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Abstract: Shipborne gravity can be used to refine altimeter-derived gravity whose accuracy is low
in shallow waters and areas with complex submarine topography. As altimeter-derived gravity
only within a small radius around the shipborne data can be corrected by traditional methods,
a new method based on multi-layer perceptron (MLP) neural network is proposed to refine the
altimeter-derived gravity. Input variables of MLP include the positional information at observation
points and geophysical information (from our own South China Sea gravity anomaly model (SCSGA)
V1.0 and bathymetry model ETOPO1) at grid points around observation points. Output variables
of MLP are the refined residual gravity anomalies at observation points. Training shipborne data
are classified into four cases to train four MLP models, which are used to predict the refined gravity
anomaly model SCSGA V1.1. Then all of the training shipborne data are used for training an MLP
model to predict the refined gravity anomaly model SCSGA V1.2. Assessed by testing shipborne
data, the accuracy of SCSGA V1.2 is 0.14 mGal higher than that of SCSGA V1.0, and similar to that of
SCSGA V1.1. Compared with the original gravity anomaly model (SCSGA V1.0), the accuracy of
the refined gravity anomaly model (SCSGA V1.2) by MLP is improved by 4.4% in areas where the
training data are concentrated, and also improved by 2.2% in other areas. Therefore, the method of
MLP can be used to refine the altimeter-derived gravity model by shipborne gravity, overcoming the
problem of limited correction radius for traditional methods.

Keywords: altimeter-derived gravity; shipborne gravity; multi-layer perceptron; South China Sea

1. Introduction

Precise ocean gravity models play an important role in geodetic and geophysical fields
such as studying the Earth’s shape [1], interpreting lithospheric structure [2,3], exploiting
marine resources [4], exploring space and improving aviation [5,6].

Abundant altimetric data have been collected since the 1970s and are homogenous
over the oceans. Consequently, altimetric data play a major role in determining marine
gravity models [7,8]. The global precision of gravity anomalies derived from multiple
altimetry satellites whose ground track interval is about 2.5 km is 1~2 mGal (1 mGal is equal
to 10−5 m/s2) [8,9]. Even so, the altimetry waveforms can be contaminated by land and
reefs, so the accuracy of altimeter-derived gravity decreases with the increasing proximity
to the coastline [10,11]. The standard deviation (STD) of altimeter-measured sea surface
heights increases with decreasing water depth [10]. Meanwhile, water depth in coastal
areas is shallow, so the precision of altimeter-derived gravity is low in shallow waters.
Gravity anomalies are related to submarine topographic undulation and crustal density
variations [12–14]. Gravity anomalies change dramatically in areas with large topographic
undulation. As gravity anomalies are derived from altimetric data in a calculation windows
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(tens of kilometers), the precision of altimeter-derived gravity is lower in areas with notable
submarine topography [15–17]. The precision of modern shipborne gravity with higher
resolution is approximately 1~3 mGal [18]. Moreover, coastlines and submarine topography
have less effects on the accuracy of shipborne gravity than altimeter-derived gravity.

Altimetric data and shipborne gravity are complementary sources of ocean gravity
models [19]. First, altimetric data have the global coverage, and consequently supply
gravity information in areas where there are few shipborne data. Second, shipborne gravity
data are abundant in several regions of tectonic interest and contain a wealth of short-
wavelength information [20]. Therefore, shipborne gravity can be used to improve the
resolution of the marine gravity model and the precision of altimeter-derived gravity in
shallow waters and areas with complex submarine topography.

There are two common methods to determine marine gravity from altimetric data
and shipborne gravity. One is to directly calculate gravity anomalies by using shipborne
gravity and altimetric data. The methods of least-squares collocation [21,22] and radial
basis functions [23] are commonly applied to derive marine gravity, in which covariance
matrices for shipborne gravity and altimetric data should be constructed. The precise
covariance matrices are hard to be evaluated. The other is to refine altimeter-derived
gravity anomalies by shipborne data based on the method of least-squares collocation [15].
The above methods are mainly based on the spatial relationship between shipborne and
altimeter-derived data. Hence, compared with altimeter-derived gravity anomalies, the
accuracy of gravity anomalies determined from shipborne and altimetric data is improved
only in a small radius around shipborne observation points. Taking sparse and uneven
distribution of shipborne data into account, a new method should be proposed to expand
the correction area for altimeter-derived gravity models.

Machine learning is the subfield of computer science, giving computers the ability
to learn the mapping from inputs to outputs without explicitly programming [24]. An
advanced type of machine learning architecture employed by neural networks is deep
learning, whose intent is to discover more abstract features in the higher levels of the
representation. Therefore, the various features in data can be recognized from a small data
set [25,26]. Multi-layer perceptron (MLP) neural network, a typical feedforward neural
network, is widely applied to study fields of geology [27], meteorology [28,29] and energy
science [30].

