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Abstract: Accurate ice segmentation is one of the most crucial techniques for intelligent ice mon-
itoring. Compared with ice segmentation, it can provide more information for ice situation anal-
ysis, change trend prediction, and so on. Therefore, the study of ice segmentation has impor-
tant practical significance. In this study, we focused on fine-grained river ice segmentation using
unmanned aerial vehicle (UAV) images. This has the following difficulties: (1) The scale of river ice
varies greatly in different images and even in the same image; (2) the same kind of river ice differs
greatly in color, shape, texture, size, and so on; and (3) the appearances of different kinds of river
ice sometimes appear similar due to the complex formation and change procedure. Therefore, to
perform this study, the NWPU_YRCC2 dataset was built, in which all UAV images were collected
in the Ningxia–Inner Mongolia reach of the Yellow River. Then, a novel semantic segmentation
method based on deep convolution neural network, named ICENETv2, is proposed. To achieve mul-
tiscale accurate prediction, we design a multilevel features fusion framework, in which multi-scale
high-level semantic features and lower-level finer features are effectively fused. Additionally, a dual
attention module is adopted to highlight distinguishable characteristics, and a learnable up-sampling
strategy is further used to improve the segmentation accuracy of the details. Experiments show
that ICENETv2 achieves the state-of-the-art on the NWPU_YRCC2 dataset. Finally, our ICENETv2
is also applied to solve a realistic problem, calculating drift ice cover density, which is one of the
most important factors to predict the freeze-up data of the river. The results demonstrate that the
performance of ICENETv2 meets the actual application demand.

Keywords: fine-grained river ice; position attention; channel attention; drift ice cover density;
semantic segmentation

1. Introduction

Ice caps, ice plugs, or ice dams are often formed in high latitude rivers in winter, which
could change the hydraulic, thermal, and geometric boundary conditions of water flow
and form a unique ice phenomenon in winter [1]. Ice plugs or ice dams, i.e., drift ice in the
river channel blocking the cross section of water flow, may cause water level rise, inundate
farmland houses, damage the coastal hydraulic structures, cause shipping interruption, or
cause hydraulic power loss [2,3]. Therefore, river ice monitoring is necessary in preparing
for potential hazards. Accurate fine-grained ice semantic segmentation is a key technology
in the study of river ice monitoring, which can provide more information for ice situation
analysis, change trend prediction, and so on.
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Many efforts have been spent on studying river ice segmentation based on imaging
monitoring. In terms of monitoring, there are typically three kinds, including satellite-
based monitoring [4–7], shore-based terrestrial monitoring [8,9], and UAV (unmanned
aerial vehicle)-based aerial monitoring [10–12]. The advantage of satellite-based monitoring
is that its observation range is very large and it is not limited by national boundaries and
geographical conditions. While, it is often hard or costly to realize real-time observation.
The revisit period of general satellites like Landsat is often several days. Some satellites with
short revisit periods are often expensive or have coarse resolution. Shore-based terrestrial
monitoring can observe river ice at any time. But, installing surveillance equipment on
the shore is often limited by geographical conditions, especially in mountainous regions.
UAV-based aerial monitoring has the advantages of having a wide monitoring range, a
fast response speed, and is uneasily disturbed by terrain. It has served as an important
supplementary way to monitor river ice. Therefore, this paper focuses on the monitoring
of river ice using UAV images.

In terms of ice segmentation methods, they are divided into three categories: Tra-
ditional threshold methods, traditional machine learning-based methods, and neural
network-based methods. Note that, here we also consider the methods of sea ice segmenta-
tion, since they are similar to river ice segmentation to a certain extent.

Traditional threshold methods. The threshold-based segmentation methods use the
difference in gray scale of different objects to be extracted from the image, and divide
the pixels into several categories by setting appropriate threshold values to achieve the
segmentation of different objects. Engram et al. [6] utilized a threshold approach to
distinguish floating ice and bedfast ice using SAR images across Arctic Alaska. Beaton
et al. [7] presented a river coverage segmentation method, in which a threshold technique
was adopted to reduce the effectiveness of cloud obstruction and maximize river coverage.

Traditional machine learning-based methods. With the development of machine
learning, many methods have been utilized to segment an ice region from images. They can
be summarized into two categories, unsupervised and supervised methods. On the part
of unsupervised methods, Ren et al. [13] presented a multi-stage method using k-means
clustering for sea ice SAR image segmentation. Dang et al. [14] presented two methods
for SAR sea ice image segmentation: The k-means clustering method and threshold-
based segmentation method. The result showed that the k-means clustering method
outperformed the threshold-based segmentation method. The former can gain a clear
segmentation boundary and complete segmentation region. Chu and Lindenschmidt [4]
classified the river covers into four categories, including smooth rubble ice, intact sheet
ice, rough rubble ice, and open water, based on fuzzy k-means clustering with Moderate
Resolution Imaging Spectroradiometer (MODIS) and RADARSAT-2 images. On the part of
supervised methods, Zhang et al. [15] presented a CART decision tree method to retrieve
sea ice from MODIS images in the Bohai Sea. Romanov [5] adopted decision tree to detect
ice using AVHRR images.

