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Abstract: Spectrum analysis (SA) plays an important role in radar signal processing, especially in
radar imaging algorithm design. Because it is usually hard to obtain the analytical expression of
spectrum by the Fourier integral directly, principle of stationary phase (POSP)-based SA is applied to
approximate this integral. However, POSP requires the phase of the signal to vary rapidly, which is
not the case in circular synthetic aperture radar (SAR) and turntable inverse SAR (ISAR). To solve this
problem, a new SA method based on time-frequency reversion (TFRSA) is proposed, which utilizes
the relationship of the Fourier transform pairs and their corresponding signal phases. In addition,
the connection between the imaging geometry and time-frequency relationship is also analyzed
and utilized to help solve the time-frequency reversion. When the TFRSA is applied to the linear
trajectory SAR, the obtained spectrum expression is the same as the result of POSP. When it is applied
to ISAR, the spectrum expressions of near-field and far-field are derived and their difference is found
to be position-independent. Based on this finding, an extended polar format algorithm (EPFA) for
near-field ISAR imaging is proposed, which can solve the distortion and defocusing problems caused
by traditional ISAR imaging algorithms. When it is applied to the circular SAR (CSAR), a new and
efficient imaging method based on EPFA is proposed, which can solve the low efficiency problem of
conventional BP-based CSAR imaging algorithms. The simulations and real data processing results
are provided to validate the effectiveness of proposed method.

Keywords: spectrum analysis (SA); time-frequency reversion (TFR); radar imaging; synthetic aper-
ture radar (SAR); near-field inverse SAR (ISAR); circular SAR (CSAR)

1. Introduction

Radar can realize long distance target detection, localization, imaging, classification
and recognition in all-day and all-weather conditions, and has become a significant tool
in many applications. Among these applications, Synthetic aperture radar (SAR) [1–3]
and inverse SAR (ISAR) [4–6] imaging attracted much attention, because they can pro-
vide two-dimension high-resolution images, which contain many features, for example,
the size and shape. Different from optical imaging, radar imaging produces images by
complex computation. The resolution of radar image in the range dimension is accom-
plished by transforming the large signal bandwidth, whereas the fine resolution in azimuth
stems from the difference in observation angles. With the development of advanced
hardware, the available radar bandwidth is becoming larger, which in turn produces
ultrahigh-resolution radar images. Recently, the microwave-photonic technique [7–9],
which combines the advantages of electromagnetic wave and photonics techniques, is
applied to the radar system to produce an ultra-large 10 GHz bandwidth radar signal.
This microwave-photonic radar can generate radar images with 1.5 cm resolutions [10,11].
In addition to the large bandwidth, wide-angle radar imaging is also a worthwhile study
direction, because it can not only produce ultrahigh azimuth resolution but also provide
anisotropy characteristic, which is very useful for target classification and recognition.

Remote Sens. 2021, 13, 600. https://doi.org/10.3390/rs13040600 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1301-6709
https://orcid.org/0000-0002-4084-0915
https://orcid.org/0000-0002-6482-0863
https://doi.org/10.3390/rs13040600
https://doi.org/10.3390/rs13040600
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13040600
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/4/600?type=check_update&version=2


Remote Sens. 2021, 13, 600 2 of 25

The design of radar imaging algorithm is usually based on the spectrum of the radar
received signal [3]. Different constructions of virtual synthetic apertures always lead to
different imaging algorithms. Thus, the spectrum analysis (SA) is very important to radar
imaging. The Fourier integral is a direct way to perform SA. However, the integral is
usually difficult to evaluate, and approximation is often applied to obtain the Fourier
integral. Principle of stationary phase (POSP) is one of the popular methods used for
asymptotic analysis [12]. Because the phase of the radar signal changes rapidly, the can-
cellation of sinusoids would cause the integral to be zero except near the stationary point.
Due to its simplicity, POSP is widely used in radar signal processing and imaging al-
gorithm design [13–15], especially for the linear trajectory SAR (LTSAR). Because the
phase is assumed to be changing rapidly, POSP is considered applicable when the signal’s
time and bandwidth product (TBP) is larger than 100, which is satisfied in most of the
LTSAR applications.

For curved trajectory SAR (CTSAR), like the circular SAR (CSAR), the TBP condition
cannot be satisfied for returns of scatterers near the scene center, and thus POSP cannot
be applied to CSAR. This leads to the difficulty of obtaining the spectrum expression
and designing efficient Doppler domain imaging algorithm for CSAR. Back-projection
algorithm (BPA) is a well-known and accurate time-domain imaging algorithm, which is
applicable to any trajectories of SAR. However in BPA, the value of every image pixel is cal-
culated by integrating using the accurate slant range, this incurs huge computational costs.
In order to improve the efficiency of imaging, many accelerated BPAs are proposed [16,17].
However, their efficiencies are still not comparable to that of frequency-domain algorithms,
for example, chirp scaling algorithm (CSA), frequency scaling algorithm (FSA), and range
migration algorithm (RMA) [3].

Different from SAR, which usually observes the stationary scene by moving the radar
along the predesigned trajectory, ISAR usually observes non-cooperative moving targets
in the static platform, which means its corresponding virtual synthetic aperture is more
complex and this leads to complicated Doppler spectrum. In traditional ISAR imaging,
the distance between the radar and target is usually considered much larger than the size
of the target. Thus, the plane wave assumption is applied to decompose the slant range
into the two uncoupled parts: translational motion (TM) and rotational motion (RM). TM is
the same for all scatterers of the target and has no contribution to ISAR imaging. There are
many methods proposed to compensate the TM to produce an equivalent turntable model
for ISAR imaging [18–20]. Moreover, many imaging algorithms were proposed for the
turntable ISAR imaging under the plane wave assumption, for example, the range-Doppler
algorithm (RDA), keystone transform (KT)-based imaging algorithm, and polar format
algorithm (PFA) [5].

However, with the increasing demand for finer image resolution, the accuracy require-
ment of error compensation for radar imaging has also increased. Besides, the distance
between radar and target for some applications are becoming smaller, for example, target
detection and ranging for autonomous vehicles, harbor surveillances, and airport secu-
rity checks [21–23]. In these situations, termed near-field ISAR imaging, the plane wave
assumption may not be accurate enough for high-resolution ISAR imaging and the corre-
sponding image quality would be degraded. In the near-filed situations, traditional ISAR
imaging algorithms, like KT-based method and PFA, would produce images with geomet-
ric distortion and defocusing problems. Besides, for the near-field turntable ISAR, where a
target is placed on a turntable with only rotational motion, the POSP is also inapplicable
because the returns of the scatterers near the turntable center are narrow-band signals.

