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Abstract: Surface solar radiation (Rs) is essential to climate studies. Thanks to long-term records
from the Advanced Very High-Resolution Radiometers (AVHRR), the recent release of International
Satellite Cloud Climatology Project (ISCCP) HXG cloud products provide a promising opportunity
for building long-term Rs data with high resolutions (3 h and 10 km). In this study, we compare
three satellite Rs products based on AVHRR cloud products over China from 1983 to 2017 with
direct observations of Rs and sunshine duration (SunDu)-derived Rs. The results show that SunDu-
derived Rs have higher accuracy than the direct observed Rs at time scales of a month or longer by
comparing with the satellite Rs products. SunDu-derived Rs is available from the 1960s at more than
2000 stations over China, which provides reliable decadal estimations of Rs. However, the three
AVHRR-based satellite Rs products have significant biases in quantifying the trend of Rs from 1983 to
2016 (−4.28 W/m2/decade to 2.56 W/m2/decade) due to inhomogeneity in satellite cloud products
and the lack of information on atmospheric aerosol optical depth. To adjust the inhomogeneity of the
satellite Rs products, we propose a geographically weighted regression fusion method (HGWR) to
merge ISCCP-HXG Rs with SunDu-derived Rs. The merged Rs product over China from 1983 to 2017
with a spatial resolution of 10 km produces nearly the same trend as that of the SunDu-derived Rs.
This study makes a first attempt to adjust the inhomogeneity of satellite Rs products and provides the
merged high-resolution Rs product from 1983 to 2017 over China, which can be downloaded freely.

Keywords: surface solar radiation; sunshine duration; AVHRR; data fusion

1. Introduction

Long-term changes in surface solar radiation (Rs, spectral range of 0.3–3.0 µm) with
a decrease (global dimming) from the 1950s to the late 1980s and a subsequent increase
(global brightening) have been observed worldwide [1–5]. Global dimming and brightening
inevitably lead to energy balance changes and have substantial impacts on land surface
climate, hydrologic cycle, carbon cycle and human activity [6–9]. However, high-quality Rs
observations are very sparsely distributed.

Direct observations can provide accurate Rs records. Careful calibration and instru-
ment maintenance are needed to guarantee the accuracy of observations. Before 1990, the
USSR pyranometer imitations had different degradation rates in the thermopile, resulting
in an important sensitivity drift [10–12]. To overcome radiometer aging, China replaced
its instruments from 1990 to 1993. However, the new solar trackers frequently failed and
introduced a high missing data rate for the direct radiation component of Rs [13,14]. After
1993, although the instruments were substantially improved, the Chinese-developed pyra-
nometers still had a high thermal offset with directional response errors, and the stability
of these instruments was also worse than that of the World Meteorological Organization
(WMO)-recommended first-class pyranometers [13,15,16].
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Since the 1960s, the possibility of estimating Rs from satellites has been examined
in many studies [17,18]. To date, satellite measurement records have grown to cover
more than 40 years. In 1983, the International Satellite Cloud Climatology Project (ISCCP)
began its operational phase [19]. Many long-term satellite-based climatologies of cloud
cover and cloud radiative property data have been released, such as the ISCCP [20], the
PATHFINDER Atmospheres-Extended (PATMOS-x; [21]), Maryland version of the Global
Energy and Water Cycle Experiment (GEWEX; [22]), EUMETSAT Climate Monitoring
Satellite Application Facility (CMSAF) cloud and radiation data record (CLARA-A2; [23])
and the Climate Change Initiative Cloud project (Cloud_cci; [24]) funded by the European
Space Agency (ESA). Due to the capability of capturing the spatial distribution and dynamic
evolution of clouds from satellite data [10,25], satellite-derived Rs products have long
been recognized as better methods to estimate regional and global Rs than numerical
modeling [26,27]. Improvement have also been shown in Rs data from DISORT radiation
transfer model of the China Meteorological Administration Land Data Assimilation System
(CLDAS) by assimilating satellite Rs retrievals from FY2E and ISCCP cloud data [28].

The trend of Rs derived from satellites has been shown to be consistent with ground
observations but differs in sign and magnitude [29]. Satellite Rs products based on the
early version of the ISCCP cloud dataset show quite different interannual variations in
Rs from 1984 to 2000, which are only approximately one half to one third of the direct
Rs surface observations over China [30]. The assessment of cloud fraction from ISCCP,
PATMOS-x and CLARA-A1 for 1982–2009 over the United States indicates that the ISCCP
tends to show less year-to-year variability, while PATMOS-x and CLARA-A1 tend to show
higher variability [31]. Wang et al. (2018) [31] also noticed that when neglecting temporal
aerosol variability in the satellite algorithms in CLARA-A1 and SARAH-E, the discrepancy
between the satellite-estimated and ground-observed SSR trends slightly increased over
China in 1999–2015 compared with 1993–2015.

