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Abstract: The spatiotemporal fusion technique has the advantages of generating time-series images
with high-spatial and high-temporal resolution from coarse-resolution to fine-resolution images. A
hybrid fusion method that integrates image blending (i.e., spatial and temporal adaptive reflectance
fusion model, STARFM) and super-resolution (i.e., very deep super resolution, VDSR) techniques for
the spatiotemporal fusion of 8 m Formosat-2 and 30 m Landsat-8 satellite images is proposed. Two
different fusion approaches, namely Blend-then-Super-Resolution and Super-Resolution (SR)-then-
Blend, were developed to improve the results of spatiotemporal fusion. The SR-then-Blend approach
performs SR before image blending. The SR refines the image resampling stage on generating
the same pixel-size of coarse- and fine-resolution images. The Blend-then-SR approach is aimed
at refining the spatial details after image blending. Several quality indices were used to analyze
the quality of the different fusion approaches. Experimental results showed that the performance
of the hybrid method is slightly better than the traditional approach. Images obtained using SR-
then-Blend are more similar to the real observed images compared with images acquired using
Blend-then-SR. The overall mean bias of SR-then-Blend was 4% lower than Blend-then-SR, and nearly
3% improvement for overall standard deviation in SR-B. The VDSR technique reduces the systematic
deviation in spectral band between Formosat-2 and Landsat-8 satellite images. The integration of
STARFM and the VDSR model is useful for improving the quality of spatiotemporal fusion.

Keywords: time-series satellite images; image fusion; deep learning; STARFM; VDSR

1. Introduction
1.1. Motivation

Time-series satellite images are the integration of multitemporal images over a region,
and they can be used to analyze spatial temporal variations of the Earth’s surface. Owing
to the availability of remote sensing open data, we have more data sources to construct
time-series satellite images. Examples of such data sources are time-series Landsat satellite
images provided by the National Aeronautics and Space Administration and time-series
Sentinel satellite images of the European Space Agency (Paris, France). Furthermore,
commercial satellites, such as satellite constellations of Planet Labs, can also provide high-
temporal-resolution time-series satellite images. The increase in the number of available
time-series satellite images has also led to the emergence of more diversified applications
for the images, such as vegetation phenology detection [1], water resource management [2],
rice crop estimation [3], land cover change detection [4], and regional air quality [5]. In
particular, time-series satellite image analysis plays an important role in the application of
satellite imagery.

Spatiotemporal fusion methodology has the capability to generate both high-spatial
and high-temporal resolution images by employing different sensors. It can improve our
ability and flexibility to construct time-series satellite images. As shown in Figure 1, the
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present study collected satellite images with low cloud cover, taken in 2014 and 2015
over Kaohsiung City, Taiwan. We calculated the normalized difference vegetation index
(NDVI) of the center pixel of the images (Figure 1a). We found that if we collected only
the time-series data of Landsat-8 (LS-8) NDVI (Figure 1b), there was only one cloud-free
dataset between days of year (DOYs) 100 and 200 in these two years, and the dataset
was insufficient to determine land cover changes. In fact, the agricultural monitoring
usually requires more dateset than city growth. Therefore, additional time-series data from
Formosat-2 (FS-2) NDVI (Figure 1c) were added to increase the number of datasets, which
led to the number of available datasets from DOYs 100 to 200 increasing to six (Figure 1d).
This example shows the importance of integrating different sensors to construct time-series
satellite images. However, these two sensors have different spatial resolutions (i.e., 30 m
for LS-8 and 8 m for FS-2) and hence, their images cannot be integrated directly. Therefore,
spatiotemporal image fusion is required to integrate the FS-2 and LS-8 images.

Figure 1. Time-series normalized difference vegetation index (NDVI) data for 2014 and 2015: (a) location of the image center
for NDVI calculation, (b) time-series Landsat-8 NDVI, (c) time-series Formosat-2 NDVI, and (d) combined time-series NDVI.

In recent years, deep learning has been widely used in the field of image processing.
It is a feature-learning method that combines many simple modules to approximate a high-
level complex system. With the combination of a large number of simple modules, very
complex functions can be learned [6] for modeling complex scenery. Li et al. [7] discussed
the fusion of infrared and visible images by using a convolutional neural network (CNN).
An advantage of CNNs is their ability to handle complex nonlinear mapping functions



Remote Sens. 2021, 13, 606 3 of 20

and feature extraction at different scales. The result [7] revealed that CNN shows better
performance in improving image quality in the image fusion process. Thus, CNNs have
high potential for use in spatiotemporal fusion technology for remote sensing images.
Most previous studies have discussed feature extraction from CNNs [8,9]. However,
relatively few studies have discussed CNN algorithms for the spatiotemporal fusion of
satellite images. Hence, the present study performed a detailed investigation of CNN-based
spatiotemporal fusion.

1.2. Previous Studies

Spatiotemporal fusion technology fuses images with high temporal and low spatial
resolutions and images with low temporal and high spatial resolutions to produce time-
series satellite imagery. An example is the spatiotemporal fusion of MODIS and Landsat
images using the spatial and temporal adaptive reflectance fusion model (STARFM) [10].
Furthermore, spatiotemporal fusion technology can be applied to combine images recorded
by satellites with similar spatial resolutions, such as the fusion of LS-8 and Sentinel-2
satellite images [11]. The advantage is that time-series satellite images with a consistent
spatial resolution can be generated from LS-8 and Sentinel-2 satellite images. Multisensor
image fusion simulates high-spatial-resolution time-series images for periods for which
only low-spatial-resolution images are available. This image fusion is a key technology
for generating time-series satellite images from images acquired by different sensors at
different times [12].

From the perspective of time-series data technique, spatiotemporal image fusion can
be classified into five categories: unmixing-based, weight-function-based, Bayesian-based,
learning-based, and hybrid methods [13,14].