In order to overcome the limitations of POSP, a new SA method based on time-
frequency reversion (TFR) is proposed in this paper. By utilizing the relationship between
the Fourier transform (FT) pairs and their corresponding signal phases, the frequency-time
distributed lines (FTDL) [24,25] can be obtained and the spectrum can be evaluated by
integrating the FTDL. Besides, the connection between the time-frequency relationship and
the imaging geometry is also analyzed, leading to a simplification of the time-frequency
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reversion process, and at the same time, providing a physical insight of the problem.
When the proposed TFR-based spectrum analysis (TFRSA) method is applied to LTSAR,
the derived spectrum expression is the same as the result of POSP, which validates the
accuracy of TFRSA. When TFRSA is applied to the near-field ISAR, its spectrum expression
is also derived. It is worth noting that the derived difference between near-field and far-
field spectrums is a position-independent expression. With this finding, an extended polar
format algorithm (EPFA) is proposed for the near-field ISAR imaging. When the TFRSA
is applied to the CSAR, its spectrum is approximated to a near-field ISAR spectrum with
position-dependent constant error, and an efficient CSAR imaging algorithm is proposed
based on the EPFA.

The remainder of the paper is organized as follows. In Section 2.1, the signal model
and adopted imaging geometry are given. In Section 2.2, the proposed TFRSA method is
introduced. In Section 2.3, the TFRSA is applied to the LTSAR to derive its spectrum ex-
pression and this expression is compared with the result of POSP. In Section 2.4, the TFRSA
is applied to the near-field ISAR to derive its spectrum expression and an EPFA is also
proposed for near-field ISAR imaging. In Section 2.5, the TFRSA is applied to the CSAR,
an efficient imaging method based on EPFA is proposed for CSAR. In Section 3, simulations
and real data processing results are provided to validate the effectiveness of the proposed
TFRSA and EPFA imaging methods. In Section 4, an explanation on the performances of
different algorithms is given and the future research directions are also discussed. Finally,
a conclusion is given in Section 5.

2. Materials and Methods
2.1. Radar Imaging Geometry and Signal Model

Different from optical imaging, which is based on the accumulation of photons, radar
imaging produces images by complex computation. Radar transmits electromagnetic wave
and receives the returns and samples them into digital data. Then, imaging processing is
applied to the digital data to generate a radar image.

For SAR, its imaging geometry is illustrated in Figure 1a, in which radar is observing
the static scene and moving along a predesigned trajectory. A Cartesian coordinate system
XOY is built on the imaging plane, which is defined by the radar velocity vector and the
line of sight (LOS) vector. The origin is set at the center of the scene. The observation
angle θ of radar is defined by the angle between the radar position vector and the Y-axis,
which is demonstrated in Figure 1a. The i-th scatterer on the ground, whose coordinates
are

(
xg

i , yg
i

)
on the ground coordinate system XgOYg, is projected onto the imaging plane

with the coordinates (xi, yi). Thus, the slant range between radar and i-th scatterer in the
scene can be expressed as

RSAR
i (θ) =

√
(r(θ) cos θ − yi)

2 + (r(θ) sin θ − xi)
2

=
√

r2(θ)− 2r(θ)(xi sin θ + yi cos θ) + x2
i + y2

i ,
(1)

where r(θ) denotes the distance between the radar and the origin.
For ISAR, its imaging geometry is illustrated in Figure 1b, in which the target is

moving along arbitrary trajectory whereas the radar is static. In this case, the origin of the
Cartesian coordinate system is set at the target center and the Y-axis is set parallel to the
LOS. The motion of the target can be decomposed into two parts of rotation motion and
radial translation, which corresponding to RM and TM, respectively. In order to express the
rotational angle between two different positions of the target, the coordinate system X1OY1
is first rotated to be parallel with XOY, which is demonstrated by step 1 in Figure 1b. Then,
X1OY1 is moved along the LOS to overlap with XOY, which is demonstrated by step 2.
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The rotational angle is defined by the ϑ demonstrated in Figure 1b. For the i-th scatterer in
the target, its slant range can be expressed by

RISAR
i (ϑ) =

√
(r(ϑ)− xi sin ϑ− yi cos ϑ)2 + (xi cos ϑ− yi sin ϑ)2

=
√

r2(ϑ)− 2r(ϑ)(xi sin ϑ + yi cos ϑ) + x2
i + y2

i

, (2)

where r(ϑ) denotes the distance between radar and the target center and (xi, yi) depicts
the coordinates of the i-th scatterer on the target when the rotational angle is 0. Comparing
Equation (1) with Equation (2), we see that they have the same form, which means they
are equivalent and they can be transformed into each other. Thus, for convenience, in the
followings, we only take SAR for an example to introduce the signal model.

(a) (b)

Figure 1. Radar imaging geometry. (a) Synthetic aperture radar (SAR) imaging geometry. (b) Inverse
synthetic aperture radar (ISAR) imaging geometry.

Assuming that radar transmits linear frequency modulation (LFM) signal and there
are K scatterers, after down conversion and range compression, the received signal in range
wavenumber and azimuth angle domain can be expressed as [26]

s(kr, θ) =
K

∑
i=1

Ai rect
[

kr

∆kr

]
exp(−jkrRi(θ))

=
K

∑
i=1

Ai rect
[

kr

∆kr

]
exp

(
−jkr

√
r2(θ)− 2r(θ)(xi sin θ + yi cos θ) + x2

i + y2
i

)
,

(3)

where Ai signifies the back scatter coefficient of the i-th scatterer, rect[ ] represents the
rectangular window, and kr and ∆kr denote the range wavenumber and range wavenumber
bandwidth, respectively. The angle θ is an azimuth variable and it can also be replaced by
other azimuth variables like azimuth time t or azimuth radar position Xr in the specific
situations. The signal spectrum of the radar returns in this paper refers to applying azimuth
FT along the azimuth variable of the signal in Equation (3).

2.2. Time-Frequency Reversion-Based Spectrum Analysis Method

Assuming θ is a function of azimuth time t and it is expressed as θ(t), we can rewrite
Equation (3) using the azimuth variable t as

s(kr, t) =
K

∑
i=1

Ai rect
[

kr

∆kr

]
exp

(
−jkr

√
r2(t)− 2r(t)(xi sin θ(t) + yi cos θ(t)) + x2

i + y2
i

)
, (4)
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By performing azimuth FT for the variable t, the Doppler spectrum of Equation (4)
can be obtained by

S(kr, fD) =
∫

s(kr, t) exp(−j2π fDt)dt, (5)

where fD signifies the Doppler frequency. Because the Fourier integral in Equation (5) is
usually difficult to evaluate, an approximation is often applied to Equation (5) to obtain a
simple result.

POSP is one of the common techniques to make this approximation. The main idea
of POSP relies on the cancellation of sinusoids with rapidly varying phases. The phase of
the radar signal usually changes rapidly due to the high carrier frequency, so the POSP
is suitable for radar signal processing and it is widely used in SAR imaging applications,
for instance, the FT of the LFM signal and LTSAR Doppler spectrum analysis.