Deep neural network-based methods. In recent years, we have witnessed important
advances in image semantic segmentation based on deep neural networks. A new gen-
eration of algorithms based on FCN [16] keeps improving state-of-the-art performance
on different benchmarks. Singh et al. [11] adopted several deep neural network-based
semantic segmentation models to segment river ice images into anchor ice, frazil ice, and
water, and achieved great outcomes. These models are mainly UNet [17], SegNet [18],
and DeepLab [19]. In 2020, we [12] also designed a semantic segmentation deep convo-
lution neural network, named ICENET, for river ice semantic segmentation. It revealed
that applying deep convolutional neural networks into ice detection and fine-grained ice
segmentation is promising.

In conclusion, the traditional threshold method directly utilizes the gray-scale differ-
ential characteristics of the images and has the advantages of simple calculation and high
efficiency. However, an appropriate threshold is hard to be determined and is sensitive to
many factors such as noise and brightness. Therefore, this kind of method usually has a
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poor generalization ability. The traditional machine learning-based methods can achieve
good results for tasks in simple scenes, but with images of complex scenes, they are still
relatively simple and require manual intervention, which cannot guarantee the segmenta-
tion effect. With the popularity of deep learning, semantic segmentation has made great
progress. Convolutional neural network-based semantic segmentation methods far exceed
traditional methods, under its strong nonlinear fitting ability and learning ability. Hence,
the deep neural network-based method is adopted in this paper.

In this paper, we study fine-grained river ice segmentation based on the deep neural
network technique. This study is different from the methods mentioned above. It distin-
guishes shore ice, drift ice, water, and bank, which has an important application significant
in river ice monitoring. Therefore, to study it, a UAV image dataset was built. By analysis,
this fine-grained river ice segmentation has these characteristics: (1) The scale of river ice
varies greatly, ranging from several pixels to thousands of pixels; (2) the appearances of
river ice are diverse, even for the same kind; and (3) sometimes, drift ice and shore ice
look similar, since they could become each other in some conditions. There characteristics
will be analyzed in Section 2.2. Aiming towards these characteristics, we designed a novel
semantic segmentation network structure, which effectively exploits the multilevel features
fusion, dual attention module, and new up-sampling strategy to generate high-resolution
predictions. Our main contributions are as follows:

• A UAV image dataset named NWPU_YRCC2 was built for fine-grained river ice se-
mantic segmentation. All UAV images were collected in the Ningxia–Inner Mongolia
reach of the Yellow River, since the ice phenomenon in this reach is very typical and
diverse. The dataset consists of 1525 precisely labeled images covering typical river
ice images with different characteristics;

• A novel network is proposed for fine-grained river ice segmentation, named ICENETv2.
In this network, multiscale low-resolution semantic features and high-revolution finer
features are effectively fused to generate different scale predictions, since the scale of
river ice changes greatly even in the same image. Additionally, we adopt a dual atten-
tion module to highlight distinguishable features and use a learnable up-sampling
strategy to improve the details of the segmentation and increase the semantic segmen-
tation accuracy of fine-grained river ice;

• Compared with DeepLabV3 [20], PSPNet [21], RefineNet [22], and BiseNet [23],
our ICENETv2 has the state-of-the-art performance on the NWPU_YRCC2 dataset.
Besides, our ICENETv2 is applied to solve a practical problem, i.e., calculating drift
ice cover density, which is one of the most intuitive information for predicting the
freeze-up date of a river. By using the predicted fine-grained river ice semantic
segmentation map, the drift ice cover density error is only 5.6%. The results show that
its performance meets the actual application demand.

2. Study Area and Materials
2.1. Study Area

We selected the Ningxia–Inner Mongolia reach of the Yellow River as our study area,
which is indicated by the red ellipse in Figure 1. The Yellow River is one of the world’s
longest rivers, with a total length of 5464 km and a drainage area of 752,443 km2. Since
the middle section of the river runs through the Loess Plateau, it carries a large amount of
sediment [24]. It spans 23 longitudes from east to west and 10 latitudes from north to south,
hence there are considerable differences in elevation between the east and west, and in
landforms among different regions. Since the basin is located in the middle latitude zone,
the influence of atmospheric circulation and monsoon circulation is relatively complex [25].
Due to the complexity of climate and landform, the ice phenomenon is very typical and di-
verse in spring and winter, especially in the Ningxia–Inner Mongolia reach [26]. Therefore,
this reach is selected so as to study fine-grained river ice segmentation.
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Figure 1. Our study area is indicated by the red ellipse. The base map is from the Yellow River entry in Wikipedia [27].

2.2. Dataset and Analysis

There are no suitable UAV image datasets for the fine-grained river ice segmentation of
the Yellow River. Therefore, based on our previous NWPU_YRCC dataset [12], we further
built the NWPU_YRCC2 dataset. The NWPU_YRCC2 dataset contains four categories:
Shore ice, drift ice, water, and others. It is necessary to distinguish shore ice and drift ice,
since the calculation of drift ice cover density, which is an important factor in the actual
freeze-up date forecast, just considers the ratio of drift ice and excludes shore ice.