The weight-function-based method has been widely used in image fusion applica-
tions [15]. Gao et al. [10] proposed the STARFM, which is the first and the most popular
weighted fusion model. It estimates the reflectance of a predicted image by weighing
temporal, spectral, and spatial information. It assumes that spatial and temporal changes in
a high-spatial-resolution image are the same as those in a low-spatial-resolution image, and
consequently, high-spatial-resolution images can be estimated from low-spatial-resolution
images. However, its basic assumption renders it unfit for heterogeneous regions. Many
improved fusion models have been proposed, such as spatial and temporal adaptive al-
gorithm for mapping reflectance change [16], enhanced STARFM (ESTARFM) [17], and
spatial and temporal nonlocal filter-based fusion model (STNLFFM) [15].

The learning-based method uses a machine learning algorithm to establish a non-
linear relationship between the observed and the estimated images. It predicts the high-
spatial-resolution image of an observed low-spatial-resolution image. While this method is
usually applied to image super-resolution (SR), it is also used for image fusion. Concepts
such as dictionary pair learning [18], sparse representation [19], artificial neural network
(ANN) [20], deep convolutional neural network [21], and nonlinear mapping CNN com-
bined with SR CNN [22] are applied to determine the nonlinear conversion relationship
between low-spatial- and high-spatial-resolution images.

A hybrid method involves the integration of two or more fusion methods. Examples of
such methods are flexible spatiotemporal data fusion [13], spatiotemporal remotely sensed
images and land cover map fusion model [23], combination of the spatial and temporal
reflectance unmixing model (STRUM) [24] with an unmixing-based and weight-function-
based method to fuse images, and the unmixing-based Bayesian model [25] integrated
with Bayesian-based and unmixing-based methods.

Deep learning is a technique based on a traditional ANN, and it involves the use of
multilayer networks to process complex scenery. It uses linear and nonlinear transforma-
tions in multilayers to automatically establish a relationship between input and output
data. A CNN [26] is a typical deep learning network architecture for image data. It has been
proven to be a useful model for performing a wide range of imaging and visual tasks [27].
The CNN technique can be applied to different image processing tasks, for example, image
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classification and identification, object detection [28,29], image noise reduction [30,31],
image resolution improvement [32,33], removal of compression artifacts [34], image color
fusion [7], and radar image simulation from optical image [35].

Song et al. [22] pointed out that the capabilities of CNNs originate from three factors:
(1) the deep network architecture of a CNN is effective in extracting large-scale image fea-
tures, (2) efficient and rapid training methods, such as the rectified linear unit (ReLU) [36],
batch normalization (BN) [37], and residual learning [38], that have been proposed, and
(3) the emergence and popularization of graphic processing units (GPU) dedicated to
graphics processing and with powerful parallel computing capability can help speed up
training. Zhang et al. [31] proposed a denoising CNN (DnCNN) in which a CNN is used
to reduce image noise. DnCNN accelerates the training process and improves image
noise removal capability through residual learning, BN, and ReLU. Their experimental
results indicated that the characteristics of a CNN deep network model may be useful for
effectively predicting and reducing image noise, and also for improving image quality.

1.3. Need for Further Study and Research Purpose

Image SR can be used to enhance the spatial resolution of images with high temporal
frequency but low spatial resolution [15]. Dong et al. [32] proposed super-resolution
CNN (SRCNN), in which deep learning is introduced in the image SR method. Kim
et al. [33] also presented a single-image SR method called very deep SR (VDSR). VDSR
also employed a CNN network, but compared with the SRCNN, the neural network of
VDSR is deeper and more information can be used to reconstruct the image. The most
significant difference between the SRCNN and VDSR is that the training model of the
SRCNN learns high-resolution images directly from low-resolution images, whereas the
training model of VDSR learns residual images between high- and low-resolution images.
Furthermore, to speed up training and the convergence rate, VDSR uses extremely high
learning rates; its initial learning rate is 104 times higher than that of the SRCNN since it
employs residual learning and adjustable gradient clipping. VDSR performs zero padding
before convolutions in the training process to maintain the size of feature maps and output
images constant; thus, pixels near the image boundary can be correctly predicted.

The spatiotemporal image fusion technique, which is a hybrid method, improves the
quality of fusion images by combining the advantages of different approaches. Gevaert and
García-Haro [24] proposed STRUM, which integrates unmixing-based and weight-function-
based methods. Currently, most of the hybrid methods combine unmixing-based and
weight-function-based methods. Drawing inspiration from this fact, this study proposes a
hybrid fusion method based on the integration of weight-function-based (i.e., STARFM)
and learning-based (i.e., VDSR) methods. The STARFM approach determines weights on
the basis of physical parameters (i.e., spectral, temporal, and spatial variations), while
VDSR learns weights of neutral networks from the data by itself. VDSR was originally
developed to improve the results of image interpolation [33]. In the preprocessing of
STARFM, image interpolation is a key process for interpolating a low-resolution image to
have the same grid size as a high-resolution image. Since VDSR is capable of improving the
results of image interpolation, there appears to be scope for developing a VDSR-assisted
STARFM for improving the quality of image fusion.

Jarihani et al. [39] compared the results of index-then-blend and blend-then-index
approaches for deriving the vegetation index by the image blending method. The former
approach produced higher accuracy. In a hybrid approach, such as one combining STARFM
and VDSR, the spatiotemporal image fusion performance should be evaluated for different
combinations of processes (i.e., SR-then-Blend and Blend-then-SR). In SR-then-Blend, the
role of VDSR is a preprocessing for STARFM. By contrast, in Blend-then-SR, the role of
VDSR is a post-processing of STARFM.
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1.4. Objectives

This study aims to determine the benefits of combining STARFM and deep learning
for spatiotemporal image fusion. We evaluated the performance of the hybrid method for
different combinations of processes. Four models that could be used for the spatiotemporal
fusion of remote sensing images were compared, namely, STARFM, VDSR, and two hybrid
models. The first hybrid model employs STARFM before VDSR (i.e., Blend-then-SR,
hereafter abbreviated B-SR), while the second hybrid model employs VDSR before STARFM
(i.e., SR-then-Blend, hereafter SR-B). In B-SR, the images are fused by a physical model
(i.e., STARFM) and the remaining residuals are then compensated by using an in-depth
learning approach (i.e., VDSR). In SR-B, the overall high-frequency details are injected
from high-resolution images to low-resolution images by VDSR, and then a physical model
(STARFM) is used for image fusion. The VDSR fine tunes the results of cubic interpolation
in the preprocessing of STARFM.