Taking the FT for an example, assuming the analyzed signal is expressed as

g(t) = A(t) exp[jϕ(t)], (6)

where A(t) and ϕ(t) stand for the amplitude and phase of the signal g(t), respectively, and
the FT of g(t) in Equation (6) can be evaluated by

S(ω) =
∫

A(t) exp[jϕ(t)] exp(−jωt)dt

=
∫

A(t) exp[j(ϕ(t)−ωt)]dt

=
∫

A(t) exp[jφ(t)]dt,

(7)

where ω signifies the frequency variable. Assuming the stationary phase point of Equation (7)
is t = t∗ and approximating the phase term φ(t) by its second-order Taylor series,
which yields

φ(t) ≈ [ϕ(t∗)−ωt∗] +
1
2

ϕ′′(t∗)(t− t∗)2, (8)

where φ′′ denotes the second derivative of φ(t) about t. By applying the POSP to the
integral of Equation (7), the result can be expressed by

S(ω) ≈
∫

A(t∗) exp
[

j(ϕ(t∗)−ωt∗) + j
1
2

ϕ′′(t∗)(t− t∗)2
]

dt

=

√
2π

|φ′′(t∗)|A(t∗) exp
[

j
(

ϕ(t∗)−ωt∗ ± π

4

)]
,

(9)

where
√

2π
|φ′′(t∗)| is a constant number and it is often ignored. From Equation (9) we find

that POSP can simplify the FT integral and produce good approximated result, so it is
widely used in radar signal processing.

However, the phase of the radar signal does not always change rapidly, for exam-
ple, the returns of the CSAR and turntable ISAR. In these cases, the POSP would cause
large error and the analyzed results are unusable. In order to solve this problem, we
propose a new TFRSA method, which utilizes the relationship of the Fourier pairs and
their corresponding signal phase. Here, we take the Fourier pairs of time and frequency
as an example. The frequency can be expressed as the derivative of the signal phase of
Equation (6), which is given by

ω =
dϕ(t)

dt
= ϕ′(t), (10)
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where ϕ′ depicts the derivative of the signal phase. Equation (10) is also called the time-
frequency distribution lines (TFDL) [24,25], which is used to describe the characteristic of
the signal. Moreover, for the spectrum of Equation (7), the time can also be expressed by
the negative derivative of its phase, which is given by

t(ω) = −dϕS(ω)

dω
, (11)

where ϕS(ω) stands for the phase of the signal spectrum. Equation (11) is also called the
FTDL. TFDL can be regarded as a 90 degrees rotation of the FTDL [27,28], which means
that we can obtain the FTDL from the TFDL. Then, the spectrum phase can be calculated
by integrating the FTDL along the frequency variable ω, which yields

ϕS(ω) =
∫
−t(ω)dω =

∫
ϕ′
−1

(ω)dω, (12)

where ϕ′−1(ω) denotes the inverse function of ϕ′(t). Because the amplitude A(t) is a
low-frequency narrow band signal, and its FT can be regarded as an impulse function near
the zero frequency, its effect on the signal spectrum can be regarded as a constant number
and it is often ignored. This spectrum analysis method is called TFRSA. Furthermore,
the FTDL can also be obtained from the imaging geometry, which utilizes the relationship
between the instantaneous squint angle (ISA) and the spectrum variable. The ISA of the
i-th scatterer is defined as the angle between the normal vector ~v⊥ of radar velocity and the
vector from radar pointing to the scatterer, which is illustrated in Figure 1a. The ISA can
also be expressed by the spectrum variable as follows

f i
D = −2vins

λ
sin θins

i ⇒ sin θins
i = −

λ f i
D

2vins , (13)

where f i
D and θins

i depict the Doppler frequency and the ISA of the i-th scatterer, respec-
tively, λ and vins signify the wavelength of the transmitted signal and the instantaneous
velocity of the radar, respectively. Equation (13) reveals that there is a one-to-one map-
ping relationship between frequency and ISA. Combing the geometry relationship and
Equation (13) can help us simplify the spectrum derivation and have a better understand-
ing of the TFRT. In the following, we will apply the TFRSA to three specific applications to
validate its effectiveness.

2.3. Linear Trajectory SAR Spectrum Analysis Based on TFRSA

Linear trajectory sweep mode is one of the most common modes in the SAR, and its
spectrum result has been well studied by the POSP and validated in many applications.
In this subsection, we apply the TFRSA to the LTSAR and compare the derived spectrum
with the result of POSP. The imaging geometry of the LTSAR is illustrated in Figure 2.
Here, we use the radar azimuth position Xr as the azimuth variable and the corresponding
spectrum azimuth variable is the azimuth wavenumber kx. From the geometry relationship
in Figure 2, the ISA of the i-th scatterer can be expressed as

tan θins
i =

Xr − xi
Rb − yi

, (14)

where Rb signifies the range between the scene center and the linear trajectory. Using the
spectrum azimuth variable kx to express the ISA and it yields

tan θins
i =

−kx√
k2

r − k2
x

, (15)
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where the radial wavenumber vector is parallel to the line from the radar pointing to the
scatterer and the azimuth wavenumber vector is parallel to the radar velocity. Combining
Equations (14) and (15), we can obtain

Xr(kx) = (Rb − yi)
−kx√
k2

r − k2
x
+ xi, (16)

Figure 2. Imaging geometry of linear trajectory SAR.

The phase of the spectrum can be calculated by

ϕS(kx) =
∫
−Xr(kx)dkx =

∫ (
(Rb − yi)

kx√
k2

r − k2
x
− xi

)
dkx = −

√
k2

r − k2
x(Rb − yi)− kxxi, (17)

So, the spectrum derived by TFRSA is

S(kr, kx) =
K

∑
i=1

Ai rect
[

kr

∆kr

]
exp

[
−j
(√

k2
r − k2

x(Rb − yi) + kxxi

)]
, (18)

Equation (18) is the same as the result derived by the POSP [3], which means the
TFRSA has the same accuracy as POSP for LTSAR, but it is easier to understand physically.
In the following, the TFRTAR is applied to the situations where POSP cannot be used,
which are near-field ISAR and CSAR applications.