Efforts have been made to obtain optimized Rs data and produce reliable historical Rs
data records [4,32,33]. Various methods used to identify and adjust these artifacts in the Rs
records have been widely developed. These inhomogeneity test methods mostly require
reference series constructed from highly correlated nearby stations [34]. For example, the
standard normal homogeneity test (SNHT), Pettitt test, Buishand test and Von Neumann
test have been applied to adjust the Rs data in the Global Energy Balance Archive (GEBA)
dataset due to the impacts of station relocation and instrument change [35]. Relative tests
developed by (Brunetti et al. 2006) [36] were used to correct the Italian Rs data before
1980 [34,37].

The surface sunshine duration (SunDu) is the sum of the time for which the ground
surface is irradiated by a direct solar irradiance beam exceeding a certain threshold (usually
120 W/m2) and is considered to be a reliable proxy of Rs [38–42]. Since SunDu is widely
recorded at many stations, Tang et al. (2013) [32] extended Rs records to 716 China Meteo-
rological Administration (CMA) routine weather stations from 96 radiation stations based
on an artificial neutral network model. SunDu has been used as reference data to adjust the
inhomogeneity of direct observations over China. With the improved Angstrom–Prescott
model, Tang et al. (2013) [32] show that SunDu data can derive accurate estimates of hourly,
daily and monthly Rs. Previous studies further demonstrate that SunDu can be used as a
reliable proxy for direct Rs observed data to reconstruct long-term Rs [2,5,43–47]. By using
global SunDu-derived Rs records, He et al. (2018) [2] show that SunDu permitted a revisit
of global dimming from the 1950s to the 1980s over China, Europe and the USA, with
brightening from 1980 to 2009 in Europe and a declining trend of Rs from 1994 to 2010 in
China. Wang et al. (2015) [10] also found that the dimming trend from 1961 to 1990 and
nearly constant zero trend after 1990 over China, as calculated from the SunDu-derived Rs,
were consistent with independent estimates of AOD [48]; they also observed changes in
the diurnal temperature range [49] and the observed pan evaporation [50].

The previously mentioned inhomogeneity adjustment methods mainly focus on Rs
data over observation sites, and the adjustment processes are generally “point to point”
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corrections. Comparatively, inhomogeneities in the satellite Rs gridded data have attracted
little attention due to the lack of reliable Rs reference data with large spatial coverage. As
systematic Rs biases in gridded data can be removed by simple bias correction methods,
uncertainties in the long-term variations in the Rs values of gridded data cannot be easily
eliminated [51]. As long-term reliable aerosol data are rarely available, especially for data
extended before 2000, improved gridded surface radiation data, such as satellite retrievals,
will be more challenging.

Merging multisource data can be a practical way to improve Rs data with accurate
long-term variations [51–56]. The large number of SunDu observations (~2400 stations)
with large spatial coverage (Figure 1) can provide substantial benefits to obtain better
estimations of Rs over China. On the other hand, based on the ISCCP-HXG cloud products
and new ERA5 reanalysis data, Tang et al. (2019) [57] built global satellite Rs products with
a 10 km spatial resolution from 1983 to 2017. However, Tang et al. (2019) claimed that its
application in quantifying long-term variability should be considered cautiously.
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Figure 1. The ~2400 sunshine duration (SunDu) merged sites are shown as light pink points, and 121 independent valida-
tion sites are shown as dark pink points. The whole region is classified into nine subregions (I to IX) by the K-mean cluster 
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Topography Mission 30 (SRTM30) dataset. 

Figure 1. The ~2400 sunshine duration (SunDu) merged sites are shown as light pink points, and 121 independent validation
sites are shown as dark pink points. The whole region is classified into nine subregions (I to IX) by the K-mean cluster
method based on geographic locations and multiyear mean Rs using 121 Rs validation sites. The base hill shade map was
produced by an elevation map of China using the global digital elevation model (DEM) derived from the Shuttle Radar
Topography Mission 30 (SRTM30) dataset.

Our previous studies have shown reanalyses have substantial biases due to imperfect
parameterization of cloud and aerosols [26,51,58]. Considering the advantages of SunDu-
derived Rs and reliable cloud distribution from satellite retrievals, we recently combined
ground-based sunshine duration with satellite cloud and aerosol data to produce high
resolution long-term Rs [59]. Another approach is to directly merge current high resolution
Rs product with SunDu-derived Rs. Therefore, the purpose of this study is to develop
a fusion algorithm based on a geographically weighted regression model to improve
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current Rs satellite gridded data by using surface sunshine duration-derived Rs site data as
references over China. First, we use direct Rs observations and SunDu-derived Rs to assess
the performances of these long-term satellite Rs products, including CMSAF CLARA-A2
(CMSAF), GEWEX-SRB (GEWEX) and ISCCP-HXG (HXG), over China, especially for the
long-term Rs trends. These comparisons demonstrate that SunDu-derived Rs is a reliable
data source and that satellite products have significant inhomogeneity in quantifying the
long-term variability in Rs over China. In terms of the longest time span (1983~2017) of
ISCCP-HXG, we merge ISCCP-HXG with SunDu-derived Rs to obtain the best estimate of
Rs over China.