The South China Sea (SCS), the largest and deepest semi-enclosed sea area of China
seas, has winding coastlines, abundant islands and complex submarine topography [31,32].
Hence, the SCS, covering 105◦ E–125◦ E and 0◦ N–30◦ N, is selected as the study region. As
altimeter-derived gravity anomalies are related to submarine topography and its slopes, a
method based on MLP neural network is proposed to improve the accuracy of altimeter-
derived gravity by using shipborne data. The modern shipborne data in shallow waters
and areas with large submarine topography slopes are used to train the relationship model
among positions, altimeter-derived gravity anomalies, bathymetry, submarine topography
slopes and shipborne gravity anomalies. Consequently, the model can be used to refine
altimeter-derived gravity anomalies in shallow waters and areas with large submarine
topography slopes.

Research data and methods are presented in Section 2. In Section 2.1, the research
data are introduced, including the altimetric gravity, shipborne gravity and other data.
The accuracy of shipborne and altimeter-derived gravity is also evaluated. In Section 2.2,
research methods about MLP and the structure of MLP are represented in detail. MLP
models are built by training data in Section 3. Moreover, refined gravity anomalies at grid
points in shallow waters and areas with large submarine topography slopes are predicted
by the MLP models, and validated by testing data. The roles of input variables of MLP in
refining altimeter-derived gravity are analyzed in Section 3.3. In Section 4, we discuss the
accuracy improvement of the gravity model in frequency domain. Finally, conclusions are
drawn in Section 5.



Remote Sens. 2021, 13, 607 3 of 17

2. Materials and Methods
2.1. Research Data
2.1.1. Reference Gravity Model and Topography Model

The remove-restore method is used to derive gravity from altimetric data and refine
the gravity model by using shipborne gravity. As the Earth Gravitational Field Model 2008
(EGM2008) is the globally recognized gravitational field [33,34], EGM2008 up to degree
2160 is selected as the reference gravity model.

ETOPO1 [35] is a 1 arc-minute global relief model of Earth’s surface that integrates
land topography and ocean bathymetry. ETOPO1 released by the National Oceanic and At-
mospheric Administration in 2008 is established from shoreline, bathymetric, topographic
and integrated bathymetric–topographic data. The data sets are obtained from several
agencies, including Scripps Institution of Oceanography, the US National Centers for En-
vironmental Information (NCEI), the Mediterranean Science Commission and the Japan
Oceanographic Data Center.

2.1.2. Shipborne Gravity

The shipborne gravity data available in the SCS are provided by NCEI and the Min-
istry of Natural Resources of P. R. China (MNR), as shown in Figure 1. Long wavelength
system errors for each cruise of shipborne gravity are corrected by a quadratic polynomial
regression [21]. Pointwise differences between the adjusted shipborne data and the refer-
ence gravity model are calculated, and the point with the difference greater than triple STD
of all the differences is discarded. The rejected rates for NCEI and MNR are approximately
2.2% and 0%, respectively. The STDs of crossover gravity discrepancies are 11.55 mGal and
6.07 mGal before and after the adjustment.
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The accuracy of shipborne gravity is mainly affected by that of navigation. Due to
the low accuracy of celestial navigation for shipborne gravity before 1967, the precision
of shipborne gravity is as low as tens of mGal [36]. With application of GPS in navigation
and positioning of shipborne observations, the accuracy of shipborne gravity has been im-
proved. The precision of modern shipborne gravity with high resolution is approximately
1~3 mGal [18]. Therefore, the shipborne data after the adjustment are divided into two
parts: data before 1990 and data since 1990.

The accuracy of the two parts is evaluated by using crossover gravity discrepancies,
which is 4.41 mGal and 3.93 mGal, respectively. There are no crossovers between MNR
cruises, so the crossover gravity discrepancies are determined from NCEI data which
mainly including data on two cruises of MW9006 and MW9007 measured in 1990. Data
on the two cruises account for 88.4% of NCEI data since 1990. The accuracy of MNR
data is higher than that of NCEI data [37], so the accuracy of shipborne data since 1990
is considered as 3.93 mGal. As submarine topography slopes have an influence on the
accuracy of shipborne gravity, STDs of shipborne data in areas with different submarine
slopes are calculated from crossover gravity discrepancies and listed in Table 1.

Table 1. Accuracy of shipborne data in different areas.

Submarine Topography Slope
(m/arcmin a)

Shipborne Data before 1990
(mGal)

Shipborne Data Since 1990
(mGal)

All 4.41 3.93
N > 50 or E > 50 b 4.55 4.16
N > 100 or E > 100 4.89 4.17
N > 150 or E > 150 5.10 4.38

a 1 m/arcmin is equal to 0.54 m/km. b N: meridian component E: prime vertical component.