2.4. Near-Field ISAR Spectrum Analysis Based on TFRSA and EPFA for Near-Field ISAR Imaging

Because the plane wave assumption is not valid in the near-field ISAR, the traditional
ISAR imaging algorithm would cause distortion and defocusing for near-field ISAR imag-
ing. To solve these problems, a new imaging algorithm should be designed based on the
spectrum of the near-field ISAR. For simplicity, here we take the turntable near-field ISAR
as an example to analyze its spectrum. The geometry of the near-field ISAR is demonstrated
in Figure 3 and the slant range of i-th scatterer in the target can be expressed by

RNF
i (ϑ) =

√
(R0 − xi sin ϑ− yi cos ϑ)2 + (xi cos−yi sin ϑ)2, (19)

where R0 stands for the distance between the radar and the turntable center. From the
geometry given in Figure 3, we can calculate the ISA of the i-th scatterer by

tan θins
i =

−(xi cos ϑ− yi sin ϑ)

R0 − xi sin ϑ− yi cos ϑ
, (20)
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Because the relationship of Equation (15) still holds here, by combining Equations (15)
and (20), we can obtain

−(xi cos ϑ− yi sin ϑ)

R0 − xi sin ϑ− yi cos ϑ
=

−kx√
k2

r − k2
x

, (21)

Thus, the rotational angle ϑ can be expressed by the azimuth wavenumber kx as

ϑNF(kx) = arccos

 R0kx

kr

√
x2

i + y2
i

+ arctan

(
xikx − yi

√
k2

r − k2
x

yikx + xi
√

k2
r − k2

x

)
, (22)

where arccos( ) and arctan( ) signify the arccosine and arctangent functions.

Figure 3. Imaging geometry of near-field ISAR.

We perform FT on the rotation angle ϑ with the angular wavenumber ζ as a variable.
Transforming the imaging geometry of near-field ISAR into the CSAR imaging geometry
means that the radar is moving along a circle centered at the turntable. Then, the relation-
ship between radar aperture position Xr and rotational angle ϑ is Xr = R0ϑ. According to
the property of FT, the relationship between ζ and kx can be expressed by

kx = ζ/R0 ⇒ ζ = kxR0, (23)

Substituting Equation (23) into Equation (22), the rotational angle can be rewritten as

ϑNF(ζ) = arccos

 ζ

kr

√
x2

i + y2
i

+ arctan

 xiζ − yi

√
R2

0k2
r − ζ2

yiζ + xi

√
R2

0k2
r + ζ2

, (24)

The spectrum phase of the near-field ISAR can be calculated by

ϕSi
NF(ζ) =

∫
−ϑNF(ζ)dζ = −

∫
arccos

 ζ

kr

√
x2

i + y2
i

+ arctan

 xiζ − yi

√
R2

0k2
r − ζ2

yiζ + xi

√
R2

0k2
r − ζ2

dζ

=
√

k2
r
(

x2
i + y2

i
)
− ζ2 −

√
R2

0k2
r − ζ2 − ζ arccos

 ζ

kr

√
x2

i + y2
i


− ζ arctan

 xiζ − yi

√
R2

0k2
r − ζ2

yiζ + xi

√
R2

0k2
r − ζ2

,

(25)
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where ϕSi
NF depicts the spectrum phase of the i-th scatterer in near-field ISAR situation

when (xi, yi) 6= (0, 0). When the scatterer is located at the turntable center, according
to the imaging geometry, the range between radar and the scatterer is unchanged. Thus,
the phase of the scatterer is constant and the spectrum of the scatterer is an impulse function.
The spectrum of the i-th scatterer in the near-field can be expressed by

SNF(kr, ζ) =
K

∑
i=1

Si
NF(kr, ζ), (26)

with

Si
NF(kr, ζ) =

Ai rect
[

kr

∆kr

]
δ(ζ), (xi, yi) = (0, 0)

Ai rect
[

kr

∆kr

]
rect

[
ζ − ζ ic

NF
∆ζ i

NF

]
exp

[
j
(√

k2
r
(
x2

i + y2
i
)
− ζ2 −

√
R2

0k2
r − ζ2

)]

× exp

−jζ

arccos

 ζ

kr

√
x2

i + y2
i

+ arctan

 xiζ − yi

√
R2

0k2
r − ζ2

yiζ + xi

√
R2

0k2
r − ζ2

, otherwise

, (27)

ζ i
NF = −kr

dRi(ϑ)

dϑ
= −krR0

xi cos ϑ− yi sin ϑ

RNF
i (ϑ)

, (28)

∆ζ i
NF = max

[
ζ i

NF

]
−min

[
ζ i

NF

]
, (29)

ζ ic
NF = −krR0

xi√
(R0 − yi)

2 + x2
i

, (30)

where Si
NF denotes the near-field spectrum of the i-th scatterer, δ( ) stands for the impulse

function, ζ i
NF signifies the angle wavenumber of the i-th scatterer, and ∆ζ i

NF and ζ ic
NF depict

the bandwidth and the center angle wavenumber of the i-th scatterer in the near-field case.
Observing Equation (27) reveals that different scatterers have different spectrums, namely,
position-dependent, and the spectrum is more sensitive to the X-coordinate of the scatterer.

From electromagnetic theory, we know that a spherical wave can be decomposed into
a summation of plane waves [29]. Thus, instead of trying to design an imaging algorithm
directly from the near-field spectrum, we decided to design an algorithm from these plane
wave components. According to the plane wave assumption, the far-field slant range of
i-th scatterer can be expressed by

RFF
i (ϑ) = R0 − xi sin ϑ− yi cos ϑ, (31)

By applying the TFRSA to the far-field situation, we can obtain its TFDL by

ζ i
FF = −kr

dRFF
i (ϑ)

dϑ
= kr(xi cos ϑ− yi sin ϑ), (32)

Rotating the TFDL by 90 degrees, the FTDL can be obtained by

ϑFF(ζ) = arccos

 ζ

kr

√
x2

i + y2
i

− arctan
(

yi
xi

)
, (33)
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According to the TFRSA, the phase of the far-field spectrum can be calculated by

ϕSi
FF(ζ) =

∫
−ϑFF(ζ)dζ =

∫
− arccos

 ζ

kr

√
x2

i + y2
i

+ arctan
(

yi
xi

)
dζ

=
√

k2
r
(
x2

i + y2
i
)
− ζ2 − ζ arccos

 ζ

kr

√
x2

i + y2
i

+ ζ arctan
(

yi
xi

), (34)

where ϕSi
FF depicts the spectrum phase of the i-th scatterer in far-field ISAR satiation. Like

near-field ISAR, the spectrum of the i-th scatterer in the far-field can be expressed by

SFF(kr, ζ) =
K

∑
i=1

Si
FF(kr, ζ), (35)

with
Si

FF(kr, ζ) =

Ai rect
[

kr

∆kr

]
δ(ζ), (xi, yi) = (0, 0)

Ai rect
[

kr

∆kr

]
rect

[
ζ − ζ ic

FF
∆ζ i

FF

]
exp

[
j
√

k2
r
(
x2

i + y2
i
)
− ζ2

]

× exp

−jζ

arccos

 ζ

kr

√
x2

i + y2
i

+ arctan
(

xi
yi

), otherwise

, (36)

∆ζ i
FF = max

[
ζ i

FF

]
−min

[
ζ i

FF

]
, (37)

ζ ic
FF = −krxi, (38)

where Si
FF denotes the far-field spectrum of the i-th scatterer, ζ i

FF signifies the angular
wavenumber of the i-th scatterer, and ∆ζ i

FF and ζ i
FF depict the bandwidth and the cen-

ter angle wavenumber of the i-th scatterer in the far-field case, respectively. Comparing
Equations (27) and (36), the spectrums in the near-field and far-field situations are very
similar except for a phase difference. This phase difference can be obtained by subtracting
Equation (25) from Equation (34), and it yields