Most spatiotemporal image fusion uses images with fixed look-angle satellite, for
example, LS-5, LS-7, LS-8 and Sentinel-2 satellites. The FS-2 has the body-pointing capa-
bility of 30 degrees in roll and pitch directions, respectively. This body rotation capability
is able to collect off-nadir images and to improve the temporal resolution. This study
demonstrates the possibility of fusing the fixed look-angle Landsat-8 satellite and body-
rotation Formosat-2 satellite in spatiotemporal fusion. The input high- and low-resolution
satellite images were 8 m FS-2 and 30 m LS-8 images, while the output fused images
were time-series 8 m fused FS-2 images. Finally, the results were evaluated by performing
quantitative and qualitative analyses.

2. Material and Methods
2.1. Study Area and Dataset

The test area covered a rural area located in Kao-Hsiung in southwestern Taiwan. The
latitude and longitude of image center were 22◦52′42′ ′ N and 120◦29′55′ ′ W, respectively.
The area mainly comprised agricultural land, forest land, and building areas. Test images
were obtained by the FS-2 and LS-8 satellites, and this study collected 8 m multispectral
FS-2 images and 30 m multispectral LS-8 images from January 2014 to January 2016. The
total overlapping area between FS-2 and LS-8 images was about 68 km2. This study
employed blue, green, red, and NIR bands of FS-2 and LS-8 images for image fusion. The
product level of FS-2 used in this study was Level-2A with systematic correction, and the
product level of LS-8 was Level-1 Precision and Terrain (L1TP) with geometric correction.
The FS-2 and LS-8 images were precisely co-registered for fusion after preprocessing.
Table 1 compares the spectral bandwidth of the corresponding bands of FS-2 and LS-8.
FS-2 and LS-8 have corresponding bandwidths in the four bands, but the bandwidth of
LS-8 is slightly narrower than that of FS-2. During the period from January 2014 to January
2016, only five pairs of images were recorded on the same day (Table 2 and Figure 2). In
the training stage, four pairs of images were used as the training dataset, and one pair
of images was used as the independent verification dataset. The quantity and quality of
training data were key to the success of image fusion. Therefore, to effectively use image
data and generate a deep learning model, in the training stage, we excluded cloud areas
(from the LS-8 BQA band) in the training images.

Table 1. Comparison of the spectral bandwidth for FS-2 and LS-8 images.

Bands
FS-2 LS-8

Spectral Bands Bandwidth (µm) Spectral Bands Bandwidth (µm)

Blue Band 1 0.45~0.52 Band 2 0.45~0.51
Green Band 2 0.52~0.60 Band 3 0.53~0.59
Red Band 3 0.63~0.69 Band 4 0.64~0.67

Near Infrared Band 4 0.76~0.90 Band 5 0.85~0.88
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Table 2. Data acquisition date for training and independent verification.

Sensor Training Dataset Accuracy Analysis

FS-2, LS-8 2014/01/13, 2014/01/29
2015/02/01, 2016/01/26 2014/12/06

Figure 2. Image pairs of FS-2 and LS-8 images.

2.2. Methodologies

This study aimed to develop a hybrid spatiotemporal image fusion approach. The
proposed scheme comprised five parts: (1) preprocessing of input FS-2 and LS-8 images, (2)
image blending by STARFM (Figure 3a), (3) image SR by VDSR (Figure 3b), (4) development
of hybrid spatiotemporal image fusion approach (Figure 3c,d), and (5) accuracy analysis.
In the data preprocessing, satellite images from two different sensors were preprocessed
to obtain data with consistent geometric and radiometric characteristics. The STARFM
generates high-spatial- and high-temporal-resolution images by blending images with
high temporal and low spatial resolution with images with low temporal and high spatial
resolution, and VDSR compensates high-frequency details for the low-resolution images to
construct an SR image. Two different combinations (i.e., B-SR vs. SR-B) were compared.
Finally, several quantitative evaluation indicators were used to assess the quality of the
fused image.



Remote Sens. 2021, 13, 606 7 of 20

Figure 3. Workflow of proposed methods: (a) workflow of traditional STARFM; (b) workflow of VDSR; (c) workflow of
SR-B; (d) workflow of B-SR.
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2.2.1. Data Preprocessing

If different satellite images are to be compared spatially and temporally during spa-
tiotemporal image fusion, the images to be fused should have the same radiometric re-
sponse, ground sampling distance, image size, and coordinate system. Therefore, the
images should be preprocessed by using radiometric correction, image co-registration,
image clipping, and image resampling.

The FS-2 images used in this study were Level-2A images, which are ortho ready
standard images. First, an additional reference FS-2 orthoimage was selected as a base map.
All the FS-2 Level-2A images were orthorectified to the base map [40]. Next, a radiometric
correction [41] was applied to convert the digital numbers in the FS-2 images to top-of-
atmosphere reflectance using the physical parameters in the Dimap image description file.

The LS-8 images used in this study were L1TP terrain and precision corrected images.
We found a systematic offset between LS-8 and the corrected FS-2 images. Therefore, we
used cloud-free LS-8 and corrected FS-2 images to perform frequency domain image match-
ing [42] and to determine the systematic bias between these two images. The systematic
bias was then applied to the upper-right coordinates of the LS-8 images. A radiometric
correction determined by using the physical parameters in the MTL image description file
was also applied to the LS-8 images [43]. As the spatial resolution of the images to be fused
should be the same, the corrected LS-8 images were further resampled into 8 m/pixel using
cubic interpolation.