2.1.3. Altimeter-Derived Gravity Anomaly Model

The altimetric gravity anomaly model around the South China Sea (SCSGA) V1.0 [37]
on a 1’ × 1’ grid is used in this study. The model is established from sea surface heights
(SSHs) of several geodetic missions (GMs) and exact repeat missions. GM data are from
ERS-1, Jason-1, Jason-2, HY-2A, CryoSat-2 and SARAL–AltiKa, as listed in Table 2 [37]. In
the area covering 114.5◦ E–116.5◦ E and 17.5◦ N–18.5◦ N, tracks of altimetric data used to
construct SCSGA V1.0 are shown in Figure 2.

First, mean dynamic topography is removed from SSHs to calculate along-track geoid
gradients. Deflections of the vertical are determined from along-track geoid gradients by
the least-squares collocation method, and then used to derive gravity anomalies by the
inverse Vening–Meinesz formula [38]. During the process, weights of geoid gradients from
the Ka-band altimeter and the Ku-band altimeter for the least-squares collocation method
are determined by different methods.

The accuracy of SCSGA V1.0 is 2.78 mGal in the SCS, which is slightly better than
recognized global marine gravity models [7,8] released by the Technical University of
Denmark and the Scripps Institution of Oceanography. The Philippine sea area with
winding coastlines, abundant islands and larger submarine topography slopes has the
lower gravity accuracy than other areas in the SCS. Therefore, SCSGA V1.0 is compared
with shipborne gravity anomalies since 1990 in shallow waters (<100 m) as listed in Table 3
and in deep waters (>100 m) with different submarine topography slopes as listed in
Table 4. As shallow areas are adjacent to land and islands, the results suggest that the
accuracy of altimeter-derived gravity anomalies is affected by land, islands and submarine
topography slopes.
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Table 2. Information on altimetric data of geodetic missions (GMs).

Satellite Period Inter-Track Distance at
Equator (km)

Sampling Interval along
Track (km)

ERS-1 94.04–95.03 7 6.6
Jason-1 12.05–13.06 7 5.8
Jason-2 17.07–19.02 7 5.8
HY-2A 16.03–18.07 15 6.5

SARAL–AltiKa 16.07–18.10 5 6.9
CryoSat-2 11.01–18.07 2.5 6.4
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Figure 2. Tracks of altimetric data used to determine altimetric gravity anomaly model around the
South China Sea (SCSGA) V1.0.

Table 3. Differences between SCSGA V1.0 and shipborne data since 1990 in shallow waters.

Bathymetry (m) 0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–100

RMS (mGal) 10.48 7.80 6.54 7.63 6.41 5.59 4.48 3.89
STD (mGal) 9.80 7.74 6.31 7.59 6.36 5.53 4.48 3.84

Table 4. Differences between SCSGA V1.0 and shipborne data since 1990 in deep waters with different
submarine topography slopes.

Slopes
(m/arcmin) All E > 50 or N > 50 E > 100 or N > 100 E > 150 or N > 150

RMS (mGal) 5.36 5.88 6.28 6.37
STD (mGal) 5.35 5.85 6.22 6.30

2.2. Methodology
2.2.1. Structure of MLP

As various features in data can be recognized by neural networks from a small data set,
a neural network can be applied in this study to improve the accuracy of altimeter-derived
gravity by using sparsely and unevenly distributed shipborne data. MLP neural network is
a typical feedforward artificial neural network, mapping a set of inputs to a set of desired
outputs [39]. As this study is essentially a regression problem of mapping several input
variables to an output variable, MLP is used in this research.

MLP, whose structure is shown in Figure 3, is composed of one input layer, one or
more hidden layers and one output layer [39–41]. The input layer is the holding site
for inputs, including several source nodes whose number is as same as that of input
variables. The output layer and hidden layers are composed of output variables and
neurons, respectively. Nodes in adjacent layers are connected, but nodes in the same layer
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are not connected. In this research, we select two hidden layers with 512 neurons in the
first layer and 256 neurons in the second layer.
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The output y of a neuron in hidden layers is calculated by [39]

y = f (Wx + b) (1)

where x is the input vector of the neuron. W and b represent the connection weight vector
and the bias vector, respectively. f (·) is the activation function for nonlinear calculation,
and is tanh in the regression problem. As this is a regression problem and outputs are
arbitrary, activation functions should not be used in the last layer [42]. Outputs in the
output layer can be obtained by

y = Wx + b (2)

While precision of altimeter-derived gravity anomalies is affected by water depth as
listed in Table 3, water depth has little effect on precision of shipborne gravity. The accuracy
of shipborne data since 1990 is 3.93 mGal, evaluated by crossover gravity discrepancies.
The STD of altimeter-derived gravity anomalies (mA) can be calculated from the STD of
differences (mA−S) between altimeter-derived and shipborne data by

mA =
√

m2
A−S −m2

s (3)

where mS is the STD of shipborne data. The differences between altimeter-derived and
shipborne gravity anomalies are listed in Table 3. As the accuracy of shipborne data since
1990 in shallow waters is 3.93 mGal, the accuracy of altimeter-derived gravity anomalies is
worse than that of shipborne data since 1990 when water depth is less than 50 m.
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Large submarine topography slopes have effects on accuracy of altimeter-derived and
shipborne gravity. As listed in Tables 2 and 4, the STD of altimeter-derived gravity is greater
than that of shipborne data when at least one of meridian and main vertical components of
the slope is greater than 100 m/arcmin. Therefore, the refined area is defined as the area
where the submarine topography slope is larger than 100 m/arcmin or the bathymetry is
smaller than 50 m. Shipborne gravity since 1990 can be used to correct altimeter-derived
gravity in the refined area.