The dataset building process is basically similar to that of NWPU_YRCC [12]. The
aerial images were taken annually from 2015 to 2019 at the Ningxia–Inner Mongolia reach
of the Yellow River from November to March. During data collection, an ASN216 fixed-
wing drone with a visible light camera Canon 5DS and a DJI Inspire 1 were used to capture
images and videos, shown in Figure 2. The details of UAVs are shown in Table 1. The
UAV images are taken in nadir view or oblique view during data capture. However, when
calculating the drift ice cover density, the UAV images are required to be captured in nadir
view. The flying height of the drones ranges from 30 m to 600 m. Finally, 200 videos
were captured, ranging in length from 10 min to 50 min. The maximum image resolution
and maximum video resolution of the Canon 5DS camera on ASN216 are 8688 × 5792
and 1920 × 1080, respectively, while the maximum image resolution and maximum video
resolution of the camera on DJI Inspire 1 are 4000 × 3000 and 4096 × 2160, respectively.
To keep the resolution of the input image of the model consistent, we resized the images
to 1600 × 640. From the videos and images obtained from aerial photography, 305 typical
images containing four categories of targets are carefully selected. These images are mainly
collected during the freeze-up period. We use Photoshop software to label each pixel of
the images into four categories: Shore ice, drift ice, water, and others. The reason why
we do not use other annotation tools such as Labelme and Image Labeler is that they
are difficult to use for marking the boundary between these four categories. It is worth
mentioning that this annotation work is very time-consuming. We divided 305 images
into training set, validation set, and test set at a ratio of 6:2:2. Then, they are expanded
to 1525 images to form the NWPU_YRCC2 dataset by data augmentation operations,
including the brightness adjustment, flipping, and clipping. The brightness adjustment
includes two ways, increasing brightness and decreasing brightness. For flipping, we used
both horizontal and vertical flipping.
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Table 1. Details of fixed-wing UAV (unmanned aerial vehicle) ASN216 and DJI Inspire 1.

Parameters ASN216 DJI Inspire 1

Max take-off weight 30 kg 3.4 kg
Max speed 120 km/h 22 m/s
Sensor type CMOS Exmor R CMOS

Max image resolution 8688 × 5792 4000 × 3000
Max video resolution 1920 × 1080 4096 × 2160

Effective pixels 50.6 million pixels 12.4 million pixels

(a) ASN216 (b) DJI Inspire 1

Figure 2. Photographs of fixed-wing UAV ASN216 and DJI Inspire 1.

Several typical images and their annotations are shown in Figure 3. Drift ice is ice
that flows with water on or in water. The appearance of drift ice varies greatly in different
images in regards to scale, color and texture, as shown in the first two rows of Figure 3.
Sometimes, aggregated drift ice could crash shore ice and make part of them break and
divorce from the original shore ice to form new drift ice, as shown in the right image of the
first row.

otherswaterdrift iceshore ice

Figure 3. Some typical river ice images and their corresponding annotation maps.
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Shore ice is a zone of ice frozen along a river bank. According to its formation time and
condition, it can be divided into different kinds, such as newborn shore ice, fixed shore ice,
alluvial shore ice, and regenerative shore ice, and so on. In this paper, we do not distinguish
these fine-grained shore ice, since it is not really necessary for actual applications. However
the appearances of different kinds of shore ice differ greatly. The middle two rows present
some typical images of shore ice and their annotation maps. From these images, shore ice
exhibits a different appearance even in the same image. It leads to the difficulty of accurate
fine-grained river ice semantic segmentation. It is especially to distinguish drift ice and
shore ice when drift ice stops at the edge of shore ice and freezes up to become a new part
of shore ice, shown in the yellow box of the right image.

The last two rows show some typical images with different drift ice cover density and
their annotation maps. Therefore, the scale of drift ice changes very much, ranging from
several pixels to thousands of pixels and even in the same image.

In brief, accurate fine-grained river ice segmentation is a hard task because it has the
following difficulties: (1) The scale of river ice varies greatly in different images and even
in the same image; (2) the same kind of river ice differs greatly in color, shape, texture, size,
and so on; and (3) the appearances of different kinds of river ice appear similar sometimes,
due to the complex formation and change procedure.

3. Proposed Method

We propose a novel semantic segmentation network, named ICENETv2, to deal with
the challenges of fine-grained river ice segmentation. ICENETv2 is developed based on
our previous ICENET and it differs from ICENET in four main respects. Aiming to extract
more multi-scale high-level semantic information, the ratios of the feature maps of Res1,
Res2, Res3, and Res4 to the input image are changed from (1/8, 1/16, 1/16, 1/16) to
(1/4, 1/8, 1/16, 1/32), respectively. Both position attention and channel attention are
adopted to highlight the distinguishable semantic features between drift ice and shore ice.
A learnable up-sampling strategy is used to further reconstruct the finer information, since
the appearance of drift ice is diverse and sometimes its scale is prone to be small. Finally, a
joint loss function is utilized to sufficiently train the network.