2.2.2. Method 1: Image Blending Using Spatiotemporal Image Fusion Method

In this part, we employed the STARFM developed by Gao et al. [10] as the spatiotem-
poral image fusion model. The STARFM is a physical model that fuses images with high
temporal and low spatial resolution and images with low temporal and high spatial res-
olution to generate fused images with high temporal and high spatial resolution. The
images with high temporal and low spatial resolution provided temporal information,
while images with low temporal and high spatial resolution provided spatial information.

This study used 8 m FS-2 images as images with low temporal and high spatial
resolution and 30 m LS-8 images as images with high temporal and low spatial resolution
images for image fusion. As the FS-2 and LS-8 images were preprocessed to have the same
geometrical and radiometric characteristics, these two datasets could be compared with
each other directly. The reflectance of the FS-2 high spatial resolution pixel corresponding
to the LS-8 low spatial resolution homogeneous pixel on date t0 can be expressed as
Equation (1), while reflectance of FS-2 and LS-8 image on date tk can be defined as shown
in Equation (2):

F
(
xi, yj, t0

)
= L

(
xi, yj, t0

)
+ ε0, (1)

F
(
xi, yj, tk

)
= L

(
xi, yj, tk

)
+ εk, (2)

Here, (xi, yj) is a given pixel location for both FS-2 and LS-8 images, F is FS-2 data (high-
spatial-resolution image), L is LS-8 data (low-spatial-resolution image), t0 and tk are the
acquisition dates for both FS-2 and LS-8 images (the observation date and prediction date,
respectively), and ε0 and εk represent the difference between the FS-2 and LS-8 reflectance
values at t0 and tk, respectively.

If it is assumed that the land cover and the systematic error of the pixel (xi, yj) did
not change at t0 and tk, that is, the difference in the spectral reflectance between different
dates is similar, then ε0 = εk. Thus, Equations (1) and (2) can be used to obtain Equation
(3). However, the relationship between LS-8 and FS-2 images is highly complex because
of the following reasons: (1) LS-8 observations might not be homogeneous pixels and
may contain mixed land cover types when considered at the FS-2 spatial resolution. (2)
There is a high chance that the land cover type will change during the period from the
observation date (t0) to the prediction date (tk). Furthermore, the transformation of the
land cover status and the bidirectional reflectance distribution function would also change
the reflectance during the interval from the observation date (t0) to the prediction date (tk).
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Therefore, the linear equation (i.e., Equation (3)) is not sufficient, and the fusion model
must consider a weighting function. Consequently, STARFM utilized a moving window to
obtain neighboring pixels with pixels’s spectrally similar during the fusion process and
then used the weighting function to estimate the center pixel of the image on the prediction
date (i.e., Equation (4)):

F
(
xi, yj, tk

)
− F

(
xi, yj, t0

)
= L

(
xi, yj, tk

)
− L

(
xi, yj, t0

)
, (3)

F(xm/2, ym/2, tk) = Σm
i=1Σm

j=1Σn
k=1Wijk ×

(
L
(
xi, yj, tk

)
+ F

(
xi, yj, t0

)
− L

(
xi, yj, t0

))
, (4)

where m is the size of the moving window, (xm/2, ym/2) is the central pixel of the moving
window, and Wijk is the combined weights for a neighboring pixel, including spectral,
temporal, and spatial distance variations.

The combined weight (Wijk) (i.e., Equation (5)) determines the contribution of each
neighboring pixel to predict the reflectance of the central pixel, which depends on the
variation of the images in terms of the spectral, temporal, and spatial distances (i.e.,
Equation (6)). The spectral variation (Sijk) is the spectral difference between the FS-2 and LS-
8 reflectances on the same date (i.e., Equation (7)). The smaller the difference, the greater the
similarity between the reflectances of the FS-2 image and the averaged surrounding pixels.
Thus, Sijk will be assigned a higher weight. The temporal variation (Tijk) is the difference in
time between the input training and the predicted LS-8 images (i.e., Equation (8)). A smaller
value indicates that the land cover does not change significantly during the period from t0
to tk. Tijk will also be assigned a higher weight. The spatial variation (Dijk) is the relative
spatial distance between the central pixel of the moving window and the surrounding
spectrally similar candidate pixels on date t0 (i.e., Equation (9)). The candidate pixels near
the central pixel have a higher weight. In Equation (9), A is a constant parameter used to
define the relative importance of the spatial distance to the difference between spectral and
temporal distances. The larger the A value, the smaller the weight of Dijk:

Wijk = (1/Cijk)/Σm
i=1Σm

j=1Σn
k=1(1/Cijk), (5)

Cijk = Sijk × Tijk × Dijk, (6)

Sijk =
∣∣F(xi, yj, t0

)
− L

(
xi, yj, t0

)∣∣, (7)

Tijk =
∣∣L(xi, yj, t0

)
− L

(
xi, yj, tk

)∣∣, (8)

Dijk = 1.0 +
√
(xm/2 − xi)

2 +
(
ym/2 − yj

)2/A, (9)

The input data required for applying the STARFM should include at least one pair
of high- and low-spatial-resolution images obtained on the same date, and a low-spatial-
resolution image on the prediction date. The output data is a high-spatial-resolution fused
image on the prediction date. Generally, the STARFM includes training and prediction
stages. The training stage is aimed at determining the combined weights from FS-2 and LS-8
images captured on the same date. The first step uses high-spatial-resolution images to find
candidate pixels that are spectrally similar to the central pixel in the moving window, and
the second step filters out inappropriate candidate pixels on the basis of the uncertainties
in the spectral information of the FS-2 and LS-8 images. The third step assigns weights
according to the pixels’ variation in terms of the spectral, temporal, and spatial information.
The higher the weight, the more the contribution of the central pixel reflectance to the
prediction. In the prediction stage, the predicted reflectance for LS-8 is estimated from
the pretrained weights. A more detailed description of the STARFM with regard to the
determination of weights can be found in the paper of Gao et al. [10].