Based on remove-restore method, residual gravity anomaly dgres at a point is ob-
tained by

dgres = dg− dgre f (4)

where dg represents the gravity anomaly, and dgre f is the gravity anomaly calculated from
EGM2008 (the reference gravity model).

Marine gravity anomalies depend on submarine topographic undulation and crustal
density variations. There is no exact density model, so bathymetry is only considered in
this paper. The submarine topography slope is the first derivative of submarine topography
with respect to distance, so slopes mainly include high-frequency signals of submarine
topography. Meanwhile, submarine topography slopes in an area also contain submarine
topography signals outside the area. Therefore, the input and output variables are selected
as shown in Figure 3. Input variables include the longitude and latitude of the obser-
vation point. Input variables also include altimeter-derived residual gravity anomalies,
bathymetry and submarine topography slopes at grid points in area of 6’ × 6’ around
observation points (in Figure 4). The submarine topography and its slopes are obtained
from ETOPO1. While observation points for training are shipborne points since 1990 in the
refined area, those for predicting are grid points in the refined area. The output variable is
the refined gravity anomaly at the observation point.
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2.2.2. Refined Area Classification

The refined area refers to the area where the submarine topography slope is larger than
100 m/arcmin or the bathymetry is smaller than 50 m. While shipborne gravity anomalies
used as the desired value of outputs for training the MLP are measured since 1990 in the
refined area, ship-borne data measured before 1990 in the refined area are selected as the
testing shipborne data. STD of differences between shipborne gravity anomalies since
1990 and SCSGA V1.0 is about 5.5 mGal. The shipborne data since 1990, which differs
less than 5.5 mGal from SCSGA V1.0, are used as training shipborne data to train MLP
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model. Shipborne data shown in Figure 1 for training and for testing are independent of
each other.

We can classify data in the refined area into seven categories, as listed in Table 5. In
the SCS, the sea area with a submarine topography slope greater than 100 m/arcmin and
water depth less than 50 m is very small. The SCS is divided into a 1’ × 1’ grid. There are
about 1.4 million grid points in the ocean. The number of grid points is only 1623 (about
0.1% of the total number) in areas where the submarine topography slope is larger than
100 m/arcmin and the bathymetry is smaller than 50 m. Thus, data in the areas where the
bathymetry is smaller than 50 m are defined as data in Case1.

Table 5. Classification.

Category Bathymetry
50 m

Submarine Topography Slope
Number of Samples Number of Predicted Grid PointsPrime Vertical

100 m/arcmin
Meridian

100 m/arcmin

Case1

< ≤ ≤

795 245,314
< > ≤
< ≤ >
< > >

Case2 ≥ > > 3431 52,692
Case3 ≥ > ≤ 7612 74,093
Case4 ≥ ≤ > 5260 76,225

2.2.3. Training and Predicting

As the structure of MLP neural network, input variables and output variables are
determined, we can train the MLP model by following steps.

First, input variables should be standardized to reduce the difference between values
of input variables. As a result that the shipborne data for training are not evenly distributed
in this study, values of input variables for training and predicting are standardized together
by removing the mean and scaling to unit variance.

Second, MLP neural network should be initialized, including randomly generating
initial values of connection weight vectors and bias vectors. The structure of MLP neural
network with batch size of 256 is constructed, as listed in Table 6. Loss function is mean
square error to evaluate the consistence between target values and desired values of outputs.
L2 regularization term with alpha of 0.01 is applied for preventing overfitting. Moreover,
weights are updated by using optimization algorithm of Adam [43] with the learning rate
of 10−4. Taking overfitting of training and observation errors of shipborne gravity into
account, the iteration threshold and maximum number of iterations should be determined
through testing, so that the determination coefficient R2 for training is approximately 0.7.
Therefore, the MLP models are established by the MLP training.

Table 6. Structure of MLP neural network.

Layer Variable Vector Size

Input layer
Input (256,146)

Output (256,146)

Hidden layer

1
Input (256,146)

Output (256,512)

2
Input (256,512)

Output (256,256)

Output layer
Input (256,256)

Output (256,1)
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Finally, corrected residual gravity anomalies at grid points can be predicted by the
MLP model from input variables. By restoring gravity anomalies of EGM2008, the new
gravity anomaly model at 1’ × 1’ grids can be determined.

