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Abstract: As one of the most populated metropolitan areas in the world, the Tokyo Metropolitan Area
(TMA) has experienced severe climatic modifications and pressure due to densified human activities
and urban expansion. The surface urban heat island (SUHI) phenomenon particularly constitutes
a significant threat to human comfort and geo-environmental health in TMA. This study aimed to
profile the spatial interconnections between land surface temperature (LST) and land cover/use
in TMA from 2001 to 2015 using multi-source spatial data. To this end, the thermal gradients
between the urban and non-urban fabric areas in TMA were examined by joint analysis of land
cover/use and LST. The spatiotemporal aggregation patterns, variations, and movement trajectories
of SUHI intensity in TMA were identified and delineated. The spatial relationship between SUHI
and the potential driving forces in TMA was clarified using geographically weighted regression
(GWR) analysis. The results show that the thermal environment of TMA exhibited a polynucleated
spatial structure with multiple thermal island cores. Overall, the magnitude and extent of SUHI
in TMA increased and expanded from 2001 to 2015. During that time, SUHIs clustered in the
compact residential quarters and redevelopment/renovation areas rather than downtown. The GWR
models showed better performance than ordinary least squares (OLS) models, with Adj R2 > 0.9,
indicating that the magnitude of SUHI significantly depended on its neighboring geographical
setting, including land cover composition and configuration, population size, and terrain. We suggest
that UHI mitigation in Tokyo should be focused on alleviating the magnitude of persistent thermal
cores and controlling unstable SUHI occurrence based on partitioned or location-specific landscape
design. This study’s findings have immense implications for SUHI mitigation in metropolitan areas
situated in bay regions.

Keywords: land cover/use; land surface temperature; population; Tokyo Metropolitan Area; urban
sustainability; urban thermal environment

1. Introduction

In the 21st century, tackling climate change is arguably considered the top priority to
ensure human comfort and geo-environmental health [1]. The Intergovernmental Panel
on Climate Change (IPCC) and the United Nations (UN) Framework Convention on
Climate Change (FCCC) has emphasized the importance of addressing urban climate
issues and enumerated the enormous consequences [2,3], such as global warming, weather
extremes, etc. In particular, due to densified human activities and intensified urban sprawl,
the climate crisis in the urban context is continuously amplified [4]. Urban areas have
experienced overwhelming risks and pressures [5,6]. The underlying mechanisms and
processes of the urban thermal–energy system are thereby altered, and the urban heat
island (UHI) effect is gradually generated [7]. The UHI phenomenon is driven by surface
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temperature cliffs between urban and non-urban areas [8–11]. In light of this, extremely
high temperatures in populated urban areas, in contrast with their surrounding rural
spaces, have been a severe climatic threat [11,12]. The UN projected that more than two-
thirds of the world population would dwell in urban areas by 2050 [13,14]. These people
would be exposed to high-temperature anomalies as well.

As one of the most vibrant, populated, and livable regions across the globe, the
Tokyo Metropolitan Area (TMA) has been struggling to overcome the problems caused
by urban expansion and extreme climate events since the adoption of the Kyoto Protocol
(1997) [15–19]. As of 2015, the population of Tokyo reached 9.273 million, and the growth
rate reached 14% compared with 2000 [20]. With a population density of 6169 persons per
km2, Tokyo is home to 11% of Japan’s total population but only covers less than 1% of the
total area of the country [21]. The increase in population is mirrored by urgent demands
for urban services and environmental supply. Thus, it is vital to foster a sustainable Tokyo,
which contributes to a vigorous metropolitan area that embraces ecological harmony
and economic prosperity. As Japan’s central locus, Tokyo has always been struck by
the UHI effect due to drastic metropolization, and it has acquired a series of problems,
such as increased urban energy consumption, increased greenhouse gas emissions, and
deteriorated urban air quality [22]. The centennial increment of Tokyo’s annual average
temperature was estimated at approximately 3 °C by the Japan Meteorological Agency
(JMA) [23–26]. Records of unseasonable high-temperature days/nights in Tokyo have
been soaring [27,28]. Out-of-control UHI could wipe out hard-won gains for the urban
environment and human health. Therefore, alleviating the UHI effect is highlighted as
one of the most prominent challenges in Tokyo. Evaluating the evolutionary track of the
urban thermal environment in Tokyo and UHI mitigation strategies yields experiences and
lessons for other expanding metropolitan areas in bay regions.

Since the 2000s, the Tokyo Metropolitan Research Institute for Environmental Pro-
tection (TMRIEP) has set up massive meteorological observation frameworks in order to
expand UHI investigations [25,29]. Plentiful and valuable findings on urban/suburban
atmospheric heat conditions in Tokyo have been obtained from high-spatial-density moni-
toring stations [25,27,30]. This kind of canopy-layer UHI (CUHI) investigation based on
isolated meteorological stations has contributed to UHI mitigation initiatives. Assessments
of CUHI have identified the thermal impacts on specific locations over time using abso-
lute atmospheric temperature. However, they ignored the spatial heterogeneity of UHI
due to sparsely distributed in situ measurements [10]. In contrast, by estimating land
surface temperature (LST), satellite-derived surface UHI (SUHI) monitoring at various spa-
tiotemporal resolutions replenishes large-scale and long-term UHI observations. Satellite
thermal infrared (TIR) remote sensing data, such as Landsat constellation and Moderate
Resolution Imaging Spectroradiometer (MODIS) archives, have been extensively utilized
for surface temperature measurement due to their short revisit intervals and broad spatial
coverage [10,31].

Unlike in situ atmospheric temperature measurements, retrieved LST using Landsat
data provides an in-depth evaluation of the thermal situation and surface parameter re-
sponses in the high spatial-sensitive context [8,10,31,32]. Together with various ecological,
environmental, and socioeconomic parameters, the detailed information of radiative sur-
face temperature can be interpreted to study underlying surface conditions and interactions
between atmospheric circumstances and human activities [10]. Until recently, an incredible
number of UHI-related scientific studies based on Landsat satellite data have explored
the linkages between SUHI and its potential driving force from urbanization [10,31,33–40].
Deilami et al. [41] identified the association between SUHI and land cover patterns in
Brisbane based on spatial regression models at comparative cross-sectional and longitu-
dinal perspectives. They found that the influences of population density and porosity
vary significantly over space. Li et al. [42] depicted the spatiotemporal patterns of SUHI
in Hangzhou and confirmed that increasing population and green space substantially
affect changes in SUHI. Liu et al. [43] evaluated the impact of land cover/use on SUHI
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for 10 Chinese megacities and demonstrated that the land cover composition and the
population had notable effects on altering the intensity of SUHI. Wang et al. [44] simulated
land use/cover scenarios and impacts on land surface temperature in Sapporo and stated
that urban expansion was the main driver affecting SUHI. Wang et al. [45] investigated
the connections among urban landscape, population, and LST in three megacities along
the Yangtze River (Chongqing, Nanjing, and Wuhan) and concluded that the effects of
landscape composition and configuration on LST differed across cities.