In this section, firstly, the network architecture of our ICENETv2 is illustrated, as
shown in Figure 4. Secondly, the four principle sub-modules of ICENETv2, namely atten-
tion module, fusion module, sub-pixel upsample module [28], and the loss function are
presented in Sections 3.2–3.5 respectively.

3.1. Network Architecture

In fine-grained river ice semantic segmentation, the scales of the drift ice and shore ice
vary diversely, ranging from several pixels to hundreds of pixels, even thousands of pixels.
The effective fusion of multiscale features can significantly enhance the segmentation
precision of multiscale targets. Therefore, inspired by BiseNet, the proposed ICENETv2
also adopts a two-branch architecture, as shown in Figure 4. The deep branch aims to
extract high-level semantic context features, in which a parallel dual attention mechanism
combining channel attentive features and positional attentive features is adopted to extract
more comprehensive and sufficient semantic features. The shallow branch extracts low-
level features that can encode high-resolution finer spatial details. Finally, deep features
and shallow features are sufficiently fused to generate prediction. Besides, instead to the
commonly used bilinear interpolation, a learnable up-sampling strategy, i.e., sub-pixel
method [28], is utilized to further refine the segmentation detail.

To be specific, the input image is fed into a convolution block, of which stride is 2
and kernel size is 7. Then, in order to acquire semantic context features and detailed finer
features, the output features are respectively input into two branches. The deep branch is
based on ResNet-101 and consists of four residual blocks, namely Res1, Res2, Res3, and
Res4. The four residual blocks are original residual blocks in ResNet-101. The stride of
Res1 is 1 and that of the other three blocks is 2. Res3 and Res4 are separately followed



Remote Sens. 2021, 13, 633 7 of 17

by a parallel dual attention module, in which channel attention and positional attention
are parallel imposed on the output of the residual block, then the two attentive features
are combined by element-wise sum as the output. A global average pooling is performed
on the output of Res4 to produce a global contextual vector. Then, the output features of
dual attention module after Res4 are weighted by the global contextual vector and the
weighted output is up-sampled twice by the sub-pixel method [28]. Finally, we concatenate
the weighted features after up-sampling and output features of the dual attention module
after Res3, then up-sample them twofold by sub-pixel to generate multiscale semantic
features as the output of the deep branch.

Conv
7x7 Pooling Res1 Res2 Res3 Res4

Conv
3x3 BN ReLU

Conv
3x3 BN

PAM CAM PAM CAM

Global 
pooling

ReLU

Concat
2x Sub-pixel

2x Sub-pixel
Fusion

4x Upsample
Fusion

2x Sub-pixel

Predict

1/2 1/4 1/4 1/8 1/16 1/32

1/4 1/8

Conv
7x7

Deep Branch

Shallow Branch

Input Image Final Prediction

Figure 4. The architecture of ICENETv2. It mainly contains two branches: The deep branch in the red dashed box and the
shallow branch in the blue dashed box. Res1, Res2, Res3, and Res4 are four original residual blocks from residual blocks
in ResNet-101. ‘CAM’ and ‘PAM’ is the channel attention module and the position attention module, respectively. The
notation ‘Sub-pixel’ means sub-pixel up-sampling module. ’Fusion’ is the fusion module. The fractions in the two branches
are the ratios of the feature map size to the resolution of the input.

The shallow branch only contains two convolution blocks, of which stride is 2 and
kernel size is 3. Therefore, there are two outputs corresponding to the two convolution
blocks. The size of the two output feature maps is one-quarter and one-eighth of the input
image size, respectively. Since there are many small drift ice blocks in the problem of
fine-grained river ice semantic segmentation, the shallow branch is designed to gain two
different scales of high-resolution spatial information.

Finally, the fusion module shown in Figure 5 is adopted to integrate the two branch
outputs to generate ultimate prediction. Firstly, the output feature maps of the deep
branch and shallow one-eighth resolution output feature maps are fused and up-sampled
twice by sub-pixel. Then, the former fusion result and the one-quarter resolution output
feature maps of the shallow branch are fused again and 4X up-sampled by the bilinear
interpolation, to achieve the final semantic segmentation prediction.

Global
pooling ReLU SigmoidConv

1x1

Mul Sum

Conv
1x1

Conv
1x1

ReLUBNConcat

Figure 5. The fusion module.
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3.2. Attention Model

It is a very common ice phenomenon that drift ice blocks may crash or rub with shore
ice, some of which stop at the edge of the shore ice and freeze up to become a new part of
shore ice. In this situation, it is not easy to distinguish drift ice and shore ice. Therefore,
context information with spatial and semantic distinguishability is required. Inspired by
DANet [29], we adopt a dual-attention module in the deep branch of our model, which
contains a channel attention and a positional attention. The channel attention model can
integrate the relevant features of all channels, so as to generate global association between
channels and obtain stronger specific semantic response ability. The local correlation
of spatial information can be learned by positional attention model, and the correlation
between features of any position can be used to enhance the expression of their respective
features. Then, the fusion of the above two kinds of enhanced attentive features will make
the extracted features more effective to distinguish different kinds of objects.