2.2.3. Method 2: Image SR Using VDSR

Kim et al. [33] proposed VDSR, which involves the use of deep learning. This
method uses a very deep convolutional network inspired by the visual geometry group
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network (VGGNet). VDSR determines the details of images to solve single-image SR
(SISR) problems, that is, to reconstruct a higher-resolution image from a low-resolution
image. The reconstruction method employs a residual-learning CNN to train and predict
the residual map between the low- and high-resolution images. Subsequently, the resid-
ual image is compensated back to the low-resolution image to obtain the corresponding
high-resolution image.

The first layer of VDSR’s network structure (Figure 4) is the input layer, which is a
receptive field of size (2D + 1) × (2D + 1); D represents the total number of convolutional
layers in the network. The VDSR network used in this research had twenty convolutional
layers; thus, the size of the receptive field was 41 × 41. The middle layer consists of a
repetitive cascade of 19 pairs of convolutional layers and ReLU layers. Each convolutional
layer includes 64 filters of size 3 × 3 × 64. Zero padding is performed before each
convolution operation to ensure that all feature maps are of the same size. This is done to
maintain the size of the output image identical to that of the input image. The last layer is
a convolutional layer composed of a single filter of size 3 × 3 × 64, which is the residual
image used for image reconstruction.

Figure 4. Network structure of very deep super-resolution (VDSR) [33].

During the training process, VDSR learned to predict the difference between input
and output images to avoid vanishing gradient and exploding gradient problems and to
increase the training model’s convergence speed. In this study, the VDSR model was used
to estimate the residual between high-resolution and low-resolution images on the same
date. The learning process was intended to establish a nonlinear relationship between the
low-resolution image and the residual image. Residual learning involved learning the
high-frequency variation of the image to improve the spatial details of the image. The input

in the training process was a dataset (
{

L(i), F(i)
}N

i=1
) composed of multiple pairs of low-

resolution images (L) and high-resolution images (F). The output was the residual image
(r) (i.e., Equation (10)), that is, the difference between high and low-resolution images
(Figure 5). The training model is expressed by Equation (11), where f is the trained deep
learning SR model and F̂ is the predicted target image. The loss function is expressed in
Equation (12). A more detailed description of VDSR can be found in Kim et al.’s paper [33]:

r = F − L, (10)

F̂ = f (L), (11)

loss =
1
2
‖r− f (L)2‖, (12)
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Figure 5. Generation of a residual image for VDSR: (a) a high-resolution FS-2 image, (b) a low-resolution LS-8 image, and
(c) the residual image.

The purpose of using VDSR for image fusion was to learn the spatial details of the
input image (i.e., residual) by using a CNN between low- and high-resolution images
acquired on the same day. Both FS-2 and LS-8 pre-processed images have the same pixel
size in the calculation of the residual between FS-2 and LS-8 images. In the training stage,
this study used FS-2 and LS-8 images recorded on the same day to calculate the residual
image. The input training images are LS-8 and residual images for the same day. VDSR is
applied to train a deep neural network with LS-8 and residual images. In the prediction
stage, the VDSR’s model is used to predict the residual images from time-series LS-8 images.
High-frequency details from VDSR’s residual image is then injected into the time-series
LS-8 images. Finally, the 8 m fused image on the prediction date can be obtained by
combining the LS-8 image and predicted residual image.

In the VDSR training model, the optimization method is stochastic gradient descent
with momentum. The momentum is set to 0.9. The initial learning rate is set to 0.1, and
it is reduced 10 times after every 10 epochs for a total of 100 epochs. The patch size is
41 × 41 pixels, while 256 patches are randomly selected from the image pair. The minibatch
size is set to 64. In particular, a multispectral image used in this study comprised four
spectral bands, and therefore, VDSR trained each spectral band separately.

2.2.4. Method 3: Hybrid Spatiotemporal Fusion Approach SR-B

This study proposes a hybrid spatiotemporal fusion approach in which the STARFM
and VDSR model are combined to produce time-series satellite imagery. The VDSR model
was applied to reduce the difference between the two types of satellite imagery or to
reduce the difference between the fused image and the observed image. Hence, this study
proposes two different input training data sets for VDSR models. The first type of training
data were an LS-8 image and a residual image (i.e., difference between LS-8 and FS-2
images), and they were used to learn residuals between two different sensors, recorded
on the same day. The second type of training data were a fused image (i.e., results of the
STARFM) and a residual image (i.e., difference between fused and FS-2 images), and they
were used to learn residuals between the fused image and the observed image.

The first hybrid model was SR-B, which employed VDSR before the STARFM. The
first VDSR training model used LS-8 images to learn and to predict the residuals between
itself and corresponding FS-2 images, and it subsequently added the predicted residual
images to the low-resolution LS-8 images to generate the SR LS-8 images (SRLS-8). The
spatial details of LS-8 were enhanced by VDSR. The SRLS-8 image and FS-2 image were
blended by the STARFM to produce time-series fusion satellite images. The workflow is
shown in Figure 3c. The concept underlying SR-B was to reduce the spatial and spectral
differences of high- and low-resolution images before image fusion. In other words, VDSR
was intended to preprocess the input data of the STARFM. VDSR was used to improve
the results of the image interpolation stage in the STARFM for facilitating a comparison
between the traditional STARFM and SR-B (Figure 3a,c).
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2.2.5. Method 4: Hybrid Spatiotemporal Fusion Approach B-SR

The second hybrid model was B-SR, which employed the STARFM before VDSR. The
STARFM generated a fused FS-2 image directly from LS-8 and FS-2 images. The second
VDSR training model then used the fused FS-2 images to learn and predict the residual
between itself and the corresponding FS-2 images, after which it added the residual images
to the fused FS-2 images to generate SR fused FS-2 images. The workflow is shown as
Figure 3d. The concept underlying B-SR was to compensate the residuals between fused
FS-2 and the original high-resolution FS-2 image by using deep learning technique. VDSR
post-processes the output of STARFM. B-SR was used to compensate the residual between
the result of the STARFM and the original FS-2 image for facilitating a comparison between
the traditional SR-B and B-SR (Figure 3c,d).