However, few studies have depicted the spatiotemporal evolution of thermal gradi-
ents in Tokyo based on Landsat monitoring. The spatiotemporal interconnections between
SUHI and its urbanization-induced influencing factors in Tokyo have also been scarcely
interpreted due to the complicated urban setting. Tokyo’s urban areas are contiguous
with each other or border on urban fringes or suburban areas rather than rural areas. It
is challenging to delineate and harmonize the contours of UHIs without knowing the
distinct temperature differences between typical urban and rural sectors. Although sev-
eral studies effectively identified the spatial patterns and characteristics of the thermal
environment in Tokyo [46–48], the temporal dynamic component of land cover/use on
LST in Tokyo was disregarded. Furthermore, the thermal environment mechanism is
complicated [8,49,50] and impacted by mixed factors [10,31]. In light of this, interpreting
the evolution of Tokyo’s thermal environment requires a novel investigation into the dy-
namism of diverse underlying factors. In this context, a more comprehensive assessment
of Tokyo’s thermal environment is required in order to provide in-depth insights into the
spatiotemporal dynamics of the influencing factors on urban thermal comfort. In addition,
profiling how Tokyo has managed heat islands through urban planning can enrich the
knowledge of urban sustainability and contribute to urban climate responses in the broader
international context.

Hence, this study’s chief objective was to conduct an integrative assessment of spatial
interconnections between LST and land cover/use using multi-source long-term remote
sensing data in Tokyo. The second objective was to capture and characterize the spatiotem-
poral variations and trends of the urban thermal environment for comfort and sustainability.
We intend to provide a cross-sectional and longitudinal investigation that permits spa-
tiotemporal evaluations of Tokyo’s thermal environment based on land cover/use scenarios,
coupled with remotely sensed data from multiple sources and spatial statistical analysis.
This study’s findings can support the validity of the analytical approaches undertaken and
the universality of the research process for other metropolitan areas at the national and
global scale, such as Osaka, Fukuoka, Shanghai, Hong Kong, Singapore, Los Angeles, etc.

2. Study Area and Methods
2.1. Study Site

This study was conducted in the context of the Tokyo Metropolitan Area (TMA),
Japan. We focused on the landscape and its influence on LST within a radius of 40 km from
Tokyo Station (the city center; latitude: 35◦40′51”N; longitude: 139◦46′1”E), as shown in
Figure 1. This area encompasses most of the urban–suburban–rural areas in Tokyo with
many land details. More than 37 million people reside in the TMA [20]. Due to speedy
urbanization, the TMA is a representative region of Japan and the world. The substantial
settlement agglomerations and urban infrastructure constructions in TMA have given rise
to urban warming and contributed to the climate crisis [25,26]. Under the climate scheme,
TMA is situated in a humid subtropical zone with a complex aggregation of diverse land
covers/uses. Consequently, TMA experiences hot and humid weather from May to early
October. In recent decades, TMA has been subjected to frequent severe high temperatures
in summer and autumn. The highest recorded temperature ranged between 34.2 ◦C and
39.5 ◦C from 2001 to 2015 [20]. This increased tropical weather resulted in a surge of
heat-related health problems and destroyed the balance of the thermal environment.
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Figure 1. Geographic location of the study area: (a) location of Japan, (b) prefectural-level administrative divisions of
Greater Tokyo Metropolitan Area (TMA), and (c) study area in 2015 Landsat 8 satellite image generated as bands 4-3-2 RGB
(red, green, blue) natural-color composites.

2.2. Working Flowchart

This study used multi-source spatial data to examine the causal mechanism and
associations between LST and land cover in TMA based on cross-sectional and longitudinal
spatial regression models. The overall technical processing scheme is shown in Figure 2.

2.3. Land Cover/Use Specifications

In this study, land cover/use thematic maps of TMA were obtained from the global
land cover (LC) products of the European Space Agency (ESA) Climate Change Initiative
(CCI) [51]. The annual CCI-LC products at 300-m spatial resolution have been treated as
persuasive data in a broad range of LC-related research [51,52]. The CCI-LC classification
scheme is defined as 37 hierarchical categories, including 22 global and 15 regional classes
based on the Land Cover Classification System (LCCS). The LCCS, developed by the
UN (http://www.fao.org/docrep/003/x0596e/x0596e00.HTM), delivers great LC details
and has flexibility in adjusting the thematic legend in order to serve diverse applications.
The validation framework of CCI-LC products was established globally on international
standards, using both the pixel-based uncertainty value and object-based expert verification
of 2600 primary sampling units. The overall weighted-area accuracy of the CCI-LC 2015
product is assessed to be 71.1% [51].

The thematic details in TMA were extracted from global LC maps and rectified to
northern Universal Transverse Mercator map projection zone 54 (UTM zone 54N). The LC
thematic legend was rearranged into five categories considering TMA’s urban setting and
land use utilization together with SUHI profiling—agricultural land (AL), forest land (FL),
mixed land (ML), urban fabric (UF), and water area (WA). The specifications of TMA’s
LC legend are shown in Table 1. Time series CCI-LC LC maps of 2001, 2006, 2013, and
2015 were exploited in this study based on the time correspondence of other data. The

http://www.fao.org/docrep/003/x0596e/x0596e00.HTM
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reprocessed LC maps were then used to compute the landscape pattern metrics based on
the landscape-level moving window in FRAGSTATS 4.2 developed by the University of
Massachusetts, making it possible to quantify the relationship between the configuration
of land cover/use and LST in the context of spatial heterogeneity [53].

Figure 2. Overall technical flowchart in this study. ESA, European Space Agency; CCI, Climate
Change Initiative; LC, land cover; LCU, land cover/use; LST, land surface temperature; SUHI, surface
urban heat island; SUHII, SUHI intensity.

Table 1. LC thematic legend in this study.

LC Class Description

Agricultural land (AL)
Rainfed cropland, irrigated cropland, mosaic cropland (>50%);

natural vegetation (trees, shrubs, herbaceous cover) (<50%),
mosaic natural vegetation (>50%); cropland (<50%)

Forest land (FL)
Tree cover: broadleaved, evergreen, deciduous, needle-leaved,

closed to open (>15%); mixed leaf, mosaic tree, and shrub (>50%);
herbaceous cover (<50%)

Mixed land (ML) Bare area, wetland, shrubland, lichens, and mosses, sparse
vegetation

Urban fabric (UF) Urban settlements, buildings, roads, and artificially surfaced areas

Water area (WA) Water

2.4. LST Retrieval and SUHI Assessment

The multitemporal Landsat constellation images of TMA (Landsat collection 1 Level
2 (On-Demand); path: 107, row: 35) were utilized in this study. All Landsat scenes were
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geometric-corrected, radiometric-calibrated, and atmospheric-corrected by the United
States Geological Survey (USGS; https://earthexplorer.usgs.gov/). The corresponding
image products were also retrieved, including multispectral surface reflectance, spectral
indices, and atmospheric brightness temperature in Kelvin (K). Considering the availability
and comparability of data, time-series Landsat data in the same season (autumn in this
study) or within three-month intervals were given priority. The selected images were cloud-
free or had minimum cloud cover (<10%). In addition, the local hourly meteorological data
archives from the JMA were used to confirm the existence of extreme weather factors in the
24 h before and after image acquisition. Based on these considerations, we utilized Landsat
data from 24 September 2001, 16 October 2006, 17 September 2013, and 9 October 2015 in
this study.

Initially, LST was the primary indicator to capture the spatiotemporal pattern of
SUHI in TMA. Many studies have provided detailed descriptions of radiative transfer
equation (RTE)-based LST retrieval using Landsat thermal bands [36,54,55]. The RTE
can be expressed as Equation (1). Briefly, RTE-based LST retrieval involves three main
procedures: (1) convert Landsat digital numbers (DNs) to top of atmosphere (ToA) radiance,
(2) calculate at-sensor brightness temperature (BT), and (3) compute LST [56,57].