ϕSi
Di f (ζ) = ϕSi

FF(ζ)− ϕSi
NF(ζ)

= ζ arctan
(

yi
xi

)
+
√

R2
0k2

r − ζ2 + ζ arctan

 xiζ − yi

√
R2

0k2
r − ζ2

yiζ + xi

√
R2

0k2
r − ζ2


=
√

R2
0k2

r − ζ2 + ζ arcsin
(

ζ

krR0

) , (39)

The detailed derivation of the above result is provided in Appendix A. Observing
Equation (39) we can find that the phase difference is position-independent, which means
we can transform the near-field spectrum into the far-field spectrum just by multiplying a
compensation function in the spectrum domain. The constructed compensation function is
given by

HN2F(kr, ζ) = exp
(

jϕSi
Di f (ζ)− jkrR0

)
= exp

[
j
(√

R2
0k2

r − ζ2 + ζ arcsin
(

ζ

krR0

)
− krR0

)]
, (40)

where the term krR0 is added to avoid changing the position of range profile.



Remote Sens. 2021, 13, 600 11 of 25

After spectrum compensation, the near-field ISAR signal can then be modeled as
an equivalent far-field ISAR signal. Transforming the compensated signal into the range
wavenumber and azimuth angle domains via the azimuth inverse FT and it yields

sC(kr, ϑ) =
K

∑
i=1

Ai rect
[

kr

∆kr

]
rect

[
ϑ− ϑic

∆ϑi

]
exp[jkr(xi sin ϑ + yi cos ϑ)], (41)

with
ϑic =

xi√
R2

0 + x2
i

, (42)

∆ϑi = max
[
ϑi
]
−min

[
ϑi
]
, (43)

where ϑic denotes the angle bias of the i-th scatterer caused by the compensation function
HN2F and ∆ϑi depicts the radar observation angle range of the i-th scatterer. Observing
Equation (41) reveals that after compensating, the signals of different scatterers would shift
along the azimuth dimension.

By applying the polar reformatting to Equation (41), namely, kα = kr sin ϑ, kβ = kr cos ϑ,
it can be rewritten as

sC
(
kβ, kα

)
=

K

∑
i=1

Ai rect

[
kβ − kic

β

∆ki
β

]
rect

[
kα − kic

α

∆ki
α

]
exp

[
j
(
kαxi + kβyi

)]
, (44)

where kβ and kα denote the range wavenumber and cross-range wavenumber, respectively;
kic

β and kic
α signify the range and cross-range wavenumber centers of the i-th scatterer,

respectively; and ∆ki
β and ∆ki

α depict the range and cross-range wavenumber bandwidths
of the i-th scatterer, respectively. Finally, by performing two-dimensional FFT (2-D FFT) to
Equation (44), the focused near-field ISAR image can be obtain by

I(x, y) = FFT2
[
s
(
kβ, kα

)]
=

K

∑
i=1

Ak sinc
(

x− xi

2π/∆ki
α

)
sinc

(
y− yi

2π/∆ki
β

)
, (45)

where FFT2[ ] depicts the 2-D FFT. Observing Equation (45) reveals that the resolutions
of the image in range and cross-range dimensions are ρi

r = 2π/∆ki
β and ρi

a = 2π/∆ki
α,

which means different scatterers have different resolutions. Besides, the image pixel size in
cross-range and range dimensions are{

pixα = 2π/∆kα

pixβ = 2π/∆kβ
, (46)

with 
∆kα = max

[
ki

α

]
−min

[
ki

α

]
, for all i = 1, 2, . . . , K

∆kβ = max
[
ki

β

]
−min

[
ki

β

]
, for all i = 1, 2, . . . , K

, (47)

where pixα and pixβ are used to perform 2-D image scaling for the obtained image. This
new imaging algorithm for near-field ISAR imaging is called extended polar format algo-
rithm (EPFA), and its flowchart is given in Figure 4. The whole algorithm includes three
steps: spectrum correction, polar reformatting, and 2-D image scaling.
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Figure 4. The flowchart of extended polar format algorithm (EPFA) for near-field ISAR imaging.

2.5. CSAR Spectrum Analysis Based on TFRSA and EPFA-Based CSAR Imaging Method

In the CSAR imaging geometry, which is illustrated in Figure 5, the radar moves along
a circular trajectory and continuously observes the same scene. This leads to a much large
observation angle, which could produce ultrahigh resolution radar image of the scene.
The CASR imaging geometry is equivalent to the geometry of the near-field turntable ISAR
without consideration of the height of the trajectory. This means we can apply the EPFA
to the CSAR imaging with some additional compensation processing. According to the
geometry in Figure 5, the slant range of the i-th scatterer can be expressed by

RCSAR
i (θ, H) =

√
(r0 cos γ cos θ − yi)

2 + (r0 cos γ sin θ − xi)
2 + H2

≈
√
(r0 − xi sin θ cos γ− yi cos θ cos γ)2 + (xi cos θ cos γ− yi sin θ cos γ)2

+

(
x2

i + y2
i
)
sin2γ√

(r0 − yi cos γ)2 + x2
i cos2γ

, (48)

where θ and γ denote the rotational angle of the radar along the circular orbit and the
elevation angle of the orbit, respectively, which are illustrated in Figure 5. r0 stands for
the distance between the radar and the scene center and H signifies the height of the
orbit, which can be expressed by H = r0 sin γ. Observing the approximation result of
Equation (48) and comparing it with Equation (19), the CSAR slant range has the same form
as the near-field ISAR slant range without consideration of the constant error. Because the
constant error does not influence the signal spectrum, we can still apply the EPFA to CSAR
to obtain the equivalent far-field signal. However, the error would influence the polar
reformatting result, which would cause distortion and defocusing to the final image.

Figure 5. Imaging geometry of CSAR.

Substituting Equation (48) into the signal model of Equation (3), the received CSAR
signal after down conversion and range compression can be expressed as
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s(kr, θ) =
K

∑
i=1

Ai rect
[

kr

∆kr

]
exp

(
−jkr

√
(r0 − yi cos θ cos γ)2 + (r0 − xi sin θ cos γ)2

)

× exp

−jkr

(
x2

i + y2
i
)
sin2γ√

(r0 − yi cos γ)2 + x2
i cos2γ

 , (49)

Performing EPFA to Equation (49), we can obtain

s
(
kβ, kα

)
=

K

∑
i=1

Ai rect

[
kβ − kic

β

∆ki
β

]
rect

[
kα − kic

α

∆ki
α

]
exp

[
j
(
kαxi cos γ + kβyi cos γ

)]
× exp

−j
√

k2
α + k2

β

(
x2

i + y2
i
)
sin2γ√

(r0 − yi cos γ)2 + x2
i cos2γ


≈

K

∑
i=1

Ai rect

[
kβ − kic

β

∆ki
β

]
rect

[
kα − kic

α

∆ki
α

]
exp

[
j
(
kαxi cos γ + kβyi cos γ

)]
exp[j(ϕe1 + ϕe2)]

, (50)

with

ϕe1 = −kβ
x2

i sin2γ√
r2

0 + x2
i cos2γ

, (51)

ϕe2 = −
√

k2
α + k2

βc
y2

i sin2γ

r0 − yi cos γ
, (52)

where ϕe1 and ϕe2 signify the decomposed range profile error and phase error, which
would cause distortion and defocusing, respectively. kβc stands for the center of the range
wavenumber kβ.