2. Data and Methodology
2.1. Satellite Retrievals of Surface Solar Radiation

We collect three AVHRR based satellite monthly Rs data including: (1) the Satellite
Application Facility on Climate Monitoring cLoud, Albedo and surface RAdiation dataset
from AVHRR data—Edition 2 (CMSAF CLARA-A2), (2) The Global Energy and Water
Exchanges-surface radiation budget (GEWEX-SRB), (3) the level 2 International Satellite
Cloud Climatology Project ISCCP H-series cloud product HXG (ISCCP-HXG) based Rs
product. In addition, Clouds and the Earth’s Radiant Energy System energy balanced and
filled product (CERES EBAF) surface product (Edition 4.1) are also used in this study. The
brief summary of these satellite Rs data are shown in Supplementary Material Table S1.

The retrieval algorithms of CLARA-A2 are the same as those of CLARA-A1, which is
based on the mesoscale atmospheric global irradiance code (MAGIC) and related look-up-
table algorithms driven with cloud data from CLARA-A2 and auxiliary data, including
surface albedo, monthly averaged integrated water vapor and aerosol climatology derived
from the Aerocom model median merged with AERONET in situ data [60,61].

GEWEX-SRB V3.0 estimates Rs by using a modified radiation transfer model from [62].
The input cloud properties are derived from ISCCP DX data,; temperature and moisture
profiles are derived from GMAO-GSFC [63], and ozone-column data are primarily from
TOMS, TOVS and SMOBA analyses. Aerosol extinction and absorption by ozone and water
vapor are calculated following (Pinker et al. 2003) [22].

The ISCCP-HXG-based Rs product is retrieved based on the SUNFLUX scheme [64,65].
Input data are used to drive the model, including cloud mask, visible (VIS)-retrieved
liquid cloud optical depth, VIS-retrieved ice cloud optical depth and cloud top temperature
from ISCCP-HXG. Surface pressure, total column water vapor and total column ozone are
from ERA5 reanalysis data. Aerosol and albedo data are from MOD08_D3 and MCD43A3.
Missing values in the aerosol and albedo data were replaced with the corresponding values
from the monthly mean climatological data.

CERES EBAF is the level 3b product based on the CERES radiometer-measured
filtered shortwave radiances (0.3–5 µm, 0.3–200 µm and 8–12 µm). The cloud properties
are collected from MODIS and geostationary imagers [66]. MODIS AOD C6.1 assimilated
into an aerosol transport model (MATCH) are used as aerosol input data for the CERES
EBAF product [67].

2.2. Ground-Based Estimations of Surface Solar Radiation

We used direct Rs measurements from 121 radiation stations collected from 1983 to
2016 by the China Meteorological Data Service Center (CMDC, http://data/cma/cn/)
of the CMA. Monthly Rs values are calculated by averaging daily Rs values when daily
observed data are available for more than 15 days for each month at each radiation station
(Figure 1).

Sunshine durations from 1983 to 2017 are obtained from approximately 2400 CMA
weather stations. These sunshine durations are used to calculate monthly mean Rs follow-
ing the method of the revised Ångström-Prescott Equation (1) [10,11,68].

Rs

Rc
= a0 + a1

n
K
+ a2

( n
K

)2
(1)

http://data/cma/cn/
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where n is the measured sunshine duration and K is the theoretical value of sunshine
duration. a0, a1 and a2 are determined according to (Wang 2014) [11]. Rc is the daily total
solar radiation under clear-sky conditions.

Sunshine duration-derived Rs has been shown to be a good proxy of directly observed
Rs at time scales ranging from monthly to decadal and can reveal the impact of aerosols
and clouds on Rs over China [69–72]. The long-term coverage of the relatively widely
distributed sunshine duration data permits the long-term trend analysis of Rs with large
spatial coverage [3,73]. In addition, SunDu-derived Rs values are nearly free from the
sensitivity drift problem, which hampers traditional Rs observation data applications
over China.