Lsensor,λ =
[
ελBλ(T) + (1− ελ)Latm↓,λ

]
τλ + Latm↑,λ (1)

where Lsensor,λ is Landsat spectral ToA radiance at the wavelength λ
(
µm−1), with

W/m2·sr·µm as the measurement unit; Bλ(T) is Planck’s law-defined equivalent black-
body radiance (W/m2·sr·µm) at temperature T in Kelvin (K) and wavelength λ in
µm−1; τλ is the atmospheric transmissivity of Landsat sensor-land surface, unitless; ελ
is land surface emissivity at the wavelength λ

(
µm−1), unitless, and ελ was esti-

mated based on fractional vegetation proposed by Sobrino et al. [56] through the
normalized difference vegetation index (NDVI) threshold method; Latm↑,λ is upwelling
atmospheric radiance, with W/m2·sr·µm as the measurement unit; and Latm↓,λ is
downwelling atmospheric radiance, with W/m2·sr·µm as the measurement unit.

Three important parameters can be obtained from the module of atmospheric correc-
tion by NASA (https://atmcorr.gsfc.nasa.gov) [57–59]—atmospheric transmissivity (τλ),
upwelling radiance (Latm↑,λ), and downwelling radiance (Latm↓,λ). The details of thermal
image information and atmospheric parameters are shown in Table 2.

Table 2. Specifications of Landsat data used in this study.

Spacecraft Landsat
Sensor

Acquisition
Time GMT Time

Band Average
Atmospheric
Transmission

Effective
Bandpass
Upwelling
Radiance

Effective
Bandpass

Downwelling
Radiance

LANDSAT_7 ETM 24/9/2001 1:04:17 0.87 0.97 1.61

LANDSAT_5 TM 16/10/2006 1:09:59 0.79 1.57 2.54

LANDSAT_8 OLI_TIRS 17/9/2013 1:17:48 0.82 1.47 2.42

LANDSAT_8 OLI_TIRS 9/10/2015 1:15:51 0.88 0.9 1.54

LST-related studies are often highly climate-sensitive, and the investigated results
are sensitive to the weather effect [42,43]. The responses of LST values are varied and
complicated at different locations and dates. The evolution of the thermal environment in
different phases should be investigated using the same statistical frame and harmonized
legend. Although the selected Landsat images in this study were within the same season, it
is meaningless and inappropriate to directly compare the spatiotemporal variations of the
thermal environment for periods using absolute LST values due to enormous uncertainty
and bias. Therefore, instead of absolute LST observations, spatiotemporal patterns of SUHI
intensity were utilized in this study for analyzing and comparing the evolution of TMA’s

https://earthexplorer.usgs.gov/
https://atmcorr.gsfc.nasa.gov
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thermal environment. The intensity of SUHI (SUHII) was measured by the estimated LST
differences in urban/rural areas. The extrema of LST values were removed to eliminate
uncertainty and errors in LST retrieval, making the temperature information comparable.
The generated LST values were normalized to the range of 0–1 using the min–max rescaling
method. For estimated LST values, the minimum and maximum values of LST were
transformed into 0 and 1, respectively; the other LST values were rescaled into a decimal
between 0 and 1 [43,54]. Herein, SUHII was computed as Equation (2), which subtracts the
mean temperature value of non-urban area (non-UF category pixels) from the temperature
value of each pixel in the study region [43,60,61] as follows:

SUHII = LSTurban,i − LSTrural,i = LSTi − LSTnon−u f (2)

where LSTurban,i and LSTrural,i are the LST values of urban and rural pixels, respectively;
LSTi is the LST value of pixel i within the study region; and LSTnon−u f denotes the mean
LST value of non-UF pixels. UF category pixels are substituted for urban pixels, while non-
urban pixels contain the pixels of other land cover/use categories (AL, ML, FL, and WA).

2.5. Spatial Aggregation Pattern and Variations of SUHI

Since the adverse effect of SUHI is a consequence of urban sprawl and human activi-
ties over time [8,11,31,62], the relationship between the urban thermal environment and
urbanization needs to be highlighted and interpreted to delineate the spatial clustering
pattern of SUHII [42]. The variations in the spatiotemporal aggregations of SUHII in TMA
mirror the evolution of the urban spatial layout from different angles. Herein, Moran’s I
(MI) [42,63] was computed to reflect the geographic pattern of TMA’s thermal environment
on a global scale (Equation (3)) as follows:

MI =
n

∑n
i=1 ∑n

j=1 wij

∑n
i=1 ∑n

j=1 wij(xi − x )
(
xj − x

)
∑n

i=1(xi − x )2 (3)

where n is the total number of spatial analytical units, xi is the mean SUHII value for spatial
unit i, wij denotes the spatial weight between spatial units i and j, and x represents the
mean SUHII value within the whole study area. The SUHI data were conceptualized and
structured through spatial sparse weight matrix techniques. Using the inverse distance
weighted strategy, the neighboring features were varied and influential, and spatial weights
were computed to reflect the variations of the thermal environment. When the global
thermal pattern of TMA is spatially autocorrelated, the occurrence of positive MI hints
at spatial clusters of high or low SUHII values; conversely, negative MI implies a spatial
dispersion of high and low SUHII values. In the case that MI has a value of 0, the global
thermal pattern is spatially random.

This study also adopted hot spot analysis to delineate the local spatial aggregations of
SHUII in TMA based on Getis-Ord Gi* spatial statistics. The calculation of the Getis-Ord
local statistic (G∗i Zscore) is based on Equation (4) [63,64] as follows:

G∗i Zscore =
∑n

i=1 ∑n
j=1 wijxj − X ∑n

j=1 wij

s

√ [
n ∑n

j=1 wij
2−
(

∑n
j=1 wij

)2
]

n−1

(4)

where n is the total number of spatial analytical units, xj denotes the SUHII value for spatial
unit j, X̄ and S indicate the mean and variance of SUHII values within the whole study
area, respectively, and wij is the spatial weight between i and j.

The tool for hot spot analysis in ArcGIS 10.4, developed by Environmental Systems
Research Institute (ESRI), was employed to estimate the Getis-Ord Gi* statistic for each
spatial analytical unit of the SUHII data. The existence and locations of local clusters with
statistically significant for a specified distance were identified spatially by the results of
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G∗i Zscore (Table 3). This step was conducted by looking at each grid in the context of spatial
neighbors. In terms of statistical significance, a larger and positive G∗i Zscore represents a
significant hot spot that has more intense local clustering of high SUHII values, while a
smaller and negative G∗i Zscore signifies a significant cold spot that has more intense local
clustering of low SUHII values. When the G∗i Zscore approaches zero, it indicates the absence
of apparent spatial clustering on the local scale. A confidence level of 90% or higher was
utilized in further analysis.

Table 3. Classification criteria of local spatial aggregations of SUHII.

Significance
Level

99.9%
Significant

99%
Significant

95%
Significant

90%
Significant

Not
Significant

Classification
criteria

G∗i Zscore(z)

z > 3.29
or

z < −3.29

z > 2.58
or

z < −2.58

z > 1.96
or

z < −1.96

z > 1.65
or

z < −1.65

−1.65 < z <
1.65

Additionally, the spatial centroid [65,66], together with standard deviational ellipse
(SDE) [67,68] analysis, was implemented to explore the response of the thermal environ-
ment to the evolution of the urban landscape. The methodological details of centroid
coordinates and SDE parameters can be found in Xu et al. [69] and Johnson et al. [70].
The spatial centroid movement of SUHI hot spots in 2001, 2006, 2013, and 2015 was cal-
culated for a hint at the evolutionary trajectory of TMA’s urban thermal environment.
The UF centroids in the corresponding years were created to indicate the direction and
track of urban expansion in TMA during the research periods. Based on the spatial pat-
tern of SUHI hotspots, SUHII weighted SDEs across time series were also calculated to
enhance our understanding of the spatiotemporal dynamic processes of TMA’s urban
thermal environment.