2.3. Accuracy Analysis

The quality assessment includes the quantitative analysis for the entire area and
qualitative analysis for the vegetation and building regions. The quantitative analysis
involves absolute and relative indexes. The absolute index evaluates the nature of the
fused image itself, and therefore, it is calculated using the fused image. The relative index
compares the observed and fused images. It uses the observed image as a benchmark to
evaluate the correlation between the real observed and synthetized fusion images. The
absolute indexes were entropy [44] and the blind/referenceless image spatial quality evalu-
ator (BRISQUE) [45], and the relative indexes were reflectance bias, structural similarity
(SSIM) [46], and peak signal-to-noise ratio (PSNR) [47]. Among these five indicators, the
reflectance bias was used to evaluate the difference between the observed and fused images
in different spectral bands, and the other four indicators were used to assess the visual
performance of the fused image:

(1) Reflectance bias: This index is used to evaluate the degree of difference in reflectance
among observed and fused images. This study calculated the average and standard
deviation (SD) of the reflectance bias between observed images and fused images.
The lower difference indicates better result.

(2) SSIM: This index is used to evaluate the similarity of the overall structure between
observed and fused images. This index is based on the human visual system to extract
structural information for comparing the luminance, contrast, and structure between
images. The SSIM ranges from −1 to 1. The larger the value, the higher the similarity
between the two images. The expression for the SSIM is presented in Equation (13),
where l(x, y) is the luminance comparison function, c(x, y) is the contrast comparison
function, s(x, y) is the structure comparison function, µx and µy are the mean of images
x and y, σx and σy are the SDs of images x and y, σ2

x and σ2
y are the variances of images

x and y, σxy is the cross-covariance between images x and y, and C1, C2, and C3 are
constants used to maintain the stability of l(x, y), c(x, y), and s(x, y), respectively.

SSIM = l(x, y)·c(x, y)·s(x, y) =

(
2µxµy + C1

µ2
x + µ2

y + C1

)
·
(

2σxσy + C2

σ2
x + σ2

y + C2

)
·
(

σxy + C3

σxσy + C3

)
, (13)

(3) PSNR: This index is used to assess the degree of distortion of the fused image. This
study used the observed image as the reference undistorted image. The ratio of
the maximum value of an image signal to the noise in an image was used as the
evaluation index. The larger the value of this index, the higher degree of undistortion
between the two images. The PSNR is given by Equation (14), where x and y are the
observed image and fused image, respectively, n is the image bit depth, and MSE
is the mean square error between the observed image and the fused image. In the
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absence of noise, the observed image and the fused image are identical, and the MSE
is equal to 0; therefore, the PSNR is infinite.

PSNR(x, y) = 10× log10

(
(2n − 1)2

MSE

)
(dB), (14)

(4) Entropy: The entropy is used to assess the amount of information contained in an
image. Generally, a clear image provides more detailed information than a blurred
image. Hence, the greater the entropy of a fused image, the greater the amount of
information contained in the fused image. The equation of entropy is presented in
Equation (15), where n is the total number of grayscale levels, Ni is the number of
pixel i in the image, and Ns Ns is the total number of pixels in the image:

ENTROPY = −∑n−1
i=0

(
Ni
Ns

)
log2

(
Ni
Ns

)
, (15)

(5) BRISQUE: The quality of a fused image is evaluated according to the natural charac-
teristics of the fused image, and it is the reference value of the image quality obtained
from the characteristics of natural statistics of the image. The scene statistics of locally
normalized luminance coefficients are used to quantify the distortion in the image
and assess the quality of the image. BRISQUE ranges from 0 to 100, with the value
of 0 representing an undistorted image. This implies that a smaller value indicates
lower distortion and better image quality. Details on BRISQUE can be found in Mittal
et al.’s [45] paper.

3. Results

In this experiment, the same dataset were used to train four different image fusion
methods (i.e., STARFM only, VDSR only, B-SR hybrid method, and SR-B hybrid method).
After training the fusion models with the training dataset, a 30 m LS-8 image recorded
on 6 December 2014, was used to predict 8 m fused images with the different fusion
models. For the evaluation of the accuracy of the models, the FS-2 image acquired on
6 December 2014, was used as an independent check image. The four fused images are
shown in Figure 6. The results from the methods were verified by using the five indicators
(i.e., entropy, BRISQUE, SSIM, PSNR, and reflectance bias) in the following section.

Figure 6. Fused images predicted with a 30 m LS-8 image recorded on 6 December 2014. (a) the
STARFM, (b) VDSR, (c) B-SR, and (d) SR-B.
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4. Discussions

Section 4.1 discusses the quantitative analysis for the entire area, while Section 4.2
focuses on qualitative analysis in the vegetation and building regions.