2.3. The Fusion Method

Geographically weighted regression (GWR) is used as a fusion method to merge the
ISCCP-HXG-derived Rs with ground-based SunDu-derived Rs (HGWR). GWR is an exten-
sion of the traditional regression model by allowing the spatial modeling of nonstationary
processes. The principle of GWR is provided as follows:

yi = δ(i) + ∑
k

δk(i)xik + εi (2)

where yi is the value of the merged Rs unit i; i = 1, 2, . . . , n, n denotes location i, xik indicates
the corresponding values of ISCCP-HXG-derived Rs, and ε denotes the residuals. δ(i) is the
regression intercept. δk(i) is the regression coefficient calculated from the spatial weighting
function w(i), which quantifies the proximities of location i to its neighboring observation
sites; X is the variable matrix; and b is the bias vector.

δk(i) =
(
XTw(i)X

)−1XTw(i)b (3)

Owing to the irregular distribution of observation sites and computer ability, the
adaptive Gaussian function method is selected as a weighting function that varies in extent
as a function of Rs observation site density.

wij = exp
(
−
(
dij/b

)2) (4)

where wij is the weighting function for SunDu derived Rs observation site j that refers
to location i; dij denotes the Euclidian distance between j and i; and b is the size of the
neighborhood and the maximum distance away from regression location i, known as
“bandwidth”, which is determined by the number of nearest neighbor points (NNPs). The
NNPs are set to 30 following our parameterization experiment (Table S2, Feng and Wang,
2020 under review). The regression coefficients are then determined by Equations (3) and
(4) using the ground-based SunDu Rs as the dependent variable and ISCCP-HXG Rs at
corresponding observation site as the independent variable. The final merged Rs can be
obtain by the regression coefficient and ISCCP-HXG Rs for the whole regions by Equation
(1), which can be applied in ArcGIS or R. Previous studies have shown that GWR performs
better than other regression methods, especially for analyzing spatial data [74–79].

2.4. Preprocessing and Metrics for Evaluation

All the 121 direct Rs observation sites, where both direct observed Rs data and SunDu-
derived Rs data are recorded, are used as validation sites, and the remaining 2261 sites are
merged with HXG by GWR (Figure 1). We obtain monthly Rs from three AVHRR-based
Rs data and CERES EBAF. HXG only provide 3 hourly Rs estimates. We calculate daily
mean Rs and obtain monthly average estimates for the Rs data. The CMSAF data contain
a large amount of missing data before 2000. To avoid the impacts of missing data in
CMSAF, we only use data with less than 20% of the data missing from the total number of
validation sites.
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To make inter-comparisons, we chose the years 2000 to 2007, a period common to all
three AVHRR-based datasets and CERES EBAF. The determination coefficient (R2), root
mean square error (RMSE), bias error and mean absolute bias (MAB) are calculated for
validation. When performing the trend analysis, all data from 1983 to 2016 are used if
the product is available. Rs validation results and long-term variation patterns are also
presented for the nine subzones by the K-means clustering algorithm based on geographic
locations and multiyear mean Rs derived from all SunDu-derived Rs sites. For comparisons
of the spatial distribution of multiyear mean Rs and long-term trends, the SunDu-derived
Rs are interpolated to 1◦ × 1◦ grids following (Du et al. 2017) [80]. For long-term Rs
variation evaluation, the linear trends in Rs are calculated by the least squares method for
different time periods, including 1983 to 2007, 2000 to 2007, 2000 to 2016 and 1983 to 2016.

3. Results
3.1. Site Validations

All these four AVHRR-based Rs products showed high R2 values ranging from 0.89 to
0.97 (Figure 2). Generally, HGWR show best performances followed by HXG, GEWEX and
CMSAF. Specifically, CMSAF has the largest MAB and RMSE (18.96 W/m2 and 24.08 W/m2,
respectively) followed by GEWEX and HXG, compared with direct observations. Similar
results can also be seen when validating against the SunDu-derived Rs. When compar-
ing with SunDu-derived Rs, GEWEX has the largest MAB and RMSE (17.46 W/m2 and
22.17 W/m2, respectively) followed by CMSAF and HXG (Table S3). The good perfor-
mances of HXG might be attributed to the improvements of high resolution of cloud from
latest ISCCP-H series product and auxiliary data from ERA5. By merging SunDu Rs data,
HGWR showed the lowest biases with MAB = 13.86 W/m2 and RMSE = 19.16 W/m2

compared with direct observations. Obvious improvements in HGWR are shown in com-
parison with SunDu Rs reference data, with the MAB reduced by 33%. Similar results can
also been seen in different seasonal (Figures S2–S5).

Generally, this is likely because satellite derived Rs products are at grid of 1 degree,
and both direct observation and SunDu are ground-based point observations. However,
the time span of CERES EBAF is 2000 to present. As direct Rs observation, SunDu derived
Rs and CERES are three independent measurements, the inter-comparison show that direct
Rs observation is neither consistent with CERES EBAF nor SunDu derived Rs and the latter
two show more consistent results, which again indicates that the SunDu derived Rs can be
used to produce reliable Rs data in monthly time scale. The detailed validation results are
summarized in Table S3.