2.6. Spatial Regression Analysis
2.6.1. Geographically Weighted Regression Analysis

Linear regression analysis is intended to signify a dependent variable by a suite of
independent variables with a linear weight combination [38,71–74]. Referring to the issues
of spatial non-stationarity and location independency, many studies, particularly those
concerning geography and climatology [71,72,75], have shown that the geographically
weighted regression (GWR) model is more precise and appropriate for quantifying the rela-
tions between dependent and independent variables than conventional regression models
(e.g., ordinary least squares (OLS)) [41,72,76,77]. For instance, Zhao et al. [76] examined
the relationship between SUHI and underlying biophysical factors in Austin and San Anto-
nio, Texas, using (and comparing) OLS and GWR models, indicating the non-stationary
spatial effect of relevant underlying biophysical factors on SUHI. Li et al. [72] assessed the
relationships between diurnal/seasonal SUHI and underlying drivers in 419 major cities
all over the world using the GWR model and compared the results to global regression
models. Thus, recently, GWR is being utilized more to mirror spatial heterogeneity and
geographical connections [10]. In GWR, the complicated spatially varying relationships of
dependent and independent variables can be estimated and simulated using a locally linear
form of a parameter matrix, which can be expressed mathematically as [41,43,72,74,76]

yi = βi0(ui, vi) + ∑
k

βik(ui, vi)xik + εi (5)

where i indicates the location of a dependent variable (mean SUHII) for each spatial unit,
labeled as the coordinate (ui, vi); k represents the number of explanatory variables (driving
forces) within a spatial unit, yi, xik, and εi stand for the values of the dependent variable,
the kth explanatory variable, and the random disturbance for spatial unit i, respectively;
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and βi0(ui, vi) and βik(ui, vi) represent the estimates of the intercept parameter and the
local regression coefficient for the kth explanatory variable for spatial unit i, respectively.

The performance of the GWR model is sensitive to spatial kernel functions and the
bandwidth statistical method. A set of evaluation parameters was computed based on
ArcGIS 10.4 and RStudio for verifying the reliability and accuracy of the model, including
the coefficient of determination (R2), corrected Akaike information criterion (AICc), MI of
the residuals, variance inflation factor (VIF), F-test, etc.

2.6.2. Selection of Spatial Determinants

The interconnections between SUHII and its influencing factors in TMA were clarified
and highlighted using spatial regression analysis (OLS and GWR). Thus, the average SUHII
of each spatial analytical unit was calculated as the dependent variable. Prior knowledge
suggests that an array of potential explanatory variables can be considered [41,43,76–78].
The candidates for explanatory variables are listed by type as follows:

(1) Land cover/use composition variables—In terms of land cover/use composition, the
proportion of urban fabric area (UFP), normalized difference built-up index (NDBI),
forest proportion (FP), normalized difference vegetation index (NDVI), and water
proportion (WP) were considered as candidate explanatory variables. UFP, FP, and
WP came from the UF and FL categories of reprocessed CCI-LC layers. NDVI and
NDBI were calculated using Landsat multispectral images;

(2) Landscape metric pattern variables—Determining the size, morphology, and spatial
arrangement of urban landscapes is vital to explain urban temperature anomalies. Here,
four landscape metric parameters were chosen to quantify the characteristics of diversity,
aggregation, and evenness in urban landscapes: Shannon’s diversity index (SHDI),
contagion index (CONTAG), patch density (PD), and patch richness (PR). Raster maps
of landscape metrics were involved in further tests of explanatory regression;

(3) Population variable—Population or population density indirectly affects the urban
thermal field. Along with the vast production of anthropogenic heat, the concentra-
tion and overcrowding of the population impose serious pressure and demands on
urban settlements and infrastructure constructions. This is why we incorporated the
population as one of the essential determinants of SUHI formation. In this study, we
used spatial demographic data at a high resolution of 100 m provided by the World-
Pop Project, University of Southampton, UK (https://www.worldpop.org/) [79], to
map the population distribution in TMA in 2001, 2006, 2013, and 2015. Numerous
studies have gained valuable findings using this population data archive [80,81];

(4) Terrain variables—The urban terrain is an important influencing factor of the stark
temperature difference between urban and rural zones. Fluctuations of the topog-
raphy alter the intensity of solar radiation and the thermal properties of surface
materials. Here, elevation, slope, and aspect were included as potential explanatory
variables. The elevation data at 3 arc-second resolution were extracted from the
digital elevation model (DEM) archives of USGS’s Shuttle Radar Topography Mission
(SRTM) [82]. Slope and aspect are calculated in ArcGIS based on the elevation.

Subsequently, for each analytical unit, the mean values of the dependent and explana-
tory variables were extracted and featured as spatial attributes. All data can be aggregated
to perform spatial regression analysis.

2.6.3. Implementation of Spatial Regression Model

Regarding spatial regression, we generated a set of 1000 m × 1000 m grid cells as the
appropriate analytical scale for observation. At an analytical scale of 1000 m, the spatial
regression analysis can retain sufficient spatial information and weaken the scope of spatial
dependence and autocorrelation, according to the findings of previous studies [43,83].

Initially, we carried out an exploratory regression analysis to determine the specific
OLS model, examining all possible combinations of candidate explanatory variables that
could best interpret the SUHI effect without a multicollinearity problem. The redundancy,

https://www.worldpop.org/
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model completeness, variable significance, bias, and OLS performance were all diagnosed
and described in order to refine the initial OLS model. The final OLS model was determined
and implemented with a range of independent variables, consisting of CONTAG, elevation,
population density, UFP, and FP.

In this study, both cross-sectional comparison (OLS and GWR models) and longitudi-
nal investigation (time sequence GWR models) were designed and performed. Ultimately,
all spatial regression models were tested to determine the overall model fit, residuals, and
improvement of GWR over OLS, with ANOVA. It is expected to verify the superiority of
the GWR model in predicting the SUHI effect with underlying urban biophysical deter-
minants over conventional regression models. On the other hand, time sequence GWR
investigations provided a plausible explanation for accessing the relationship between land
cover/use changes and variations in the magnitude of the SUHI effect.

3. Results
3.1. Spatiotemporal Characteristics of Tokyo’s Urban Landscapes and Thermal Environment

The spatiotemporal evolution of land utilization and thermal environment in TMA
was primarily investigated for 2001–2015. The 16 thematic maps (Figures 3 and 4), in-
cluding land cover/use conversions, population distributions, LST patterns, and SUHI
dynamics in 2001, 2006, 2013, and 2015, provided valuable insight into the dynamism and
evolution of urban development and the urban thermal environment in TMA since the
start of the 21st century. Substantial alterations and transformations of land cover/use
layout and configuration took place over those 15 years, especially the expansion of urban
artificial landscapes. The UF category was the dominant receiver of land from other land
cover/use types. In contrast, AL and FL were significant land providers for urban expan-
sion. Overall, the proportion of UF reached 47.8% in 2015 from 38% in 2001, expanding by
nearly a quarter (25.8%) during the 15 years. On the other hand, due to the proliferation
of impervious surfaces (IS), the agricultural land area shrunk from 38.1% in 2001 to 29.3%
in 2015. Meanwhile, the forest area lost 6.78% of coverage. The magnitude of water area
and mixed land underwent less change than other land types between 2001 and 2015.
The ever-growing urban artificial coverage led to changes in the urban population and
infrastructure. The mean population density of the study area grew by 9.43% between
2001 and 2015. The maximum gridded population density increased by 8.08% between
2001 and 2006, and 6.99% between 2006 and 2015. Geographically, the variations of TMA’s
population were primarily concentrated within a 20–30 km zone. These changes were
attributed to an accelerating degree of urbanization.