4.1. Quantitative Analysis

The mean and SD of the reflectance bias for individual bands (i.e., B, G, R, NIR) and all
bands (i.e., four bands) are provided for comparing the performance of different methods
(Table 3). The reflectance bias of NIR was larger than that of the other three bands. A
possible reason is that the variation of the NIR reflectance was significantly larger than that
of the other bands (Table 4). The test area was mostly covered by vegetation. Consequently,
the NIR reflectance of chlorophyll was larger than the reflectance of the other bands. Gao
et al. [10] employed the STARFM to fuse Landsat-7 and MODIS images. The reflectance
bias between the real image and the predicted image in the NIR band was also markedly
larger than blue, green, and red bands. From the preceding discussion, the NIR band is
evidently more difficult to predict using the STARFM, but the VDSR model could improve
this problem. Because the VDSR model learned information from across sensors, it not only
improved the spatial resolution of the image, but also reduced the systematic deviation
between the two satellite images in the spectral bands.

Table 3. Reflectance bias between fused and observed images (unit: ρ × 10,000).

Bands STARFM VDSR B-SR SR-B

Mean (∆)

Blue 64.428 55.910 64.054 55.426
Green 69.959 71.482 69.654 64.475
Red 89.626 92.461 89.323 81.204
NIR 297.946 254.803 297.837 298.994

4 Bands 130.489 118.664 130.217 125.025

SD (∆)

Blue 88.568 81.576 88.534 80.500
Green 111.092 113.134 111.060 103.288
Red 145.661 151.123 145.639 137.954
NIR 341.856 228.877 341.839 344.398

4 Bands 171.794 143.677 171.768 166.535

Table 4. Comparison of FS-2 and LS-8 image reflectance acquired on 6 December 2014 (unit:
ρ × 10,000).

2014/12/06

Bands Satellites Min Max Mean SD

Blue
FS-2 1043 2216 1250.568 114.589
LS-8 1005 5950 1282.070 173.274

Green
FS-2 770 2585 1095.109 155.392
LS-8 657 6195 1055.731 192.599

Red
FS-2 544 3084 899.848 218.592
LS-8 312 6743 833.172 255.384

NIR
FS-2 609 3699 2273.934 640.359
LS-8 384 8992 2686.187 818.275

A comparison of the results of reflectance bias between the STARFM and VDSR
showed that the results of VDSR were slightly better than those of the STARFM in the NIR
band. The VDSR requires a large number of training datasets in the training stage. This
study considered only four image pairs (image size: 1360 × 1580 pixels) to establish the
VDSR network model. For a limited number of training images, the VDSR is still better
than STARFM. A comparison of the results of reflectance bias between the individual and
hybrid methods showed that the mean bias of the hybrid method was smaller and better
than that of the STARFM-only method. The hybrid method is slightly better than the



Remote Sens. 2021, 13, 606 15 of 20

traditional method. The hybrid strategy exploited the advantages of the STARFM and
VDSR methods to minimize the reflectance bias. It could be inferred that the integration
of weight-function-based and learning-based fusion models for image fusion can help
increase the similarity between the fused image and the observed image.

This study also compares two different hybrid models. The results of SR-B (SR then
blend) were better than those of B-SR (blend then SR). The overall mean bias of SR-B
was 4% lower than B-SR, and 3% improvement for overall standard deviation in SR-B. In
SR-B, VDSR improved the resolution of the LS-8 image owing to its training with FS-2
images before STARFM was applied. In this way, VDSR provided a better SRLS-8 image
than the traditional cubic-interpolated LS-8 image. The SR-B method could obtain more
information from FS-2 before the application of STARFM. While VDSR in SR-B learned the
difference between the original LS-8 and FS-2 images, VDSR in B-SR learned the difference
between an LS-8 image from STARFM and an FS-2 image. Although the result of B-SR was
slightly better than that of the traditional STARFM used individually, the error in the LS-8
image from the STARFM could affect VDSR in the B-SR hybrid method. Therefore, the
results of SR-B are better than those of B-SR, and it is recommended that SR be performed
before blend.

The other four image quality assessment indicators for the different fusion methods
were also provided for comparison (Table 5). Both SSIM and PSNR compare the observed
and fused images. The SSIM evaluates the similarity between images, while the PSNR
examines the distortion between images. The SSIM of VDSR was lower than STARFM,
implying that the overall SSIM of the VDSR method was lower than STARFM because
of the limited training data set. The SSIMs of the B-SR and SR-B were similar, and the
difference was only 0.004. In terms of the degree of reflectance’s distortion using the PSNR,
the SR-B approach showed better results compared with the other three methods. The
PSNR and reflectance bias showed similar behavior because both indicators were based
on the residual of reflectance. In summary, both SSIM and PSNR indicated that the SR-B
approach combining VDSR and the STARFM could minimize the reflectance differences
between observed and fused images. The SR-B is slightly better than B-SR and the PSNR’s
difference between SR-B and B-SR was 0.531.

Table 5. Comparison of image quality assessment indicators for different fusion methods.

STARFM VDSR B-SR SR-B

SSIM 0.906 0.894 0.906 0.910
PSNR 34.763 33.933 34.774 35.305

Entropy 2.433 2.389 2.433 3.001
BRISQUE 25.335 50.326 25.178 24.383

From the perspective of the average amount of information, the entropy of SR-B
showed more information than that of the other approaches. The entropy of VDSR was the
lowest, while that of STARFM and B-SR were similar. The SR-B improve the information
content than B-SR and the Entropy’s difference between SR-B and B-SR was 0.568. The
improvement rate was about 23% as the SR-B was sharpening the input image before image
blending. In the evaluation of image quality, BRISQUE was used as a no-reference image
quality indicator. The BRISQUE of SR-B was better than that of the other three approaches.
The results of SR-B was slightly better than B-SR. Owing to the insufficient amount of
training data for the VDSR-only approach, this approach showed lower performance. In
summary, the overall performance of the SR-B approach yielded better accuracies than the
other methods.

4.2. Qualitative Analysis

To examine the performance of different methods for different land covers, vegetation
and building regions were chosen for performing a qualitative analysis. Figure 7 compares
the results of different image fusion methods with the FS-2 real observation image recorded
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on 6 December 2014. In the visual analysis, most fused images were similar to the real
FS-2 observation, except the VDSR-only fused image. A comparison of the interpolated
LS-8 image and VDSR-only fused image showed that the sharpness of the VDSR result
was better than the interpolated LS-8. From the perspective of image interpolation, VDSR
refines and provides better results than the traditional cubic interpolation. Therefore, the
integration of VDSR and STARFM can improve the fusion quality.