3. Results
3.1. Refining the Gravity Model by Classification

Input variables of MLP contain altimeter-derived residual gravity anomalies,
bathymetry and submarine topography slopes at grid points in area of 6’ × 6’ around
observation points. The position information of observation points is also part of input
variable, as shown in Figure 3. Output variables of MLP are refined gravity anomalies at
observation points. Training data in different cases listed in Table 5 can be used to establish
the corresponding MLP model, respectively.

First, the structure of MPL neural network is constructed as described in Section 2.2.1.
The input variables include the position of the observation point and geophysical values
at grid points in area of 6’ × 6’ around the observation point. The refined residual grav-
ity anomalies at observation points are outputs. Second, using the training shipborne
data since 1990 in Cases1 to 4 as the outputs of MLP, four MLP models are established,
respectively. Then the four MLP models are respectively used to predict residual gravity
anomalies at grid points (in Figure 5) in Cases1 to 4. Finally, refined gravity anomalies
at grid points in the refined area are obtained from refined residual gravity anomalies by
restoring gravity anomalies of EGM2008. Moreover, gravity anomalies at grid points not in
the refined area are corresponding values of SCSGA V1.0. Therefore, the refined gravity
anomaly model named SCSGA V1.1 is established.
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Shipborne data measured before 1990 in the refined area are selected as testing ship-
borne data. The testing shipborne data are used to validate the new gravity anomaly
model, as listed in Table 7. Compared with the testing shipborne data, RMS of differences
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(difference RMS) for SCSGA V1.0 is 0.14 mGal larger than that for SCSGA V1.1. Moreover,
the mean of differences between SGSGA V1.1 and the testing shipborne data is closer to
0 mGal than that when replacing SGSGA V1.1 with SGSGA V1.0. The result suggests
that SCSGA V1.1 determined by MLP neural network has the higher precision in shallow
waters and areas with large submarine topography slopes, compared with SCSGA V1.0.

Table 7. Statistics of differences between gravity models and the testing shipborne data (in mGal).

Refined Area Case1 Case2 Case3 Case4

Number 99,048 11,343 24,222 30,815 32,668

V1.0-
NCEI

MEAN −0.59 −0.06 −0.77 −0.80 −0.44
STD 5.78 5.80 6.16 5.70 5.54
RMS 5.81 5.80 6.21 5.75 5.55

V1.1-
NCEI

MEAN −0.36 0.04 −0.58 −0.30 −0.40
STD 5.66 5.65 6.06 5.54 5.45
RMS 5.67 5.65 6.09 5.55 5.46

The difference RMS between SGSGA V1.1 and the testing shipborne data is respec-
tively compared with that when replacing SGSGA V1.1 with SGSGA V1.0 in Cases1 to 4.
The difference RMS decreases by 2.5% in Case1, 1.9% in Case2, 3.5% in Case3 and 1.6% in
Case4. The precision of SGSGA V1.1 is higher than that of SGSGA V1.0 in every case. These
results suggest that refining altimeter-derived gravity in the refined area from shipborne
gravity by MLP is reliable.

3.2. Refining the Gravity Model as a Whole

As submarine topography and its slopes are part of input variables, the mapping from
submarine topography and its slopes to outputs is taken into account in training MLP
neural network. Therefore, it can be inferred that we can obtain a good gravity anomaly
model without classification. All of training shipborne data are used to train an MLP model.
Then, the refined gravity anomaly model on a 1′ × 1′ grid (SCSGA V1.2) is determined by
the MLP model.

Gravity anomalies at grid points in the refined area are corrected, so SGSCS V1.2 is
compared with the testing shipborne data, as listed in Table 8. The difference RMS for
SGSCS V1.2 is 2.4% smaller than that for SGSCS V1.0, and the difference mean for the
former is closer to 0 mGal than that for the latter.

Table 8. Differences between refined gravity model and the testing shipborne data (in mGal).

Refined Area Case1 Case2 Case3 Case4

Number 99,048 11,343 24,222 30,815 32,668

V1.2-
NCEI

MEAN −0.40 −0.38 −0.55 −0.40 −0.30
STD 5.65 5.68 6.04 5.58 5.40
RMS 5.67 5.69 6.06 5.57 5.41

Compared with the testing shipborne data in Cases1 to 4, the difference RMS for
SGSCS V1.2 is 1.9%, 2.4%, 3.1% and 2.5% smaller than that for SGSCS V1.0, respectively.
The accuracy improvement in Case1 is the smallest due to the little number of training data
in the area. Similarly, the accuracy improvement in Case3 is the largest because of the large
number of training data in the area.