Intense human activities and land cover/use transformations alter the thermal prop-
erties of the urban land surface, which further causes the thermal imbalance of the urban
system [11,50]. Figure 4 illustrates the spatiotemporal layout of the urban thermal environ-
ment across the TMA between 2001 and 2015. Figure 5 plots the curves for UFP, normalized
LST (NLST), and SUHI variations based on urban–rural profiling. The spatial arrangement
of UF in TMA between 2001 and 2015 exhibited typical urban–rural gradient distribution.
The proportion of urbanized area gradually decreased from downtown to suburban ar-
eas. Spatially, radiating patterns of the thermal environment appeared in which the heat
diffused from the highly urbanized inner-city area with high LST clustering outward to
urban fringe areas and outskirts with low LST clustering. However, the peak value of
LST was not located in the urban center despite the overall LST tendency of following the
urban–rural temperature gradient pattern. We found that the values of NLST in 2001, 2006,
2013, and 2015 were similar. The curve of NLST arose from the origin (urban center) to
the 10 km zone. In locations 10 km away from downtown, it climbed to the temperature
peak and then gradually declined. The occurrence of NLST valleys and peaks was closely
bound up with the accumulation of continuous urban areas. Accordingly, land cover/use
exerted a considerable influence on the SUHI effect.
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Figure 3. Spatiotemporal evolution of urban development in TMA from 2001–2015: (a–d) spatiotemporal patterns of land
cover/use, and (e–h) spatiotemporal population patterns.

Figure 4. Spatiotemporal evolution of the urban thermal environment in TMA from 2001–2015: (a–d) spatiotemporal
patterns of LST, and (e–h) spatiotemporal patterns of SUHI effect.
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Figure 5. Urban–rural gradient: (a) proportion of urban fabric area, (b) normalized LST, and (c) magnitude of SUHI.

Figure 6a displays the percentage of area in TMA that experienced different SUHI
effect levels from 2001 to 2015. The SUHI effect was more intense in 2013 than in 2001,
2006, and 2015. As shown in Figures 4 and 6, the areas in TMA that experienced negative
LST differences (<0 ◦C) continuously decreased from 31.18% in 2001 to 24.52% in 2015.
The proportions of the area with 0.1–3 ◦C of LST difference were estimated at 27.03%,
29.58%, 24.83%, and 29.5% in 2001, 2006, 2013, and 2015, respectively. In 2001, the area
with higher SUHII (>3.1 ◦C) occupied 41.78% of the whole region. This ratio was slightly
reduced to 41.42% in 2006, increased to 47.81% in 2013, and then was 46% in 2015. The
region with positive LST difference mainly pertained to UF. Moreover, the type of UF
category always presented the maximum value of mean SUHII in TMA. The mean SUHII
values for different kinds of land cover/use are shown in Figure 6b. As expected, positive
thermal anomalies were observed in AL, ML, and UF, and negative thermal anomalies in
FL and WL. The negative values indicate that urban greenery and water bodies have an
unequivocal impact on the cooling effect. The influence of urban cooling gradually slowed
down between 2001 and 2015, evidenced by the lower mean SUHII values. The highest
and lowest cooling effect was detected in FL in 2001 (−2.18 ◦C) and 2015 (−0.92 ◦C).

Figure 6. Trends of SUHI effect experienced in TMA, 2001–2015: (a) variations in percentage area of different levels of SUHI
intensity and (b) variations in mean SUHI intensity of different land cover/use types.

3.2. Interconnections of SUHII with Urban Development

This study examined SUHII hot/cold spots with statistical significance based on
Getis-Ord local statistics, interpolated using the ordinary kriging method for visualization.
Figure 7 shows the spatial locations of SUHII hot/cold spots and their variations. The hot
spots were spatially distributed with a polycentric structure since 2001 (Figure 7a–d). The
overall pattern of SUHI hot/cold spots maintained a relatively stable situation during the
15-year span. The MI values fluctuated and were estimated to be 0.88 in 2001, 0.90 in 2006,
0.89 in 2013, and 0.91 in 2015. SUHII in TMA displayed high spatial dependency. This
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implies that the thermal environment is homogeneous, and the spatiotemporal pattern of
the SUHI effect exhibits the characteristics and tendency of convergence and aggregation.

Figure 7. Spatial identification of SUHII aggregation pattern in TMA, 2001–2015: (a) in 2001, (b) in 2006, (c) in 2013, (d) in
2015, and (e) spatiotemporal dynamics from 2001 to 2015.

From 2001 to 2015, SUHII hot spots I–III mainly emerged in the western part of TMA,
between 10 km and 30 km from the urban core, and densely aggregated near low-rise
residential buildings (Figure 7). The amount and extent of hot spot III in 2013 significantly
increased compared to other years and those of hot spot II correspondingly decreased. The
cold spot areas in TMA between 2001 and 2015 primarily occurred in areas with dense
vegetation and water bodies, for example, Tokyo Bay, at the southeast edge of the study
area. This finding suggests that abundant green space (forest, etc.) and large proportional
water bodies would contribute to alleviating SUHI.

We combined the SUHII spatiotemporal aggregation patterns to yield the dynamics
and variations of the thermal environment from 2001 to 2015, as shown in Figure 7e. The
areas in TMA where strong SUHI effects occurred persistently between 2001 and 2015
occupied 19.69% of the whole research region. The newly increased SUHI areas in 2006,
2013, and 2015 were 115 km2, 98 km2, and 131 km2, respectively. The area that offset the
thermal effect from 2001 to 2015 was estimated at 152 km2. In total, approximately 12.92%
of the study region emerged as unstable as the result of SUHI between 2001 and 2015.

The centroids of SUHI hot spots at different periods were calculated to depict the
different evolutionary tracks of TMA’s thermal environment over time. The centroids of
UF on the whole regional scale from 2001 to 2015 were also measured. The centroids of UF
were located at the area of 139.67–139.69◦E, 35.69–35.71◦N over the 15-year period. From
2001 to 2006, the UF centroid moved 537 m in the northern direction from the west. From
2006 to 2013, the movement tended toward the northeast over a distance of 1800 m. The
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centroid moved 466 m in the northeast direction from 2013 to 2015. This indicates that the
leading orientation of urban expansion during 2001–2006 and 2006–2015 was northwest
and northeast, respectively. The movement of SUHI centroids in TMA was distinguished
from that of UF centroids due to the compound effect of multiple driving factors. However,
the centroids of SUHI hot spots between 2001 and 2015 were all situated southwest of the
UF centroids (continuous low/middle-rise residential quarters, west Tokyo). The centroid
of SUHI hot spots moved southeast over a distance of 4636 m from 2001 to 2006. During
2006–2013, it shifted toward the northeast, moving about 8711 m. It then returned to the
southwest, moving 6523 m between 2013 and 2015.