Figure 6a shows the details of the channel attention module. Firstly, four operations, i.e.,
a global average pooling, a 1 × 1 convolution, a batch normalization, and a sigmoid function,
are successively performed on the input feature map I to produce an attentive vector. Then,
the attentive vector is used to weigh the input feature map, and the result is element-wise
added with the input feature map to generate channel-wise attentive feature O.

Conv
1x1

Mul Softmax

Sum

Conv
1x1

Conv
1x1

Mul

reshape

reshape & transpose

reshape

reshape

I

M2

M1

R
M3

(H*W)*(H*W)

C*H*W

S

C*H*W

Global
pooling BN SigmoidConv

1x1

Mul Sum

(a) Channel Attention Module (b) Position Attention Module

I O
C*H*W C*H*W

Figure 6. The attention module.

The structure of the position attention module is presented in Figure 6b. Given the
input feature map I ∈ RC×H×W , I is input into three 1× 1 convolution blocks to produce
three feature maps M1, M2, and M3, where {M1, M2, M3} ∈ RC×H×W . Meanwhile, M1,
M2, and M3 are reshaped to RC×N , where N = H ×W. Subsequently, we multiply the
transpose of M1 by M2, and utilize a softmax operation to produce a positional attention
map S ∈ RN×N . Then, we multiply the transpose of S by M3 and reshape the result to
RC×H×W . Lastly, the feature R ∈ RC×H×W is obtained by element-wise addition between
the reshaped result and the feature map I.

3.3. Fusion Module

The outputs of the deep branch and shallow branch represent semantic context infor-
mation and detailed information, respectively. Both of them can greatly help to process
accurate segmentation. To combine these features of two different levels and play to their
strengths, an effective feature fusion strategy is required. The feature fusion module in [23]
is adopted, as shown in Figure 5. Firstly, we concatenate the output features of the deep
branch and the shallow branch, then a 1× 1 convolution, a batch normalization, and a ReLu
function is performed on the concatenated feature maps successively. Finally, a sub-module
shown in the yellow dotted box, which looks alike to the channel attention module, is
calculated to produce the fusion result. The only differences between the sub-module and
channel attention module are that batch normalization in the channel attention module is
replaced by a ReLu function and a 1 × 1 convolution.

3.4. Sub-Pixel Up-Sampling Module

Sub-pixel up-sampling derives from super resolution research [28] and has been used
in semantic segmentation and other tasks. As shown in Figure 7, assuming that the input is
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a low-resolution image or feature map, the sub-pixel up-sampling is to extract the features
from the input and finally fuse the extracted features to generate high-resolution (HR)
images. Three convolution layers are adopted in detail. After that, the feature maps of
channel number r2 are obtained, in which r is the magnification factor. Then, through the
sub-pixel convolution layer, r2 channels of each pixel are transformed to a sub-pixel block
with size r× r in the HR image. Finally, the feature map of H×W × r2 is reshaped to a HR
map of rH × rW × 1. To upsample feature maps with more than one channel, sub-pixel
up-sampling strategy is applied to each channel.

LR

ReLU ReLU ReLU

CONV2 CONV3 r2chanels HRCONV1

Figure 7. The sub-pixel up-sampling module.

3.5. Loss Function

In our model, auxiliary losses are adopted to supervise the training of the proposed
network. The main loss is used to supervise the final prediction of the whole ICENETv2.
Three particular auxiliary losses are utilized to supervise the outputs of two dual attention
modules respectively after Res3 and Res4 and the output of the first fusion model. Cate-
gorical cross-entropy loss is adopted as the loss function for these four losses, as shown in
Equation (1). Meanwhile, parameter α is adopted to balance the weight of the main loss
and three auxiliary losses, as presented in Equation (2). The three auxiliary losses share
a weight α, since the orders of magnitude of them are the same and they are all utilized
to supervise intermediate feature maps without significant difference in importance. We
conducted an ablation experiment on three auxiliary losses and an experiment to find a rea-
sonable parameter α. The details refer to Section 4.3. Finally, α is set to 1 in our subsequent
experiments. The joint loss allows the optimizer to optimize the model more conveniently.

LCE = −
n

∑
i=1

ti log(pi) (1)

where n indicates n classes, ti is the truth label and pi is the Softmax probability for the ith class.

Ljoint = LCEm + α
3

∑
i=1

LCEi (2)

where α denotes the hyper-parameter of controlling the relative importance of the three
auxiliary loss terms. LCEm is the main loss function. LCE1 and LCE2 are used to supervise
the outputs of two dual attention modules after Res3 or Res4, respectively. LCE3 is used
to optimize the output of the first fusion. LCEm , LCE1 , LCE2 , and LCE3 are calculated by
Equation (1). Ljoint is the joint loss function.