The monthly validation results for each subzone (Figure 1) from 2000 to 2007 are shown
in Figure S1. In subzone I, which is located on the North China Plain, GEWEX has the largest
biases (MAB = 15.74 W/m2) and the HGWR has the lowest (MAB = 7.20 W/m2) compared
with independent SunDu-derived Rs. These results suggest that without the SunDu derived
Rs constraint, these AVHRR based satellite Rs retrievals still have uncertainties in simulating
aerosols. Similar performances of GEWEX and HGWR are shown in the other eight regions,
except that CMSAF has the largest MAB (16.06 W/m2) in zone V. By merging the SunDu-
derived Rs site data, the MAB of HXG was reduced by 31% in zone I, 36% in zone II/III,
27% in zone IV, 31% in V, 32% in zone VI, 44% in zone VII, 33% in zone VIII and 22% in
zone IX. The areas with significant improvement of HXG are mainly distributed in east part
of China, which might be the improvement in simulating the impact of aerosols loading by
merging SunDu derived Rs.
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Figure 2. Comparison of monthly surface solar radiation (Rs) from the Climate Monitoring Satellite Application Facility
(CMSAF)cloud and radiation data record (CLARA-A2) (CMSAF), Global Energy and Water Exchanges-surface radiation
budget (GEWEX-SRB) (GEWEX), International Satellite Cloud Climatology Project ISCCP H-series cloud product HXG
(ISCCP-HXG)-based Rs data (HXG) and the merged product (HGWR) by using different validation data from 2000 to 2007.
Subplots (a,d,g,j) represent validation results using direct observations, while (b,e,h,k) represent SunDu-derived Rs data
(SunDu Rs), and subplots (c,f,i,l) represent Clouds and the Earth’s Radiant Energy System energy balanced and filled
product (CERES EBAF) data (CERES).
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3.2. Spatial Distribution

As shown in Figure 3, the multiyear means of Rs from 2000 to 2007 derived from the
SunDu sites are high in west China, ranging from 180 to 300 W/m2, and low in eastern
China, ranging from 120 to 180 W/m2. CERES EBAF, CMASF, GEWEX, HXG and HGWR
have similar spatial patterns of Rs. Slight differences are found in west China. HXG
and HGWR show better performances than other Rs products compared with the SunDu-
derived Rs reference data, which might be attributed to the high spatial resolution of cloud
input data from ISCCP-HXG (Table S3). By merging the SunDu-derived Rs, HGWR showed
an improved performance compared with HXG at independent SunDu sites, with R2 values
from 0.91 to 0.95 MAB reduced from 27.6% to 4.97 W/m2 and RMSE reduced from 25.2%
to 6.13 W/m2 (Table S3).
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Figure 3. Spatial distribution of multiyear mean Rs from 2000 to 2007. The first line (a,b) shows the observed multiyear mean
Rs from SunDu and CERES EBAF (CERES); the multiyear mean Rs derived from the CMSAF CLARA-A2 (CMSAF) and
GEWEX-SRB (GEWEX) are shown in the second line (c,d), respectively. The third line (e,f) shows the observed multiyear
mean monthly Rs from ISCCP-HXG (HXG) and ISCCP-HXG merged with SunDu-derived Rs (HGWR).

The spatial distribution of trends in Rs over China from 2000 to 2007 is shown in
Figure 4. Based on the SunDu-derived Rs data, Rs shows an increasing trend in South China
and a decreasing trend in most parts of the North China Plain. CERES EBAF and CMSAF
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have consistent spatial distributions of Rs trends over most parts of China compared with
the SunDu-derived Rs. The results demonstrate that the SunDu-derived Rs can produce
reliable Rs trends with large spatial coverage. GEWEX and HXG produce decreasing trends
in most parts of China, which is inconsistent with the SunDu Rs and CERES EBAF data. By
merging the SunDu-derived Rs site data, the inconsistent Rs trends from HXG are corrected
and compared with the CERES and CMSAF Rs data. The difference spatial distribution of
Rs trend might be attributed to the input of cloud and aerosols data. Both CERES EBAF
and CMSAF use CALIPSO-CALIOP cloud information to adjust the cloud input data. Both
GEWEX and HXG use climatology of aerosol data [22]. In southern coastal regions of
China, all Rs products show decreasing trend, which might be the dominated impacts
of clouds. However, in the southern inland regions of China, the Rs trend from these Rs
products is quite different, which might be the different ability of simulating the aerosols
loading in these regions. In the western part of China, largest differences in Rs trend from
these Rs products show in the Qinghai-Tibet Plateau and Tianshan Mountains, which might
be attributed to impacts of the complex terrain. Similar results also show in Daxinganling
Mountain in Northeast China.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 18 
 