Validated by the testing shipborne data, SGSCS V1.2 has higher accuracy than
SGSCS V1.1 in Case2 and Case4, while the accuracy is opposite in Case1 and Case3.
The conclusion can be drawn that gravity anomaly models refined by one MLP model in all
cases and different MLP models in different cases have similar accuracy, which verifies the
inference we make at the beginning of Section 3.2. Therefore, for refining gravity models
based on neural networks, only one MLP model need to be established in the refined area,
and the region does not need to be classified according to input variables.
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3.3. Analysis of the Refined Gravity Anomaly Model

Considering that the distribution of training data may affect the accuracy of refined
gravity models, the research region is divided into two regions including Taiwan sea
area (Region A, covering 20◦ N~26◦ N and 118◦ E~125◦ E) and SCS area except Taiwan
area (Region B), as shown in Figure 1. The testing shipborne data are compared with
SGSCS V1.2 in different regions, as listed in Table 9. Validated by the testing shipborne
data, the accuracy of SGSCS V1.2 is 4.4% and 2.2% higher than that of SGSCS V1.0 in
Region A and Region B, respectively.

Table 9. Differences between SCSGAV1.2 and the testing shipborne data in different regions (in mGal).

Refined Area Case1 Case2 Case3 Case4

Region A

Number 7626 189 1682 2421 3334

V1.0-
NCEI

MEAN 0.14 −0.85 0.78 −0.44 0.28
STD 5.91 5.75 6.36 6.15 5.45
RMS 5.91 5.81 6.41 6.16 5.46

V1.2-
NCEI

MEAN 0.18 −1.50 0.70 −0.22 0.30
STD 5.65 5.49 6.03 5.95 5.18
RMS 5.65 5.69 6.07 5.95 5.19

Region B

Number 91,422 11,154 22,540 28,394 29,334

V1.0-
NCEI

MEAN −0.65 −0.05 −0.88 −0.83 −0.52
STD 5.76 5.80 6.13 5.65 5.54
RMS 5.80 5.80 6.19 5.71 5.56

V1.2-
NCEI

MEAN −0.45 −0.36 −0.65 −0.42 −0.36
STD 5.65 5.68 6.03 5.55 5.43
RMS 5.67 5.69 6.06 5.57 5.44

In Region A, difference RMS between SGSCS V1.2 and the testing shipborne data is
2.1%, 5.3%, 3.4% and 4.9% smaller than that when replacing SGSGA V1.2 with SGSGA
V1.0 in Cases1 to 4, respectively. In Region B, compared with the testing shipborne data,
difference RMS for SGSCS V1.2 is 1.9%, 2.1%, 2.5% and 2.2% smaller than that SGSCS V1.0
in Cases1 to 4, respectively. Compared with SCSGA V1.0, the accuracy improvement of
SCSGA V1.2 in Region A is greater than that in Region B, which can be attributed to the
denser distribution of the training shipborne data in Region A than in Region B as shown
in Figure 1. We can draw the conclusions that the accuracy improvement of refined gravity
models compared with altimeter-derived gravity models is related to the distribution of
training data. The accuracy improvement is more obviously in the region with a large
amount of training data than that in the region with few training data. Moreover, in the
region with few training data, the accuracy of refined gravity is also improved based on
MLP neural network compared with that of altimeter-derived gravity.

Whether the choice of input variables (bathymetry and submarine topography slopes)
of MLP neural network is appropriate needs to be discussed. First, bathymetry and subma-
rine topography slopes are removed from input variables of MLP, which are used to refine
altimeter-derived gravity anomalies to obtain the gravity anomaly model M1. Second, only
submarine topography slopes are removed from input variables of MLP, which are used
to establish the refined gravity anomaly model M2. Finally, the refined gravity anomaly
model M3 is determined by MLP whose input variables do not include bathymetry.

The testing shipborne data are used to evaluate the accuracy of M1, M2 and M3, as
listed in Table 10. The accuracy of M1, M2 and M3 is higher than that of SCSGA V1.0.
The result suggests that MLP neural network method is viable to refine altimeter-derived
gravity from shipborne data. However, the accuracy of M1, M2 and M3 is lower than that
of SCSGA V1.2, which is due to less input variables. M1 have the lowest precision, which
can be attributed to the fact that the MLP neural network used to obtain M1 have the least
input variables. These results suggest that bathymetry and submarine topography slopes
play important roles in refining altimeter-derived gravity anomalies.
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Table 10. RMS of differences between gravity models and the testing shipborne data (in mGal).

Gravity Model Refined Area Case1 Case2 Case3 Case4

SCSGA V1.0 5.81 5.80 6.21 5.75 5.55
SCSGA V1.2 5.67 5.69 6.06 5.57 5.41

M1 5.75 5.77 6.13 5.66 5.53
M2 5.71 5.73 6.08 5.64 5.49
M3 5.70 5.83 6.05 5.62 5.46

In Case1, where water depth is shallower than 50 m and most of topography slopes
are small, the accuracy of M3 is lower than that of other models. This result shows that
submarine topography slopes cannot be used to refine altimeter-derived gravity in shallow
waters alone without bathymetry. In Cases2 to 4, the accuracy of M3 is higher than that of
M1 and M2, suggesting that submarine topography slopes play a more important role than
bathymetry in refining altimeter-derived gravity in areas where submarine topography
slopes are large.