Figure 7. Comparison of two different land covers on 6 December 2014: (a) vegetation area and
(b) building area.

Owing to the spectral variation of the building region being larger than that of the
vegetation region, the spectral distortion in the building region was slightly larger than
that in the vegetation region. However, the entropy (information content) of the building
region was better than that of the vegetation area. In the improvement of entropy for the
STARFM and hybrid methods, the building region showed higher improvement than the
vegetation area. In other words, the hybrid methods showed better performance in the
building region compared with the vegetation region.

From the perspective of visual performance, a detailed comparison of the hybrid
methods (i.e., SR-B and B-SR) and the STARFM-only method revealed that the hybrid
methods not only showed superior spatial resolution from the 30 m LS-8 image to the
8 m fused image, but also enhanced local details in the mountain’s shadow region. In
other words, the hybrid methods could improve the spatial information and local spectral
information. Table 6 shows that most quality indexes of the hybrid methods were better
than those of the STARFM-only method. Furthermore, the fused images from SR-B showed
better performance than the other fused images.
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Table 6. Reflectance bias between the local areas of fused and observed images (unit: ρ × 10,000).

STARFM VDSR B-SR SR-B

Vegetation
regions

Mean (∆) 95.275 104.924 94.933 98.884
SD (∆) 78.705 84.129 78.605 80.996
SSIM 0.936 0.909 0.936 0.935
PSNR 40.069 38.907 40.106 40.137

Entropy 3.612 3.625 3.614 3.645
BRISQUE 29.959 53.749 30.001 32.744

Building
regions

Mean (∆) 99.675 133.020 99.383 98.708
SD (∆) 91.094 115.218 91.037 90.339
SSIM 0.932 0.876 0.932 0.933
PSNR 38.601 35.863 38.625 38.796

Entropy 4.228 4.000 4.230 4.400
BRISQUE 21.241 55.826 21.256 21.769

Land cover change is a challenging issue in spatiotemporal fusion, and the results of
image fusion were usually affected by seasonal crop changing (Figure 8a–c). To compare
the SR-B and B-SR methods in detail, the fused image using SR-B (Figure 8e) did not
perform very well in the land cover changed area. It was still more similar to the real
observation image figure (Figure 8b) compared to the fused image using B-SR (Figure 8d).
The possible reason was the VDSR in SR-B compensated the high-frequency of LS-8 image.
Consequently, the image blending produces better results. In summary, the performance of
SR-B was better than that of B-SR.

Figure 8. Comparison of B-SR and SR-B in land cover changed region. (a) Training; (b) Testing; (c) Training; (d) 2014/12/06
B-SR; (e) 2014/12/06 SR-B.

5. Conclusions

This study developed a hybrid spatiotemporal image fusion approach involving a
deep learning model and a physical model. The deep learning model is the VDSR model,
which improves the spatial resolution of low-resolution images, and the physical model is
the STARFM model, which considers physical parameters such as pixel distance, spectral,
temporal and spatial variations. Two different hybrid fusion strategies (i.e., B-SR vs. SR-B)
were developed and discussed on the basis of experiments. In SR-B, SR replaces the image



Remote Sens. 2021, 13, 606 18 of 20

resampling stage used for interpolating the pixel size of a low-resolution image into that of
a high-resolution image. This image resampling stage is an essential step for obtaining low-
and high-resolution images with the same pixel size. In B-SR, the SR refines the spatial
details after the STARFM is applied.

The major contribution of this study is to develop hybrid spatiotemporal image fusion
methods (i.e., B-SR and SR-B) using STARFM and VDSR. In the experiment, STARFM,
VDSR, B-SR, and SR-B were used to fuse the satellite images of FS-2 and LS-8 to produce
spatiotemporal fusion data, and several quality indexes (i.e., reflectance bias, entropy,
BRISQUE, SSIM, and PSNR) were used to assess the quality of fused images. The experi-
mental results demonstrated that the combination of the spatiotemporal fusion techniques
of the STARFM and the VDSR model based on a CNN architecture helped to increase the
similarity between fusion images and observation images. Overall, the quality of the fusion
results obtained using SR-B was better than that generated with the other methods. The re-
sults showed that running the VDSR model to learn the difference between low-resolution
images and high-resolution images before applying STARFM could reduce the variation in
spatial and spectral resolution between the fused image and the observed image. Besides,
it could also yield a fused image that is better in visual performance and is most similar to
the observation image.

The difference between the fusion result of SR-B and the real image was smaller than
the result obtained by employing the STARFM alone. In the comparison of SR-B ad B-SR,
the overall spectral bias of SR-B was lower than B-SR; moreover, the entropy of SB-R was
also higher than B-SR. This demonstrated that the combination of VDSR model based on
the CNN architecture and the spatiotemporal fusion techniques of the STARFM can help
to increase the similarity between fusion images and observation images. Therefore, this
study recommends the use of SR-B rather than B-SR.

The STARFM is not effective for simulating sudden land cover changes in the short
term. Although the combination of the STARFM and VDSR models in this study could
improve the quality of fusion images, its capability is limited. Therefore, in order to
acquire better fusion results, a weight-based fusion model modified from STARFM, such
as ESTARFM, may be used in future studies. Furthermore, since only five pairs of LS-8
and FS-2 satellite image pairs were used in this research, there was not much training data
that could be used to train the VDSR model, which influenced the learning effectiveness
of VDSR. In addition, a long time interval between the image pairs also affects the fusion
results of the STARFM. Hence, it is recommended to examine the use of Sentinel-2 images
with higher temporal resolution in future studies.
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