 

The spatial distribution of trends in Rs over China from 2000 to 2007 is shown in Fig-
ure 4. Based on the SunDu-derived Rs data, Rs shows an increasing trend in South China 
and a decreasing trend in most parts of the North China Plain. CERES EBAF and CMSAF 
have consistent spatial distributions of Rs trends over most parts of China compared with 
the SunDu-derived Rs. The results demonstrate that the SunDu-derived Rs can produce 
reliable Rs trends with large spatial coverage. GEWEX and HXG produce decreasing 
trends in most parts of China, which is inconsistent with the SunDu Rs and CERES EBAF 
data. By merging the SunDu-derived Rs site data, the inconsistent Rs trends from HXG are 
corrected and compared with the CERES and CMSAF Rs data. The difference spatial dis-
tribution of Rs trend might be attributed to the input of cloud and aerosols data. Both 
CERES EBAF and CMSAF use CALIPSO-CALIOP cloud information to adjust the cloud 
input data. Both GEWEX and HXG use climatology of aerosol data [22]. In southern 
coastal regions of China, all Rs products show decreasing trend, which might be the dom-
inated impacts of clouds. However, in the southern inland regions of China, the Rs trend 
from these Rs products is quite different, which might be the different ability of simulating 
the aerosols loading in these regions. In the western part of China, largest differences in 
Rs trend from these Rs products show in the Qinghai-Tibet Plateau and Tianshan Moun-
tains, which might be attributed to impacts of the complex terrain. Similar results also 
show in Daxinganling Mountain in Northeast China. 

 

Figure 4. Spatial distributions of trends for Rs from 2000 to 2007. The first line (a,b) shows the SunDu-derived Rs and CERES
EBAF Rs (CERES); the Rs-derived CMSAF CLARA-A2 (CMSAF) and GEWEX-SRB (GEWEX) are shown in the second line
(c,d). Subplots (e,f) represent ISCCP-HXG-derived Rs (HXG) and ISCCP-HXG merged with SunDu-derived Rs (HGWR).



Remote Sens. 2021, 13, 602 10 of 18

To further assess the spatial distribution of the Rs trend, we compared the spatial
distribution of the Rs trends over three time periods, including 1984 to 2000, 2000 to 2016
and 1984 to 2016 (Figure 5). For 1984 to 2000, SunDu-derived Rs showed an increasing Rs
trend over central and northeastern China and a slight decreasing trend for the southern
part of China. HXG overestimates the decreasing Rs trend in southern China and under-
estimates the increasing Rs trend over central and northeastern China. For 2000 to 2016,
the SunDu-derived Rs and HXG produced similar Rs trends over China. For 1984 to 2016,
the SunDu-derived Rs showed a levelling off trend over most parts of China, with a slight
increasing trend over Southwest China and a decreasing trend over the North China Plain.
Comparatively, HXG produces an overestimated decreasing trend in most parts of China.
By merging the SunDu-derived Rs data, the inconsistent Rs trends in these time periods are
corrected in HGWR. The different spatial distribution of Rs trends between SunDu derived
Rs and HXG might be that HXG use climatology aerosol data.
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Figure 5. Spatial distributions of trends for Rs from 1984 to 2000, 2000 to 2016 and 1984 to 2016. The first line (a,b,c) shows
the Rs trends from 1984 to 2000 based on SunDu-derived Rs (SunDu Rs), ISCCP-HXG-derived Rs (HXG) and ISCCP-HXG
merged with SunDu-derived Rs (HGWR). The second (d,e,f) and third lines (g,h,i) show the Rs trends from 1984 to 2016
and 2000 to 2016, respectively.

3.3. Long-Term Variation

Figure 6 shows the national mean long-term variation in Rs from observations and
satellite retrievals. The directly observed Rs showed a decreasing trend before 1990, an
abrupt increase from 1990 to 1994, and an increasing trend after 2000. The SunDu-derived Rs
showed a decreasing trend before 1990 and a levelling off trend afterward. Comparatively,
the SunDu-derived Rs, CERES EBAF and CMSAF produce consistent Rs annual variations
after 2000. Before 2000, large numbers of missing data eliminated the CMSAF to produce
continuous Rs variations over China. GEWEX has a nearly consistent Rs variation compared
with the SunDu-derived Rs, except it underestimates the Rs variation from 2002 to 2004.
HXG shows a large, inconsistent Rs variation compared with the SunDu-derived Rs. By