4. Experiments

In this section, firstly, the implementation details of the experiments are described.
Secondly, the ablation experimental results performed on NWPU_YRCC2 are illustrated
and analyzed. Thirdly, our ICENETv2 model is compared with some state-of-the-art
methods. Finally, our model is utilized to solve an actual application, calculating the drift
ice cover density.
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4.1. Implementation Details

Our models are implemented based on Pytorch. In the training procedure, mini-batch
stochastic gradient descent [30] is adopted, the momentum is initially set to 0.9, and decays
by weight 1.83× 10−2 with a batch size of 4. The training time is set to 200 epochs. The
overall training time for 200 epochs takes about 30 h on two NVIDIA GeForce GTX 2080Ti
cards and the training time per epoch of our model is about 9 minutes. After about 120
trained epochs, our model converges. Our NWPU_YRCC2 dataset contains 1525 annotated
images. In the experiments, it is divided into a training set, validation set. and test set at
a ratio of 6:2:2, then the segmentation results were colored for better visualization. The
NWPU_YRCC dataset contains a total of 814 annotated images, including 570 images
for training, 82 images for verification, and 244 images for testing. Note that the test set
includes the verification set.

4.2. Evaluation

Pixel accuracy and mean intersection over union are usually adopted to measure the
accuracy of semantic segmentation. Therefore, we used these two indicators to calculate
and compare the performances of different methods. Assume that there are totally n + 1
categories (from 0 to n) and class 0 indicates a void class or background. pij is the amount
of pixels that belong to class i but were predicted to be class j. pii is the amount of pixels of
class i and were predicted to be class i. When i 6= j and class i is regarded as positive, pji
and pij is the number of false positives and false negatives, respectively. PA (pixel accuracy)
and MIoU (mean intersection over the union) can be described as follows.

Pixel accuracy (PA). PA, described in Equations (3), is the ratio of the number of
correctly classified pixels to the overall amount of pixels:

PA =
∑n

i=0 pii

∑n
i=0 ∑n

j=0 pij
. (3)

Mean intersection over the union (MIoU). IoU is the ratio of the intersection area
of the predicted segmentation with the ground truth to the union area of them for one
particular class. MIoU is often adopted to measure the accuracy for the segmentation of
more than one class. It denotes the average value of the IoUs of all classes. The specific
description is shown in Equation (4):

MIoU =
1

n + 1

n

∑
i=0

pii

∑n
j=0 pij + ∑n

j=0 pji − pii
. (4)

4.3. Ablation Study

To verify the effect and contribution of three auxiliary losses, we conduct an ablation
experiment on them as shown in Table 2. The network is trained and optimized by one
main loss function and two selected auxiliary loss functions at a time. The results show
that these three auxiliary losses all contribute to the final semantic segmentation and there
is no significant difference in importance among them. These three auxiliary losses share a
weight α. To find a reasonable parameter α, we also conducted an experiment shown in
Table 3. It shows that when α = 1, the method performs best. Therefore, we chose α = 1 in
our subsequent experiments.
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Table 2. Experiments on the effects of three auxiliary losses on the attention module. PA: Pixel
accuracy. MIoU: Mean intersection over the union.

LCE1 LCE2 LCE3
IoU(%) MIoU(%) PA(%)

Drift Ice Shore Ice Water Others

! ! 79.889 83.742 89.255 77.686 82.643 91.645
! ! 80.983 82.100 89.318 78.753 82.789 91.634
! ! 81.868 83.401 89.538 76.951 82.940 91.846
! ! ! 81.127 81.582 90.484 80.548 83.435 91.943

Table 3. The influence of different auxiliary loss functions weight α on the segmentation results.

IoU(%)
α

Drift Ice Shore Ice Water Others MIoU(%) PA(%)

0.1 79.192 81.317 89.671 80.358 82.635 91.463
0.2 75.293 80.364 90.781 81.855 82.073 91.055
0.4 80.422 81.869 88.639 81.642 83.143 91.533
0.8 79.549 80.910 88.691 82.776 82.982 91.337
1 81.127 81.582 90.484 80.548 83.435 91.943

To verify the effects of the proposed model and their three principle sub-modules,
we conducted another ablation experiment successively adding the channel attention, the
position attention, sub-pixel up-sampling, and auxiliary loss to the baseline model. Table 4
shows the results of these ablation experiments. The first row shows the results of the
baseline model, which is depicted in Figure 8. Compared with ICENETv2, the baseline does
not contain the dual attention model and sub-pixel up-sampling model, and its loss only
considers the main loss. In Table 4, ‘CAM’ and ‘PAM’ respectively denotes adding channel
attention and position attention after the block Res3 and Res4. ‘CAM + PAM’ means adding
both attention modules after the block Res3 and Res4. The notation ’Sub-pixel’ means that
part of up-sampling operations are sub-pixel up-sampling shown in Figure 4. The notation
‘Au_loss’ means that three auxiliary losses are also considered in the loss function.

