% in
the estimation of water pixels for 10 of the 18 types evaluated with Landsat-7 ETM+ and
Sentinel-2 imagery. We demonstrated that GP methods improve very much the water
cover determination by remote sensing methods of shallow temporary waterbodies in
comparison to other methods that have usually been developed for permanent waterbodies.
Another important outcome of this work is the adaptation of the GP methodology to
Sentinel-2 imagery, reproducing results obtained with Landsat images. The reduction of
the satellite revisit time to 5 days and the pixel size to 10 m multiplies the application
possibilities of the exposed methodology. For this purpose, the GP methodology will need
to be further refined for specific wetland types, such as Mediterranean coastal marshes and
humid dune slacks. Furthermore, the GP approach could be transferable to other already
existing and upcoming, satellite sensors containing the NIR spectral band. GP algorithms
applied to remote sensing satellite imagery could serve as a valuable tool to monitor water
coverage in wetlands and lakes of different ecological types, which is very promising
for the future water resources management. This brings also a unique opportunity to
improve our understanding of the temporal trends in seasonal lakes and their dependence
on meteorological patterns, in order to establish sustainable water resources management
plans that preserve the ecological health and the ecological services of wetlands and shallow
lakes in semiarid basins, such as the Iberian Mediterranean basin.
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