Remote Sens. 2021, 13, 602 11 of 18

merging the SunDu-derived Rs data, the inconsistent Rs variation in HXG is corrected
in HGWR. Table 1 also shows that the HGWR produces the closest national mean trend
(−0.64 W/m2/decade) from 1983 to 2016 compared with SunDu (−0.57 W/m2/decade).
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Figure 6. The national mean of the annual anomaly of the Rs by using 121 observation sites from 1983 to 2016 derived
from observations and satellite-derived Rs, including direct Rs observations (Obs), SunDu derived Rs (SunDu), CERES
EBAF (CERES), GEWEX-SRB (GEWEX), ISCCP-HXG (HXG) and the merged Rs data (HGWR). Direct observed Rs data,
SunDu-derived Rs and CERES EBAF are shown as the light grey line, the black line and the orange line, respectively. The
brown line, the light blue line and the blue line represent the Rs variations derived from CMSAF CLARA-A2 (CMSAF),
GEWEX-SRB (GEWEX) and ISCCP-HXG derived Rs (HXG), respectively. The ISCCP-HXG derived Rs merged with SunDu
derived Rs (HGWR) is shown as the green line.

Table 1. Statistical summary of national mean linear trends of monthly anomalous surface solar radi-
ation (Rs) (10 years) derived from observations and satellite retrievals, including direct observations
(Obs), SunDu-derived Rs (SunDu), CERES EBAF (CERES), GEWEX-SRB (GEWEX), CMSAF CLAR
A2 (CMSAF), ISCCP-HXG (HXG) and merged Rs data (HGWR).

1983–2007 2000–2007 2000–2016 1983–2016

Obs −2.52 −1.81 2.87 −0.07
SunDu −0.77 −0.76 −0.26 −0.57
CERES −3.25 −1.25
CMSAF 5.46 1.36 −1.16 2.56
GEWEX −2.88 −6.96 −6.96 −2.88

HXG −5.28 −8.40 −2.12 −4.28
HGWR −0.49 −1.89 −1.53 −0.64

Based on the classified subregions shown in Figure 1, we further evaluated the regional
mean long-term variation in Rs from the observations and satellite retrievals (Figure 7).
The abrupt increasing Rs trends of the observed Rs from 1990 to 1994 are shown in zone
V (southern China) and zone IX (Qinghai-Tibet Plateau), which might be caused by the
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instrument replacements in this period [10]. Compared with other data, a high increasing
trend after 2000 from the directly observed Rs is shown in zones II, VI and VII. The SunDu-
derived Rs generally showed consistent Rs variations with CERES in all regions. In zone II,
Li et al. (2018) [81] reports a sharply increasing Rs trend in the North China Plain due to
controlling air pollution and reducing aerosol loading, which is consistent with our results.
A slightly inconsistent Rs variation in GEWEX is seen in zones I and V. It is probably
because the high aerosols loading caused by factories and commercial activities in these
regions, while GEWEX only use climatology aerosol data. Similar reasons might also result
in an inconsistent Rs variation in southern China from HXG, including zones III, IV, V and
VI. By merging SunDu-derived Rs data, HGWR can produce a consistent Rs variation with
the SunDu-derived Rs and CERES. CMSAF have large different Rs variation compared
with other datasets, including zones IV, VII, VIII and IX. This might because that large
amount of invalid value in CMSAF especially before 2000.
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Figure 7. The regional mean of the annual anomaly of the Rs for different subregions. Nine subregions (I to IX) over China
are shown in Figure 1. The direct observed Rs data, SunDu-derived Rs and CERES EBAF are shown as the light grey lines,
the black lines and the orange lines. The brown lines, the light blue lines and the blue lines represent the Rs variation
derived from the CMSAF CLARA A2 (CMSAF), GEWEX-SRB (GEWEX) and ISCCP-HXG derived Rs (HXG), respectively.
The ISCCP-HXG derived Rs merged with SunDu derived Rs (HGWR) is shown as the green lines.
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4. Discussion

The results comparison indicates that the Rs retrievals from HXG and HGWR show
better performances than CMSAF and GEWEX. The global validation of hourly Rs from
HXG reported by (Tang et al. 2019) [57] suggests that HXG shows a better performance than
ISCCP-FD. A comparison of GEWEX with direct observations over China suggests that
GEWEX has large biases ranging from 8 to 9 W/m2 [82]. Biases in cloud optical thickness
have been shown to lead to large relative errors in the radiance fluxes over the Arctic when
derived from GEWEX and CMSAF compared with CERES [83]. The validation results of
HGWR illustrate that the impact of inhomogeneous input data can be reduced by merging
with ground-based observations.

The GWR has been demonstrated to be quite flexible in many previous study ar-
eas, including geography [78,84], economics [85], meteorology [79,84,86] and epidemiol-
ogy [87]. The results comparison from previous studies also suggests that GWR has a
better performance than other methods, including the linear regression method and spline
interpolation [79,88].