The different levels of SUHII-weighted SDEs in 2001, 2006, 2013, and 2015 were
applied to reflect the spatiotemporal orientation, evolution, and trend of the urban thermal
environment in TMA at the different phases, as shown in Figure 8. The specific parameters
of SDEs are provided in Table A1 of Appendix A. The SDE analysis suggests that the
spatial distribution of SUHI hot spots had apparent orientational effects over the whole
research period.

Figure 8. Centroid trajectories and moving directions of SUHI hot spots and urban areas in TMA.

3.3. Spatial Relationships of SUHII and Land Cover/Use

The VIF values of auxiliary variables are estimated at a threshold of less than 7.5
(Table 4), proving no multicollinearity among auxiliary variables. Ultimately, the SUHI
formation in TMA was evaluated and modeled based on the GWR model by the explanatory
variables of the CONTAG, elevation, population, UFP, and FP models. The result and
diagnostic parameters are outlined in Table 5. The validity of global OLS and local GWR
models was judged by adjusted R2, AICc, and MI of the standardized residual value
(StdResid). For each research period, the global OLS model assessed the statistically
significant relationship between SUHII and all determinants (joint F and Wald statistic ρ <
2.2 × 10−16). In TMA, the overall adjusted goodness-of-fit of the global OLS model was
0.65 (2001), 0.62 (2006), 0.84 (2013), and 0.72 (2015). The time sequence OLS model showed
the same tendency in the four research stages. Among all determinants, the coefficients
of CONTAG, population, and UFP were positively correlated and elevation and FP were
negatively related to SUHII. The estimated coefficients in the OLS model indicate that the



Remote Sens. 2021, 13, 610 15 of 26

increments of CONTAG, population, and proportion of urban artificial coverage in TMA
can facilitate the intensification of SUHI. In contrast, terrain and greenbelts can restrict and
alleviate SUHI.

The modified coefficient of determination (R2) values for GWR models were all more
than 0.9 (0.9082 in 2001, 0.9083 in 2006, 0.9322 in 2013, and 0.9132 in 2015). Compared to the
OLS model, the MI of StdResid in the GWR model more closely approaches zero, indicating
that the GWR model can provide better specifications of the spatial relationship between
SUHII and its influencing variables than the conventional OLS model. The estimated
F-values of GWR improvement by ANOVA also mirror a significant boost in simulating
SUHII with the local GWR model. On account of spatially sensitive geographical variables,
the GWR model enables the model parameters to spatially vary at a local scale, showing
that corresponding spatial determinants have a non-stationary spatial effect on the SUHI
phenomenon.

Table 4. Summary of ordinary least squares (OLS) and geographically weighted regression (GWR)
coefficients. SE, standard error; VIF, variance inflation factor; CONTAG, contagion index; UFP, urban
fabric area; FP, forest proportion.

Variable Signif.
OLS GWR

Coefficient SE t VIF Mean
Coefficient

Std. dev
Coefficient

2001

Intercept *** −2.200 0.039 −56.795 −1.418 1.983
CONTAG *** 0.042 0.002 23.191 1.202 0.009 0.034
Elevation . −2.154 0.716 −3.010 1.009 −1.095 4.237
Population *** 0.019 0.001 17.605 3.320 0.068 0.097

UFP *** 3.597 0.081 44.420 3.311 2.055 1.236
FP *** −3.028 0.095 −31.972 1.178 −3.030 −3.573

2006

Intercept *** −2.689 0.042 −63.446 −1.510 2.428
CONTAG *** 0.055 0.002 28.557 1.216 0.016 0.039
Elevation −2.245 0.770 −2.914 1.009 −0.396 5.130
Population ** 0.015 0.001 14.442 3.041 0.051 0.072

UFP *** 4.043 0.083 48.612 3.022 2.414 1.601
FP *** −2.158 0.105 −20.628 1.184 −2.457 3.354

2013

Intercept *** −3.796 0.035 −107.340 −2.801 1.605
CONTAG *** 0.034 0.001 22.936 1.253 0.008 0.029
Elevation −1.235 0.590 −2.092 1.011 −0.148 3.805
Population *** 0.030 0.001 42.321 2.635 0.068 0.066

UFP *** 5.571 0.058 96.675 2.523 3.793 1.521
FP *** −1.267 0.083 −15.351 1.201 −0.819 2.412

2015

Intercept *** −3.687 0.040 −91.403 −2.023 2.061
CONTAG *** 0.060 0.002 36.415 1.253 0.017 0.036
Elevation ** −2.512 0.655 −3.835 1.010 −0.781 3.332
Population *** 0.017 0.001 22.201 2.560 0.039 0.046

UFP *** 4.962 0.064 77.940 2.452 3.080 1.853
FP *** −0.393 0.092 −4.268 1.202 −0.832 3.089

Note: Significance level: ‘***’ 99.9% significant; ‘**’ 99% significant; ‘*’ 95% significant; ‘.’ 90% significant; ‘(space)’
not significant.
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Table 5. Results and diagnostics of OLS and GWR analysis. AICc, corrected Akaike information criterion.

Diagnostics

2001 2006 2013 2015

OLS

AICc 30,707.0348 31,876.9032 27,633.9224 29,298.5158
R-squared 0.6527 0.6215 0.8479 0.7284

Adjusted R-squared 0.6524 0.6213 0.8478 0.7282
Sigma2 2.8064 3.2524 1.9051 2.3499

Moran’s I (MI) 0.7563 *** 0.7531 *** 0.5881 *** 0.6539 ***

GWR

Bandwidth 7865.0869 7927.2010 9178.8466 9324.3980
Residual squares 5654.6935 6006.6736 6529.5922 5784.9793
Effective Number 304.8643 301.9406 235.4162 229.2992

AICc 20,265.3305 20,739.8789 21,305.8567 20,336.6583
R-squared 0.9117 0.9118 0.9342 0.9157

Adjusted R-squared 0.9082 0.9083 0.9322 0.9132
Sigma2 0.8610 0.8872 0.9210 0.8666

Moran’s I (MI) 0.3316 *** 0.3532 *** 0.3417 *** 0.3930 ***
F of GWR Improvement 8.0804 *** 7.0857 *** 5.1831 *** 7.3013 ***

Note: Significance level: ‘***’ 99.9% significant.

The localized spatial interconnection and differentiation between SUHII and underly-
ing biophysical determinants in TMA from 2001 to 2015 are shown in Figure 9. The spatial
variance of local estimates in 2013 was more distinct compared to other years. There were
certain similarities in the spatial patterns of local coefficients in 2001, 2006, and 2015. A
mix of positive and negative relationships between SUHI and CONTAG, varying over
space, was identified. The spatial variance of CONTAG local coefficients from 2001 to
2015 primarily occurred in suburban settlements. In 2006 and 2013, elevation had an
insignificant influence (ρ > 0.05) on the SUHI effect in TMA. Both positive and negative
associations between SUHI and elevation were observed at a local scale from 2001 to 2015.
Negative associations appeared in most areas, whereas positive relations were recognized
in only some locations, such as Tokyo Bay shoreline and Ibaraki’s bare land areas. Human
activities are centered in the urban–suburban area, and the variations of local relationships
between SUHI and population between 2001 and 2015 were mainly seen in the urban/IS
area. The mean coefficients of the population from 2001 to 2015 are 0.034 (2001), 0.026
(2006), 0.046 (2013), and 0.025 (2015).