Conv
7x7 Pooling Res1 Res2 Res3 Res4

Conv
3x3 BN ReLU

Conv
3x3 BN

Global 
pooling

ReLU

Concat
2x Upsample

2x Upsample
Fusion

4x Upsample
Fusion

2x Upsample

Predict

1/2 1/4 1/4 1/8 1/16 1/32

1/4 1/8

Figure 8. The baseline model.

The experimental results show that MIoU has increased by 2.674% by adding only the
position attention module in the baseline model and 3.760% by adding only the channel
attention module. When the two attention modules are adopted simultaneously in the
baseline model, the MIoU is increased by 4.249%. On this basis, sub-pixel and Au_loss
modules are added respectively, and MIoU is improved by 2.449% and 1.922% respectively.
When all the sub-modules of the ablation experiment are added to the baseline module,
the MIoU achieves 83.435%.

Moreover, Figure 9 shows some visualization results to demonstrate the effectiveness
of the two attention modules. By adding the position attention module or channel attention
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module to the baseline model, the fine-grained semantic segmentation of drift ice is more
accurate and some details and object boundaries are clearer.

Table 4. Ablations on the channel attention module, the position attention module, the auxiliary loss, and sub-pixel
up-sampling module.

Baseline Cam Pam Sub-Pixel Au_Loss
IoU(%)

MIoU(%) PA(%)
Drift Ice Shore Ice Water Others

! 74.496 78.996 86.413 64.940 76.211 88.594

! ! 77.323 76.461 87.674 78.425 79.971 89.776
! ! 73.630 82.086 83.550 76.274 78.885 88.933
! ! ! 77.263 81.780 88.034 74.762 80.460 90.463
! ! ! ! 79.085 82.404 89.254 80.893 82.909 91.529
! ! ! ! 78.381 82.138 89.720 79.290 82.382 91.328

! ! ! ! ! 81.127 81.582 90.484 80.548 83.435 91.943

(a)

(b)

(e)

(d)

(c)

otherswaterdrift iceshore ice

Figure 9. Visualization results of ablation study. (a,b) respectively represents the images and the corresponding labels.
(c) represents the results obtained through the baseline model. (d) is the results of adding both PAM and CAM modules.
(e) represents the prediction obtained by adding all sub-modules of the ablation experiment.

4.4. Comparison with the State-of-the-Art

The methods DeepLabV3 [20], DenseASPP[31], PSPNet [21], RefineNet [22], and
BiseNet [23] have achieved excellent performance on public datasets. They are the repre-
sentive semantic segmentation methods of the state-of-the-art. Therefore, we compare the
proposed ICENETv2 with them on NWPU_YRCC2 and NWPU_YRCC. The comparison
results are presented in Table 5. They demonstrate that the ICENETv2 has a significant
improvement in terms of MIoU on NWPU_YRCC2, meanwhile the single-class in terms
of IoU for the drift ice is also the highest. Figure 10 presents some visualization com-
parison results. We can see that the results of the ICENETv2 have a better segmentation
and recognition accuracy of small-scale targets. The experimental results also show that
the performance of ICENETv2 on NWPU_YRCC is significantly higher than that of other
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methods and slightly higher than that of ICENET. This can further verify the effectiveness
of ICENETv2 on fine-grained segmentation.

Table 5. Comparison of our ICENETv2 with other methods.

Method Dataset
IoU(%)

MIoU(%) PA(%)Ice
Water Others

Drift Ice Shore Ice

DeepLabV3 [20]

NWPU_YRCC2

62.127 69.938 77.363 61.020 67.612 85.902
DenseASPP [31] 68.924 75.479 81.628 66.522 73.138 88.769

PSPNet [21] 73.875 76.221 85.855 75.261 77.803 90.626
RefineNet [22] 74.442 81.125 87.116 75.427 79.528 91.634

BiseNet [23] 72.623 84.026 87.282 76.441 80.093 91.607
ICENET [12] 74.452 82.799 87.865 77.053 80.542 91.844
ICENETv2 81.127 81.582 90.484 80.548 83.435 91.943

DeepLabV3 [20]

NWPU_YRCC [12]

84.537 76.941 79.028 80.024 92.108
DenseASPP [31] 87.716 80.064 83.798 83.630 93.934

PSPNet [21] 88.196 81.483 83.774 84.374 93.966
RefineNet [22] 88.483 82.970 84.733 85.371 94.312

BiseNet [23] 89.301 83.464 87.814 86.497 95.058
ICENET [12] 91.583 84.891 88.253 88.112 95.932
ICENETv2 90.911 86.101 90.365 88.506 94.542

(a)

(b)

(d)

(c)

(g)

(h)

(e)

(f)

otherswaterdrift iceshore ice

Figure 10. Comparison of different methods on the NWPU_YRCC2 dataset. (a,b) respectively represent the images and the
corresponding labels. (c–h) respectively represent the results of algorithm DeepLabV3, DenseASPP, PSPNet, RefineNet,
BiseNet, and ICENETv2 on the NWPU_YRCC2 dataset, arranged in ascending order by MIoU in Table 5.
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4.5. Application on the Calculation of Drift Ice Cover Density