Previous studies have shown that Rs over China has a decreasing trend from 1961 until
approximately 1990 and levels off in approximately 1990 [42,89–91], which is consistent
with our results. Except for the instrument replacement from 1990 to 1993 [10–12], the
consistent trend from the direct observations and SunDu-derived Rs indicates that the
merged Rs data by combined HXG and SunDu-derived Rs can produce a reasonable long-
term Rs variation in China. Our previous study also demonstrates that the impact of
aerosols can be included in SunDu derived Rs; the disadvantages of using constant aerosol
value in Rs satellite retrievals can be overcome by merging SunDu derived Rs [59], and
the product of this study is merged high resolution surface solar radiation data over 1983
to 2017 while the time period of products of [59] is from 2000 to 2017 based on MODIS
cloud retrievals. We also compare the merged products with the MODIS based merged
products of [59], all these datasets show generally similar Rs trend from 2000 to 2016
(Figure S6). Slight differences exist which are closed with the relationship of input satellite
data. We notice that the original MODIS cloud data are more spatially consistent, and the
original ISCCP-HXG have more mosaic patterns. Most of these differences are eliminated
by merged with SunDu derived Rs. The advantages of the MODIS based merged products
is that the cloud and AOD are derived from MODIS retrievals. The advantage of the
merged dataset from this study is the long-term record from 1983 to 2017.

The reduced performances of GEWEX and HXG might have been attributed to the
inhomogeneity of cloud and aerosol input data in the radiation transfer model. Hayasaka
(2016) [91] points out that discontinuities exist in the long-term variation in the Rs from
GEWEX-SRB due to the transition from one reference satellite to the next satellite. Wang
et al. (2015) [10] also noticed that different amounts of data from polar orbits and geosta-
tionary satellites and their different capabilities for detecting low-level clouds introduced
inhomogeneity into the ISCCP-derived Rs data. For aerosols, the recent comparison work
with CMSAF on the Iberian Peninsula for the period of 1985 to 2015 also suggests that the
reason for the disagreement in trends between the satellite and reference ground-based
SIS data over the Iberian Peninsula may be related to aerosols. Tang et al. (2019) [57] also
noted that care should be taken when using HXG-derived Rs for trend analysis due to the
use of climatological aerosol and albedo data.

Uncertainties might be introduced when comparing ground observations with satellite
data. However, Huang et al. (2016) [92] show that the sampling error for a 5 × 5 km2

area ranged from 1.4 to 8.1% on monthly to “instantaneous” timescales, respectively. The
direct comparisons between the Rs from the Geostationary Operational Environmental
Satellite (GOES) and that measured at the Atmospheric Radiation Measurement (ARM)
Southern Great Plains (SGP) site show that the sampling error decreases and levels off to
a relatively small and stable value when averaged over periods greater than 5 days [93].
Hakuba et al. (2013a) [94] found that either a site-specific correction factor or increasing
the number of sites in a grid box would reduce the sampling bias. These findings indicate
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that the sampling error would be small on a monthly timescale. We notice that SunDu
data are not evenly distributed, especially in the northwestern region. The accuracy of
applying spatial interpolation methods will decrease significantly when ground stations
are sparse and non-uniform [95]. GWR can overcome this deficiency of spatial interpolation
by taking account of spatially heterogeneous relationships between the dependent variable
and regressors. The results also demonstrate that our GWR based fusion methods have
better performance in the northwestern region (Figure S1), However, the uncertainties
cannot be ruled out entirely, which need more ground-based study in the northwestern
region of China in the future.

5. Conclusions

We compared four long-term AVHRR Rs products (GEWEX, CMSAF, HXG and
HGWR) by using direct Rs observations, SunDu-derived Rs and CERES EBAF data as
references. The spatial distribution of Rs and long-term trends over China are evaluated
from 1983 to 2016. The results show that the four Rs products produce similar multi-
year mean Rs values, but there are large differences in simulating the Rs variability and
long-term trends.

Among these four Rs products, HXG produced the longest Rs records from 1983 to
2016 and few missing data. However, the long-term variability in Rs from HXG is slightly
inconsistent with the observations. Comparatively, HGWR shows the best performance
with a high R2 and lower RMSE and has a consistent long-term Rs trend and variability. The
results suggest that further improvement in long-term trend Rs simulations is still needed.
The merged Rs product (HGWR) can contribute to hydrology and ecology applications and
research related to the simulation of land surface processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-4292/13/4/602/s1. Figure S1: The regional validations of monthly surface solar radiation (Rs).
Table S1: Details of the data products used in this comparison, Statistical summary of GWR parameter
optimization. Table S3: Statistical comparison of surface solar radiation Rs.
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