The UFP has a significant positive effect on SUHII regardless of scale. We observed
that the influence of UFP was more prevalent than that of other explanatory variables.
The positive relationship constantly dominated the research region in terms of the UFP
explanatory variable. However, the spatial relationship between SUHI and UFP was
more intense in 2013 than in other years in which the area with higher coefficients (>2.5)
significantly expanded. In the UF area from 2001 to 2015, the value of the mean UFP
coefficient drastically increased from 2.33 to 4.11. However, the value peaked in 2013 and
then dropped to 3.15 in 2015. Overall, the proportion of forest negatively correlated with
SUHII between 2001 and 2015. The localized spatial relationship between SUHI and FP
was noticeably diminished since 2001. The areas with high negative association had shrunk.
In forest land, the values of mean FP coefficients varied in the range of −3.09 to −2.23. The
peak of FP influence was in 2001, and the valley was in 2013.
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Figure 9. Spatiotemporal variations of estimated local coefficients derived from GWR models: (a) intercept, (b) CONTAG,
(c) elevation, (d) population coefficient, (e) proportion of urban fabric, and (f) proportion of forest.

Interpreting the spatial relationship between SUHI magnitude in TMA and relevant
exploratory variables using the GWR model, we can determine that there were many
differences and linkages over time. The spatiotemporal variations of local R2 (Figure
10) mirror the spatial heterogeneity between SUHI and its exploratory variables over
time. High values of local goodness-of-fit are measured in the region along the Tokyo Bay
shoreline, while low values are concentrated in densely built-up areas or areas with IS
coverage, such as downtown urban settlements. In addition, forces driving the formation
of thermal differentiation in TMA were not static but varied from time to time as the urban
environment and developments evolved. The spatially clustered distribution of StdResid
derived from OLS and GWR models was identified (Figure 10) and verified by the MI
index. The spatial aggregation patterns of StdResid in the conventional OLS model are
more pronounced and discernable than in the local GWR model. The performance of fit
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between predicted and observed SUHII exceeds 86%. This indicates that SUHI formation in
TMA during 2001–2015 can be simulated and investigated by these five auxiliary variables.
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4. Discussion
4.1. Land Use Policies and SUHI Magnitude

We clarified the spatial and temporal disparities and variations in the SUHI pattern of
TMA between 2001 and 2015. The analysis showed that certain biophysical (proportion
of urban fabric, forest ratio, etc.) and social (population) characteristics of TMA’s urban
environment favored the SUHI phenomenon. Spatial differentiation of SUHI formation
and configuration by local non-stationarity GWR modeling has profound implications for
urban comfort and sustainability in TMA.

Manley [84,85] proposed the term UHI and elaborated on the impacts of urban de-
velopment processes on London’s climate system under the hypothesis of well-defined
utilization of urban land. Numerous studies exemplified the relationship between urban
land utilization, urban forms, and thermal anomalies [10,31]. As embodied in the previous
studies, urban land utilization should be a dominant driving force [8,31,86]. Thus, relevant
policies and plans are significantly bound up with SUHI formation and configuration.
In the previous analysis, urban thermal gradients between UF and non-UF categories in
TMA were examined by a joint analysis of ESA-CCI land cover/use products and Landsat-
retrieved LST maps. Different from the results of classically defined SUHI investigations,
the effects of SUHI in Tokyo were intensively clustered in residential and redevelopment



Remote Sens. 2021, 13, 610 19 of 26

areas, rather than in the central business district (CBD) (Figure 5). Hirano et al. [87] and
Tsunematsu et al. [46,47] assessed the impact of UHI on Tokyo from the perspective of
urban energy. They demonstrated that the high-density residential areas presented a severe
heat energy agglomeration phenomenon, in agreement with our results. As in TMA, in
several Asian megacities (e.g., Hong Kong, Guangzhou, Shanghai, Singapore) [43,86,88–91],
the maximum SUHI magnitude was not detected in downtown or central commercial areas
in recent years. The peak of diurnal thermal anomalies between urban and rural areas
frequently emerged in high-density residential or industrial regions of these megacities. To
cope with the urban thermal crisis, it is urgent to manage the thermal cores in the urban
area of TMA.

The specific policy areas of development planning in TMA were designated for the
upgrading and coordinating of regional development based on the National Capital Region
Development Plan (https://www.toshiseibi.metro.tokyo.lg.jp/eng/) [92], as shown in
Figure 11a. The official planning policies for the development of TMA resulted in a gradient
urban–suburban–rural pattern in terms of urban infrastructure and settlement distribution.
There are various types of urban land utilization in the built-up areas (BAs), specifically
the TMA city proper, oriented for maintaining and improving the urban functions of TMA
for socioeconomic activities, industrial manufacturing practices, and modern residential
quarters. The mean SUHII for the BA of TMA increased from 3.97 ◦C in 2001 to 4.78 ◦C in
2015, and the peak value was 6.91 ◦C in 2013. In the BA of Tokyo, regions with large-scale
residential quarters experienced severe SUHI impact between 2001 and 2015, involving
Shinagawa, Ota, Setagaya, Suginami, Nakano, etc. Conversely, the degree of SUHI was
not intense or strong in Tokyo’s downtown, including Chuo, Shibuya, Shinjuku, Koto,
Chiyoda, etc.
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It is worth noting that the heat island magnitude of compact high-rise/middle-rise
residential areas was less than that of low-rise areas in TMA (Figure 11b). Solar radiance
was partially obstructed by tall buildings, even skyscrapers, which was related to the loss of
surface temperature. This phenomenon implies that urban morphology and geometry affect
the urban thermal field. In addition, the investment in sustainable infrastructure and green-
landscaped buildings has also contributed to relieving the high temperature of downtown
TMA [27,93]. Analogously, Tsunematsu et al. [47] described the responses of different urban
surfaces to thermal infrared (TIR) energy in downtown Tokyo at 2 m spatial resolution,
confirming that the magnitude of heat islands in areas with commercial/office utilization
was lower than in areas with compact residential buildings. Moreover, the intense SUHI
effect did not occur frequently in the coastal regions of TMA. This phenomenon was
difficult to explain using the spatial pattern of land cover/use and/or population shifts. In
reality, the regional pattern and magnitude of SUHI in TMA probably varied due to the
effects of land–sea breezes. That was confirmed by a couple of studies [48,94–96]. TMA is
situated at the border between land and ocean, in which the thermal balance mechanism is
highly climate-sensitive and unavoidably influenced by the land–sea breeze system.

Based on Figures 7 and 8, we found that the effect of SUHI in 2006 was relieved
compared to 2001, and the magnitude in 2015 was less than in 2013. The centroid trajectories
of thermal island cores in TMA were different from those of urban development. The
inconsistency of change patterns of SUHI and the centroid trajectories of the UF areas
in TMA between 2001 and 2015 might have resulted from the influence of atmospheric
conditions, especially wind direction. Meteorological conditions probably substantially
affect the accuracy of profiling the thermal environment [48]. According to the diurnal
(09:00–18:00, JST) observation data provided by JMA, the local prevailing wind direction in
2001 (9/24), 2006 (10/16), and 2013 (9/17) was from the north-northwest, whereas in 2015
(10/9), it was from the south. Consequently, this impacted and biased the movements of
SUHI barycenters in TMA.