In order to generate the focused image without distortion, we first compensate the
range profile error. Transforming Equation (50) to range wavenumber and azimuth position
domains by applying azimuth FT, we obtain

s
(
kβ, x

)
=

K

∑
i=1

Ai rect

[
kβ − kic

β

∆ki
β

]
sinc

[
x− xi cos γ

η2π/∆ki
α

]
exp

[
jkβyi cos γ

]
exp[jϕe1], (53)

where η stands for the azimuth main-lobe expansion factor caused by the phase error
ϕe2. Observing the sinc function term of Equation (53) reveals that the azimuth positions
of scatterers are scaled by the factor cos γ. We construct the range profile compensation
functions in the range wavenumber and azimuth position domain by

HEC1
(
kβ, xn

)
= exp

jkβ
x2

nsin2γ/cos2γ√
r2

0 + x2
n

, (54)

with

xn =
1

cos γ

(
n− Na

2

)
2π

∆kα
, n = 1, 2, . . . , Na, (55)

where xn denotes the real X-coordinate of the n-th azimuth pixel, Na signifies the number
of the pixels in azimuth dimension, and the term 2π/∆kα stands for the size of the image
pixel in azimuth dimension.
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After compensating the range profile error, the signal is transformed into the range
position and azimuth wavenumber domains, and it yields

s(y, kα) =
K

∑
i=1

Ai sinc

[
y−

(
yi cos γ + y2

i sin2γ/(R0 − yi cos γ)
)

2π/∆ki
β

]
rect

[
kα − kic

α

∆ki
α

]
× exp[jkαxi cos γ] exp[jϕe2],

(56)

From Equation (56), we can find that the focus positions of scatterers in range dimen-
sion are modulated by a complex function, which is given by

ŷi = M(yi) = yi cos γ + y2
i sin2γ/(R0 − yi cos γ) , (57)

where ŷi stands for the real focus position and M( ) signifies the focus position modulation
function. We can solve the real Y-coordinates of image pixels by using the inverse function
of M( ), and it yields

ym = M−1(ŷm), (58)

with

ŷm =

(
m− Nr

2

)
2π

∆kβ
, m = 1, 2, . . . , Nr, (59)

where ŷm denotes the focus position of the m-th range pixel and ym depicts the real Y-
coordinate of the m-th range pixel. Thus, the phase error compensation function can be
constructed by

HEC2(kα, ym) = exp

(
j
√

k2
α + k2

βc
y2

msin2γ

r0 − ym cos γ

)
, (60)

After compensating the phase error, the signal can be expressed as

s(y, kα) =
K

∑
i=1

Ai sinc

[
y−

(
yi cos γ + y2

i sin2γ/(R0 − yi cos γ)
)

2π/∆ki
β

]
rect

[
kα − kic

α

∆ki
α

]
exp[jkαxi cos γ], (61)

Finally, the focused CSAR imaging result can be obtained by applying the azimuth FT
to Equation (61), and it yields

I(x, y) =
K

∑
i=1

Ai sinc

[
y−

(
yi cos γ + y2

i sin2γ/(R0 − yi cos γ)
)

2π/∆ki
β

]
sinc

[
x− xi cos γ

2π/∆ki
α

]
, (62)

Besides, the vectors xn and ym can be used to scale the image in azimuth and range
dimensions, respectively. Finally, the flowchart of the EPFA-based CSAR imaging method
is illustrated in Figure 6.

Figure 6. Flowchart of EPFA-based CSAR imaging method.
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3. Results

To evaluate the performance of the proposed TFRSA and EPFA, we use both simulated
and real data. Results achieved by the proposed EPFA are compared with those obtained
by traditional PFA and BPA. Apart from comparing the visual images, the entropy, impulse
response width (IRW), and peak side lobe ratio (PSLR) of the final focused images are
measured to assess image qualities and the running times are measured to assess their
efficiencies. Because the proposed method is not revolved in parameters estimation,
the performance comparison between the proposed methods and other methods under
various SNR conditions will not have a much difference.

3.1. Simulations
3.1.1. Simulation for Near-Field ISAR Imaging

The simulated radar parameters for near-field ISAR are listed in Table 1. The target
point model of the airplane is shown in Figure 7a and the distance between radar and target
is 10 m. The imaging results of different algorithms are presented in Figure 7b–d, which
correspond to the PFA, BPA, and EPFA, respectively. Observing Figure 7b reveals that
the imaging result of PFA is severely distorted and defocused when it is compared with
the target point model in Figure 7a, whereas the BPA and EPFA in Figure 7c,d both show
perfect airplane shape without obvious defocusing. It is worth mentioning that because
the BPA is an accurate time-domain imaging algorithm, it is used as reference in this paper.
In this simulation, the running times of BPA and PFA are 141.89 s and 11.29 s, respectively.
For EPFA, we use the nonuniform FFT (NUFFT) [30] to speed up the polar reformatting
operation and its running time is 2.22 s. It is clear that EPFA is highly efficient and is very
suitable for real-time applications.

(a) (b)

(c) (d)

Figure 7. Target point model and imaging results. (a) Airplane point model. (b) ISAR Imaging result
of polar format algorithm (PFA). (c) ISAR Imaging result of back-projection algorithm (BPA). (d) ISAR
Imaging result of EPFA.
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Table 1. Near-field ISAR imaging simulation parameters.

Near-Field ISAR Simulation Parameters Values Near-Field ISAR Simulation Parameters Values

Bandwidth B 1 GHz Pulse Width Tp 1 µs
Sampling Frequency Fs 1.1 GHz Carrier Frequency fc 10 GHz

Pulse Repeat Frequency fPRF 500 Hz Rotational Angle ∆θ 47◦

In order to have a more detailed comparison, the contour maps of three edge points,
which are located at the head, right-wing, and left tail of the airplane, are plotted in Figure 8.
Results from different algorithms are presented in the different columns, beginning with
the first column for PFA, then the second column for BPA, and then the third column
for EPFA. Different points are demonstrated in the different rows. It can be observed
that, the contour maps of PFA are defocused severely, whereas the contour maps of EPFA
are similar to those of BPA, that all of them have elliptical main-lobes and they are well
separated from their side-lobes. The azimuth slices of the contour maps are also plotted
in Figure 9, from which we can find the main-lobes of EPFA are narrower than those of
PFA and similar to those of BPA. This signifies that EPFA has high accuracy in near-filed
ISAR imaging.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Contour maps of the selected points in the imaging results. (a–c) Contour map of point 1 in
the PFA result. (d–f) Contour map of point 1 in the BPA result. (g–i) Contour map of point 1 in the
EPFA result.