These results shows that the choice of input variables (bathymetry and submarine
topography slopes) of MLP neural network is appropriate.

Finally, SCSGA V1.2 and SCSGA V1.0 are compared, as shown in Figure 6. The
largest corrections locate in coastal areas and areas with many islands and reefs, which
can be attributed to the fact that land and reefs contaminate altimeter waveforms. The
differences are analyzed respectively in shallow waters with different bathymetry, as
listed in Table 11. The differences increase with the decrease of water depth, which
can be due to the reason that the accuracy of altimeter-derived gravity decreases as the
water depth decreases as listed in Table 3. Then differences between SCSGA V1.2 and
SCSGA V1.0 are analyzed in areas with different submarine topography slopes, as listed in
Table 11. The differences increase as submarine topography slopes increase, whose reason
is that submarine topography slopes have effects on the accuracy of altimeter-derived
and shipborne gravity as listed in Tables 1 and 4. In general, the results are consistent
with effects of water depth and submarine topography slopes on altimeter-derived gravity.
Therefore, the results further verify the reliability of refining altimeter-derived gravity from
shipborne data by using MLP.
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Table 11. Differences between SCSGA V1.2 and SCSGA V1.0 in different areas (in mGal).

Depth (m) MAX MIN MEAN STD RMS

0–10 17.55 −23.55 0.36 1.85 1.89
10–20 15.74 −15.43 0.40 1.64 1.69
20–30 19.25 −18.53 0.46 1.43 1.50
30–40 12.67 −14.42 0.40 1.25 1.31
40–50 13.80 −16.20 0.35 1.10 1.15

Slopes (m/arcmin) MAX MIN MEAN STD RMS

N > 100 or E > 100 20.05 −23.78 −0.18 2.01 2.02
N > 150 or E > 150 19.94 −23.78 −0.14 2.23 2.23
N > 200 or E > 200 17.52 −23.78 −0.11 2.44 2.44
N > 300 or E > 300 17.52 −21.98 −0.05 2.86 2.86

4. Discussion

In order to analyze the correction of altimeter-derived gravity models in frequency
domain by shipborne data, SCSGA V1.0 and SCSGA V1.2 are respectively compared with
shipborne data. As shipborne gravity provided by NCEI contains large noises that will
affect analysis in the frequency domain, a section of the shipborne gravity measured in
2005 provided by MNR with higher accuracy is selected, as shown in Figure 7. The sample
interval of the shipborne data is about 0.34 km, and there are no two consecutive missing
data in the data. Moreover, the shipborne data are located at the edge of the central basin
of the SCS, where slopes of submarine topography are large. According to ETOPO1 model
in the area, the deepest depth is about 4400 m, and the shallowest depth is about 1700 m.
As submarine topography slopes are greater than 100 m/arcmin along the shipborne track,
the gravity anomalies at the shipborne observation points interpolated by SCSGA V1.0 and
SCSGA V1.2 are different.
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The shipborne data are interpolated into an equally spaced sequence with an interval
of 0.34 km, and differences between the sequence and gravity anomaly models are calcu-
lated. The differences are analyzed by power spectral density (PSD) [44,45], as shown in
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Figure 8. The PSD of differences between shipborne data and SCSGA V1.0 is similar to
that between shipborne data and SCSGA V1.2 for wavelengths longer than 10 km. For
wavelengths shorter than 2.5 km, PSD of differences between SCSGA V1.0 and shipborne
data is divided by that between SCSGA V1.2 and shipborne data to obtain the PSD ration,
as shown in Figure 8. Most values of the PSD ratio are greater than 1. Therefore, the PSD
of differences between shipborne data and SCSGA V1.0 is larger than that when replac-
ing V1.0 with V1.2 for wavelengths shorter than 2.5 km, suggesting that the shipborne
data mainly improve the high frequency signal of the gravity model. The result can be
attributed to the following. Ground track interval at equator of altimetry satellites used to
derive SCSGA V1.0 is about 2.5 km [37,46], so gravity signals for wavelength shorter than
2.5 km are weak in SCSGA V1.0. Moreover, the resolution of shipborne gravity with small
sampling interval is greater than 1 km. Therefore, shipborne data can be used to improve
high frequency signals of altimeter-derived gravity models by MLP neural network.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 

. 

Figure 8. PSD of differences between shipborne data and gravity models. 