Green spaces and water bodies have a definitive role in delivering cooling effects.
Lemus-Canovas et al. [95] reported that the temperature of continuous urban fabric areas
in the Barcelona Metropolitan Area was detected up to 2.5 ◦C higher than the green urban
areas. In the context of Bangkok, Jakarta, and Manila, urban green spaces registered temper-
atures approximately 3 ◦C lower than impervious surface areas [33]. The negative daytime
thermal intensity in suburban green zone preservation areas (SGZPAs) occurred between
2001 and 2015 due to the presence of urban greenery and open green landscapes. Large
bodies of water (e.g., Tokyo Bay) have a notable influence on TMA’s thermal environment
as well, evidenced by their massive contribution to cold spots. Within the complicated
urban system in TMA, such areas play a crucial role in balancing the urban surface energy
system, fostering urban comfort with well-laid-out green spaces and water areas, in agree-
ment with our results. Similar green areas and water spaces have also been developed in
other megacities (e.g., Barcelona, Bangkok, Seoul, Hong Kong, etc.) [86,95–98].

Based on the results of spatial regression modeling, we confirmed that compound
effects from multiple driving factors influenced SUHI magnitude in TMA. Observing the
spatiotemporal variations of model residuals, we noticed that overprediction of SUHI
magnitude was mostly generated in the agricultural and mixed lands of Saitama, Ibaraki,
and Chiba. In contrast, underprediction of thermal anomalies consistently occurred in
TMA’s downtown. This indicates that investigations of the SUHI effect in the downtown
area should consider more potential driving factors due to its complexity. The ongoing
vertical and horizontal urbanization of TMA [97,98] cannot be neglected in coordinating the
urban environment. Thus, we plan to collect more parameters of TMA’s urban environment
(e.g., urban volume, sky view factor) to study and model the geographic processes of the
complicated SUHI phenomenon with more advanced models and algorithms.

In the future, we expect to explore the interannual, seasonal, and diurnal thermal
trends of TMA, fusing multisensor and multitemporal data. For example, satellite TIR
images should be combined with synchronous data from microwave radiometer measure-
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ments and in situ observations to yield more reliable resultants. More detailed features
of TMA’s urban biophysical environment using local climate zones or unmanned aerial
vehicles (UAVs) should be considered in further investigations.

4.2. Toward a Livable Urban Environment

In this study, we explored the geographic mechanism and process between land
use/cover and the magnitude of the urban thermal effect in the urban aggregation of
TMA based on spatial statistical analysis. The mechanism of SUHI formation in TMA
is extremely complicated, influenced by more than the land cover/use composition and
configuration. Nevertheless, we can partially study and interpret the confounding effects
of SUHI using combinations of different variables. The detailed differentiation of whether
the spatial mechanisms of heat islands in TMA were influenced by underlying physical
factors was based on both global and local modeling. This can provide sufficient evidence
for ameliorating the intensive thermal effect. Spatially, the geographic process of the
SUHI effect in TMA manifested high heterogeneity according to the non-stationarity
GWR modeling framework. Since the values of SUHII significantly vary over space,
the thermal impact on TMA is context-sensitive and can be locally assessed based on
spatial determinants from neighborhoods. That is mirrored in need for localized landscape
planning and site-specific policy design to minimize the SUHI phenomenon. There are
favorable evidence and references regarding the use of localized policy design to control
the formation of SUHI across diverse cities around the world, such as Brisbane [41],
Hangzhou [42], Las Vegas [77], Texas [76], and Ljutomer [74].

Furthermore, this study confirmed that SUHI barycenters and hotspot areas were
detected in compact low-rise residential quarters through spatial aggregation analysis and
spatial centroid movement. Tokyo is dominated by a large ratio of impervious surfaces
and compact buildings. Due to scarce land assets and fierce competition for land resource
development, it is hard to put into effect urban greening policies in severe thermal spots.
In addition, it has been acknowledged that in Tokyo Metropolis there was a deteriorating
trend in urban greenery; the area of emerging green coverage varied from 31,535 m2 in
2001 to 58,227 m2 in 2006, then went down to 33,234 m2 in 2013 and 26,444 m2 in 2015 (data
from Program of Creating Urban Green Spaces, Bureau of Environment, TMG) [17,20].
Impervious artificial landscapes and green spaces are dominant components in the urban
setting. Thus, sustainable infrastructure and green retrofit, as the most appropriate and
practical measures, should be increased to mitigate clustered SUHI.

We expect that local authorities in TMA could reinforce urban climate responses and
management by adopting a group of mitigating measures, including expanding urban
forests along the highways and in urban parks; cultivating and maintaining green corridors
surrounding rivers, lakes, or ponds; and promoting small patches of green landscapes
neighboring compact residences.

Japanese coastal megacities, such as Sendai and Fukuoka, have also built livable
urban environments by adopting urban afforestation strategies [25,99]. In addition, the
construction and enhancement of urban ventilation corridors have become important
in UHI alleviation as well. The city temperature in dense IS areas can be decreased by
enhancing the ventilation cooling effects and controlling the number of green spaces and
buildings in SUHI hot spots. Asian coastal megacities such as Hong Kong, Shanghai, and
Singapore have also implemented similar countermeasures for SUHI abatement [86,100].

5. Conclusions

In this study, we targeted the TMA as a crucial case study to evaluate the spatiotem-
poral response of land cover/use on surface temperature. This study’s distinctiveness lies
chiefly in its consideration of neighboring plans and localized landscape design on surface
temperature in the metropolitan area of Tokyo over time and space based on a multitude
of driving forces. In addition, the occurrence of SUHI depends on the compound effects
of multiple drivers. Forces with different thermal impact magnitudes are not static but
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spatiotemporally varied, relying on the local geographical setting and urban development
process. Hence, this study highlights the following:

(1) The uniqueness and complexity of the SUHI effect in TMA: TMA’s thermal envi-
ronment profile showed an overall upward trend of LST and SUHII between 2001 and 2015.
Based on the SUHI aggregation pattern, TMA was recognized as an area with multiple
thermal cores. Dense thermal islands occurred in the compact residential quarters and
redevelopment/renovation areas, rather than in downtown (CBD). The distribution of tall
buildings shielding solar radiation and the contributions of water bodies and sea breezes
might be two reasons for this phenomenon;

(2) The identification of spatiotemporal interconnections between land cover/use and
thermal environment based on global and local regression modeling: Land cover/use
composition, landscape configuration, terrain, population density, and afforestation ratios
have altered the balance of the urban thermal-energy system in TMA. Synergistic use of
OLS (global) and GWR (local) models could effectively detect potential influencing factors
and accordingly propose entire/partial SUHI mitigation strategies.

Overall, in order to create a sustainable and livable urban environment, local authori-
ties in TMA should pay attention to offsetting the magnitude of SUHI cluster spots and
carefully controlling the formation of SUHIs in non-significant areas. We suggest that urban
afforestation be fine-tuned based on partitioned or location-specific landscape design by
incorporating the green measures adopted by local communities and the private sector.
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Appendix A

Table A1. SDE parameters of SUHI hot spots from 2001 to 2015.

Serial no.
(year)

Centroid_X
(Longitude ◦)

Centroid_Y
(Latitude ◦) Long Axis (m) Short Axis (m) Long Axis/Short Axis Rotation (◦)

2001 139.54 35.68 29,227.03 18,516.53 1.58 23.73
2006 139.55 35.64 30,823.80 16,857.33 1.83 24.67
2013 139.64 35.68 28,311.34 19,289.65 1.47 43.86
2015 139.57 35.67 27,584.21 20,305.18 1.36 16.44
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