Remote Sens. 2021, 13, 600 17 of 25

(a) (b) (c)

Figure 9. Azimuth slices of the selected points by different imaging algorithms. (a) Azimuth slices of
point 1. (b) Azimuth slices of point 2. (c) Azimuth slices of point 3.

In order to make a quantitative comparison, some parameters, which can evaluate
the image quality, are calculated and listed in Table 2. The entropy [31–33] is a statistical
measure of randomness that can be used to characterize the focus performance of the radar
image and it is defined by

En = −
MN

∑
i=1

(pi log pi), (63)

with

pi = |Ii|2/
MN

∑
i=1
|Ii|2 , (64)

where Ii and pi denote the value and the normalized power of the i-th element of the image.
The smaller the entropy, the higher the image quality. The impulse response width (IRW)
and the peak side lobe ratio (PLSR) of the image slice are used to measure the focusing
performance. From Table 2 we can find that the entropies, IRWs and PLSRs of EPFA are
smaller than PFA, whereas they are similar to those of BPA. Thus, the simulation result
validate the effectiveness of the proposed EPFA.

Table 2. Image performance parameters comparison of near-field ISAR simulation.

Algorithms Entropy
IRW (m) PLSR (dB)

Time (s)
P1 P2 P3 P1 P2 P3

PFA 11.29 Null 0.19 0.058 −0.54 −2.97 −3.61 11.29
BPA 9.29 0.027 0.045 0.013 −13.05 −14.58 −7.68 141.88

EPFA 9.41 0.027 0.047 0.013 −12.94 −14.51 −10.72 2.22

3.1.2. Simulation for CSAR Imaging

The simulated radar parameters for CSAR are listed in Table 3. The scene of a 11 × 11
points array is shown in Figure 10a and the distance from radar to the center of the
scene is 1100 m. The imaging results of different algorithms are shown in Figure 10b–d,
which corresponding to the PFA, BPA, and the proposed method, respectively. Observing
Figure 10b reveals that the imaging result of PFA is obviously distorted with a trapezoid
shape, whereas the imaging results of BPA and the proposed method both show the
standard square shape in Figure 10c,d. Besides, the running time for the proposed method
is 8.78 s by using the NUFFT acceleration, whereas they are 3242.70 s and 81.96 s for BPA
and PFA, respectively. We can find there is a large improvement in the efficiency using the
proposed method.
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Table 3. CSAR simulation parameters.

CSAR Simulation Parameters Values CSAR Simulation Parameters Values

Bandwidth B 500 MHz Pulse Width Tp 600 µs
Sampling Frequency Fs 600 MHz Carrier Frequency fc 10 GHz

Pulse Repeat Frequency fPRF 8000 Hz Rotational Angle ∆θ 14.67◦

Reference Range r0 1100 m Trajectory Height H 214.60 m

(a) (b)

(c) (d)

Figure 10. Target point model and imaging results. (a) Point array Scene. (b) CSAR Imaging result of
PFA. (c) CSAR Imaging result of BPA. (d) CSAR Imaging result of proposed method.

The contour maps of four edge points are plotted to make a detailed comparison,
which are shown in Figure 11. Different methods are presented in the different columns,
beginning with the first column for PFA, then the second column for BPA, and then the
third column for the proposed method. Different points are demonstrated in the different
rows. Observing these contour maps, for PFA, they are defocused severely and their
main lobes are connected with the side-lobes, whereas for the proposed method, they are
similar to those of BPA, all of them have elliptical main lobes and separated side-lobes.
The azimuth slices of the contour maps are also illustrated in Figure 12, which shows the
proposed method has similar focus ability to the BPA.

In order to make a quantitative comparison, the IRWs and PLSRs of the azimuth
slices are calculated and listed in Table 4. Besides, the image entropies are also calculated.
From Table 4, we can find that the entropy, IRW, and PLSR of EPFA are similar to those
of BPA while they are smaller than those of PFA. The simulation results validate the
effectiveness of the proposed EPFA-based CSAR imaging method.
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Table 4. Image performance parameters comparison of CSAR simulation.

Methods Entropy
IRW (m) PLSR (dB)

Time (s)
P1 P2 P3 P4 P1 P2 P3 P4

PFA 9.72 0.11 0.40 0.35 0.30 −4.93 −0.61 −0.23 −0.52 81.96
BPA 8.21 0.046 0.046 0.059 0.059 −13.21 −13.16 −13.27 −13.21 3242.70

Proposed 8.22 0.046 0.046 0.059 0.059 −12.17 −13.23 −13.27 −12.59 3.24

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 11. Contour maps of the selected points. (a–c) Contour map of point 1 by different imaging
algorithms. (d–f) Contour map of point 2 by different imaging algorithms. (g–i) Contour map of
point 3 by different imaging algorithms. (j–l) Contour map of point 4 by different imaging algorithms.
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they are defocused severely and their main-lobes are connected with the side-lobes, whereas for the379

proposed method, they are similar to those of BPA, all of them have elliptical main-lobes and separated380

side-lobes. The azimuth slices of the contour maps are also illustrated in Figure 12, which shows the381

proposed method has similar focus ability to the BPA.382

In order to make a quantitative comparison, the IRWs and PLSRs of the azimuth slices are383

calculated and listed in Table 4. Besides, the image entropies are also calculated. From Table 4 we384

can find that the entropy, IRW and PLSR of EPFA are similar to those of BPA while they are smaller385

than those of PFA. The simulation results validate the effectiveness of the proposed EPFA-based CSAR386

imaging method.387

(a) (b)

(c) (d)

Figure 12. Azimuth slices of the selected points by different imaging algorithms. (a) Azimuth slices of
point 1. (b) Azimuth slices of point 2. (c) Azimuth slices of point 3. (d) Azimuth slices of point 4.

Table 4. Image performance parameters comparison of CSAR simulation.