5. Conclusions 

Altimeter-derived gravity models are refined by shipborne data based on an MLP 

neural network in this paper. As gravity anomalies are related with spatial positions, in-

put variables include the longitude and latitude of observation points. As gravity anom-

alies are also related with submarine topography and its slopes, input variables include 

altimeter-derived residual gravity anomalies (from SCSGA 1.0), bathymetry (from 

ETOPO1) and submarine topography slopes (from ETOPO1) at grid points in an area of 

6’ × 6’ around the observation point. The refined residual gravity anomalies at observation 

points are output variables. For training the MLP model, shipborne observation points 

since 1990 in the refined area (where the submarine topography slope is larger than 100 

m/arcmin or the bathymetry is smaller than 50 m) are the observation points of MLP neu-

ral network, and shipborne gravity anomalies at observation points are desired outputs. 

Grid points in the refined area are the observation points of MLP neural network, when 

using MLP model to predict refined gravity anomaly models. 

Data are classified according to submarine topography and its slopes of the area 

where they are located. Training data in each case are respectively used to train the corre-

sponding MLP model. Refined residual gravity anomalies in each case are predicted by 

the corresponding MLP model to establish the refined gravity anomaly model SCSGA 

V1.1. Meanwhile, one MLP model is constructed from all of training data in the refined 

area, and used to predict refined residual gravity anomalies at grid points in the refined 

area to establish the model SCSGA V1.2. 

Shipborne gravity anomalies before 1990 in the refined area are taken as the testing 

shipborne data to evaluate the precision of gravity anomaly models. Validated by the test-

ing shipborne data, the accuracy of SCSGA V1.2 is 0.14 mGal higher than that of SCSGA 

V1.0 in the SCS. Compared with SCSGA V1.0, the accuracy of SCSGA V1.2 in Case1, 

Case2, Case4 and Case3 is improved, as the number of training data increases sequen-

tially. Compared with the testing shipborne data, the RMS difference for SCSGA V1.2 is 

0.26 mGal (4.4%) smaller than that for SCSGA V1.0 in Taiwan sea area where the distri-

bution of training data is dense. Meanwhile, in the SCS, except the Taiwan area, the accu-

racy improvement of SCSGA V1.2 is about 2.2% compared with SCSGA V1.0. The accu-

Figure 8. PSD of differences between shipborne data and gravity models.

5. Conclusions

Altimeter-derived gravity models are refined by shipborne data based on an MLP
neural network in this paper. As gravity anomalies are related with spatial positions, input
variables include the longitude and latitude of observation points. As gravity anomalies are
also related with submarine topography and its slopes, input variables include altimeter-
derived residual gravity anomalies (from SCSGA 1.0), bathymetry (from ETOPO1) and
submarine topography slopes (from ETOPO1) at grid points in an area of 6’ × 6’ around
the observation point. The refined residual gravity anomalies at observation points are
output variables. For training the MLP model, shipborne observation points since 1990 in
the refined area (where the submarine topography slope is larger than 100 m/arcmin or
the bathymetry is smaller than 50 m) are the observation points of MLP neural network,
and shipborne gravity anomalies at observation points are desired outputs. Grid points
in the refined area are the observation points of MLP neural network, when using MLP
model to predict refined gravity anomaly models.

Data are classified according to submarine topography and its slopes of the area
where they are located. Training data in each case are respectively used to train the
corresponding MLP model. Refined residual gravity anomalies in each case are predicted by
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the corresponding MLP model to establish the refined gravity anomaly model SCSGA V1.1.
Meanwhile, one MLP model is constructed from all of training data in the refined area,
and used to predict refined residual gravity anomalies at grid points in the refined area to
establish the model SCSGA V1.2.

Shipborne gravity anomalies before 1990 in the refined area are taken as the testing
shipborne data to evaluate the precision of gravity anomaly models. Validated by the
testing shipborne data, the accuracy of SCSGA V1.2 is 0.14 mGal higher than that of
SCSGA V1.0 in the SCS. Compared with SCSGA V1.0, the accuracy of SCSGA V1.2 in Case1,
Case2, Case4 and Case3 is improved, as the number of training data increases sequentially.
Compared with the testing shipborne data, the RMS difference for SCSGA V1.2 is 0.26 mGal
(4.4%) smaller than that for SCSGA V1.0 in Taiwan sea area where the distribution of
training data is dense. Meanwhile, in the SCS, except the Taiwan area, the accuracy
improvement of SCSGA V1.2 is about 2.2% compared with SCSGA V1.0. The accuracy of
SCSGA V1.1 is similar to that of SCSGA V1.2. Finally, PSD is used to analyze differences
between gravity anomaly models and shipborne data, which suggests that shipborne data
mainly improve signals of gravity models for wavelengths shorter than 2.5 km.

When using MLP neural network to correct altimeter-derived gravity model by ship-
borne data, both of the spatial position and submarine topography should be considered.
Therefore, the MLP neural network overcomes the problem that the traditional method can
only be used to correct gravity models in a limited radius around shipborne observation
points. Compared with the altimeter-derived gravity model, the refined gravity model not
only has a great accuracy improvement in areas where training data are concentrated, but
also has an accuracy improvement in other areas.
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