Drift ice cover density is one of the most important factors in predicting the freeze-up
date of river and can provide more information for ice situation analysis. Now man-
ual visual measurement is still adopted to calculate the drift ice cover density in many
hydrological stations. This measurement way is greatly affected by human experience,
and is usually prone to error. Based on the predicted fine-grained river ice semantic seg-
mentation map, the drift ice cover density can be calculated automatically, as shown in
Equation (5). The Drift_Ice_Num and River_Water_Num in Equation (5) represents the
pixel number of water and drift ice respectively, in the predicted fine-grained river ice
semantic segmentation map:

Dri f t_Ice_Cover_Density =
Dri f t_Ice_Num

Dri f t_Ice_Num + River_Water_Num
. (5)

To accurately calculate the drift ice cover density, the UAV lens should be perpendic-
ular to the river surface. At the same time, the bank on both side of the river should be
included in the shooting process, so that the bank can be viewed. We selected five typical
scenes to verify our calculation, as shown in Figure 11. The error between the drift ice
cover density calculated by the predicted fine-grained river ice semantic segmentation map
and that by the label is only 5.6%. This demonstrates that our method is accurate enough
to meet actual application requirements.

GT   =16.298%

Pred =17.170%

GT   =26.293%

Pred =27.953%

GT   =23.417%

Pred =23.830%

GT   =25.178%

Pred =27.036%

GT   =48.228%

Pred =44.754%

(b) (c)(a) (d)

Figure 11. Experimental results of drift ice cover density. (a–c) respectively represent the images, the corresponding labels,
and the prediction semantic segmentation maps. (d) shows the drift ice cover density calculated from the label and predicted
semantic segmentation map.

4.6. Discussion

From the ablation experiments, it can be seen that ICENETv2 is 7.224% higher on MIoU
than the baseline model and each sub-module has a certain contribution. The visualization
results shown in Figure 8 also exhibit the improvement effect on the segmentation detail
of the attention module and the sub-pixel up-sampling. By adding these sub-modules
mentioned above to the baseline model, our ICENETv2 achieved the highest IoU in the drift
ice category, reaching 81.127% IoU, indicating that our model is suitable for fine-grained
segmentation.

The proposed ICENETv2 is compared on our NWPU_YRCC2 dataset with the state-of-
the-art methods, including DeepLabV3 [20], DenseASPP [31], PSPNet [21], RefineNet [22],
and BiseNet [23]. The experimental results indicate that the proposed method achieves
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significant improvements over the state-of-the-art methods in terms of mean IoU. Although
our method is inspired by BiseNet to some extent, it is carefully designed to adapt the
characteristics of fine-grained segmentation. It adopts a new fusion structure to effectively
fuse high-level semantic information and low-level finer information, and utilizes dual-
attention [29] to highlight the distinguishable semantic features between drift ice and
shore ice. A learnable up-sampling strategy [28] is used to further reconstruct the finer
information, since the appearance of drift ice is diverse and sometimes its scale is prone to
be small. In addition it has a joint loss function with three auxiliary losses to sufficiently
train the network. These three parts are different from BiseNet. The experimental results
on NWPU_YRCC2 can demonstrate our design is effective to the problem of fine-grained
ice segmentation. To further illustrate this conclusion, we also compare ICENET and
ICENETv2 on both NWPU_YRCC2 and NWPU_YRCC, shown in Table 5. The performance
of ICENETv2 on NWPU_YRCC is slightly higher than that of ICENET, reaching 88.506%
MIoU. While, the performance of ICENETv2 on NWPU_YRCC2 is 2.893% higher on MIoU
than that of ICENET. This comparison can further verify the effectiveness of our design on
fine-grained segmentation.

From the application experiment, we can see that the accuracy of drift ice cover
density calculated by the predicted semantic segmentation map is sufficient to meet the
requirements of practical applications. This application of semantic segmentation to the
calculation of drift ice cover density is very significant and innovative, since the manual
visual measurement still adopted by many hydrological stations is inaccurate and error-
prone. In the future, we will verify its application in more scenes and further improve
the MIoU of the model. Moreover, we will focus on optimizing the code, reducing the
computational complexity of their model, and improving the efficiency and speed of
semantic segmentation, so that our proposed method can be trained more quickly and be
run in lightweight portable computing devices.

5. Conclusions

In this research, a UAV visible image dataset named NWPU_YRCC2 was built for
fine-grained river ice semantic segmentation. All images were collected in the Ningxia-
–Inner Mongolia reach of the Yellow River, since the ice phenomenon in this reach is
very typical and diverse. Then, a novel network architecture named ICENETv2 was
proposed for accurate fine-grained river ice semantic segmentation, which could efficiently
fuse multiscale high-level semantic context features and low-level finer features. The
experiments show that our ICENETv2 outperformed other methods on the NWPU_YRCC2
dataset. Furthermore, by using the predicted fine-grained river ice semantic segmentation
map, the drift ice cover density could be calculated. Its error was only 5.6%, which is
accurate enough to meet actual application requirements.
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