Methods Entropy IRW(m) PLSR(dB) Time(s)P1 P2 P3 P4 P1 P2 P3 P4
PFA 9.72 0.11 0.40 0.35 0.30 -4.93 -0.61 -0.23 -0.52 81.96
BPA 8.21 0.046 0.046 0.059 0.059 -13.21 -13.16 -13.27 -13.21 3242.70

Proposed 8.22 0.046 0.046 0.059 0.059 -12.17 -13.23 -13.27 -12.59 3.24

3.2. Real Data Processing Results388

Real near-field ISAR data are collected in a microwave anechoic chamber, in which an aircraft389

model target is placed on the turntable model as shown in Figure 13(a). The radar is fixed, and the390

height of radar is set a little bit higher than the turntable surface. The horizontal distance between the391

radar and the turntable surface is 7m. The rotational angle of turntable can be precisely controlled,392

and it is changed discretely with step of 0.2 degree. The radar transmits and receives signal at every393

discrete rotational angle. The parameters of the radar are listed in the Table 5.394

Figure 12. Azimuth slices of the selected points by different imaging algorithms. (a) Azimuth slices
of point 1. (b) Azimuth slices of point 2. (c) Azimuth slices of point 3. (d) Azimuth slices of point 4.

3.2. Real Data Processing Results

Real near-field ISAR data are collected in a microwave anechoic chamber, in which an
aircraft model target is placed on the turntable model as shown in Figure 13a. The radar is
fixed, and the height of radar is set a little bit higher than the turntable surface. The hori-
zontal distance between the radar and the turntable surface is 7 m. The rotational angle of
turntable can be precisely controlled, and it is changed discretely with step of 0.2 degree.
The radar transmits and receives signal at every discrete rotational angle. The parameters
of the radar are listed in the Table 5.

Table 5. Near-field ISAR radar parameters.

Radar Parameters Values Radar Parameters Values

Bandwidth B 4 GHz Carrier Frequency fc 10 GHz
Reference Range R0 7 m Rotational Angle ∆θ 40◦

The imaging results based on the real data processed by different algorithms are
illustrated in Figure 13b–d, which corresponding to the PFA, BPA, and EPFA, respectively.
Observing Figure 13b, we can find that the head of the aircraft, which is marked with a
rectangular, shows an expanded main-lobe for PFA, whereas in Figure 13c,d, their aircraft
head parts show more focused main lobes. The contour maps of the aircraft’s head are
plotted in Figure 14, in which the main lobe of PFA is of an oval shape whereas they are
round for BPA and EPFA. The azimuth slices of the contour maps are plotted in Figure 15
for further comparison, in which the main lobe of the PFA is obviously wider than that
of BPA and PFA. The performance parameters of image entropy, IRW, PLSR, and running
time are calculated and listed in Table 6 for a quantitative comparison. We can find that the
results of EPFA are similar to the results of BPA, while they are smaller than those of PFA.
In addition, the running time for EFPA is much smaller than BPA. The real data processing
result validate the effectiveness of the proposed EPFA.
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Figure 13. Target point model and imaging results. (a) Real experiment scene. (b) Real data ISAR
Imaging result of PFA. (c) Real data ISAR Imaging result of BPA. (d) Real data ISAR Imaging result
of EPFA.

(a) (b) (c)

Figure 14. Contour maps of the aircraft’s head. (a) Contour map of the aircraft’s head by PFA.
(b) Contour map of the aircraft’s head by BPA. (c) Contour map of the aircraft’s head by EPFA.

Figure 15. Azimuth slices of the aircraft’s head by different algorithms.
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Table 6. Image performance parameters comparison of near-field ISAR real data processing.

Methods Entropy IRW (m) PLSR (dB) Time (s)

PFA 9.75 0.040 −12.25 0.45
BPA 9.70 0.019 −12.63 1.12

EPFA 9.69 0.019 −13.02 0.04

4. Discussion

PFA is one of the common imaging algorithms for SAR and ISAR because of its
simplicity and efficiency. However, due to the plane wave assumption of PFA, it would
produce large slant range error for near-field ISAR and wide scene SAR, which would
generate range profiles migration and azimuth phase error, and thus cause the image to be
distorted and defocused. Because the BPA constructs user-defined grids, the accurate slant
range of every grid can be calculated by the known trajectory information. Then, radar
returns can be accumulated coherently for every grid by using this accurate slant range.
BPA is an accurate imaging algorithm for all modes of SAR and ISAR, so it would produce
focused image without distortion. The drawback of BPA is its large computation cost.
On the other hand, according to the introduction of the proposed TFRSA in the Section 2.2,
the influence of the envelopes of the scatterer’s returns can be ignored. This approximation
is applicable and often used in radar signal processing because the envelope is usually a
low-frequency and narrow bandwidth signal. Thus, the proposed TFRSA-based EPFA has
high accuracy in radar imaging and generates comparably high image quality to BPA.

For the future research, we will focus on the possibility of applying the TFRSA to more
applications and consider the influence of the motion error in the realistic environments.
Now, we are trying to apply the proposed method to the helical SAR(HSAR)2D imaging,
HSAR and tomographic CSAR 3D imaging, and the primary results is prove that the
proposed method is valid to these applications.

5. Conclusions

In this paper, a time-frequency reversion-based spectrum analysis (TFRSA) method
is proposed, which utilizes the relationship of the Fourier pairs and their corresponding
signal phase. Based on this method, the spectrum of the linear trajectory SAR is analyzed.
The derived spectrum expression is shown to be the same as the result of the POSP.
In addition, the TFRSA is also applied to the near-field ISAR, which the POSP cannot be
applied to. The spectrum expression of near-field ISAR is derived and it is compared with
the far-field ISAR spectrum expression. The spectrum difference is found to be position-
independent. Based on this finding, an extended PFA is proposed to solve the distortion
and defocusing problems caused by traditional ISAR imaging algorithms. Because the
CSAR has similar imaging geometry to the near-field ISAR, its spectrum is also derived by
TFRSA and an EPFA-based imaging method is proposed to improve the imaging efficiency.
Simulations and real data processing results validate the effectiveness of the proposed
TFRSA, EPFA, and EPFA-based CSAR imaging method.
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The following abbreviations are used in this manuscript:

BPA Back-projection Algorithm
CSA Chirp Scaling Algorithm
CSAR Circular SAR
EPFA Extended Polar Format Algorithm
FSA Frequency Scaling Algorithm
FTDL Frequency-time Distribution Line
IRW Impulse Response Width
ISA Instantaneous Squint Angle
ISAR Inverse Synthetic Aperture Radar
KT keystone Transform
LFM linear frequency modulation
LOS Light of Sight
LTSAR Linear Trajectory SAR
PFA Polar Format Algorithm
PLSR Peak Side Lobe Ratio
POSP Principle of Stationary Phase
RD Range-Doppler
RM Rotational Motion
RMA Range Migration Algorithm
SA Spectrum Analysis
SAR Synthetic Aperture Radar
TFDL Time-frequency Distribution Line
TFR Time-frequency reversion
TFRSA TFR-based Spectrum Analysis
TM Translational Motion

Appendix A

In order to simplify Equation (39), we apply the angle sum tan trigonometric identity
to the two arctan( ) terms, which is

tan(A + B) =
tan A + tan B

1− tan A tan B
, (A1)

Performing the tan( ) operation to the two arctan( ) terms and applying Equation (A1)
yields
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Applying the arctan( ) operation to two sides of Equation (A2), we can obtain
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