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Abstract: The data assimilation technique is an effective method for reducing initial condition errors
in numerical weather prediction (NWP) models. This paper evaluated the potential of the weather
research and forecasting (WRF) model and its three-dimensional data assimilation (3DVar) module
in improving the accuracy of rainfall-runoff prediction through coupled atmospheric-hydrologic
systems. The WRF model with the assimilation of radar reflectivity and conventional surface and
upper-air observations provided the improved initial and boundary conditions for the hydrological
process; subsequently, three atmospheric-hydrological systems with variable complexity were estab-
lished by coupling WRF with a lumped, a grid-based Hebei model, and the WRF-Hydro modeling
system. Four storm events with different spatial and temporal rainfall distribution from mountainous
catchments of northern China were chosen as the study objects. The assimilation results showed a
general improvement in the accuracy of rainfall accumulation, with low root mean square error and
high correlation coefficients compared to the results without assimilation. The coupled atmospheric-
hydrologic systems also provide more accurate flood forecasts, which depend upon the complexity
of the coupled hydrological models. The grid-based Hebei system provided the most stable forecasts
regardless of whether homogeneous or inhomogeneous rainfall was considered. Flood peaks before
assimilation were underestimated more in the lumped Hebei model relative to the other coupling
systems considered, and the model seems more applicable for homogeneous temporal and spatial
events. WRF-Hydro did not exhibit desirable predictions of rapid flood process recession. This may
reflect increasing infiltration due to the interaction of atmospheric and land surface hydrology at
each integration, resulting in mismatched solutions for local runoff generation and confluence.

Keywords: WRF-3DVar data assimilation; coupled atmospheric-hydrologic system; rainfall-runoff
prediction; lumped Hebei model; grid-based Hebei model; WRF-Hydro modeling system

1. Introduction

The last decades have witnessed significant changes in climate and hydrological
conditions. The increased frequency of extreme storm floods has led to major risks of
damage due to weather-related hazards. Forecasting of such high-intensity floods on a
shorter time scale has immense benefits such as saving lives, protecting economic assets,
and improving quality of life [1–3]. For mesoscale mountain areas along the Daqing
River of northern China, steep slopes, combined with high intensity and short duration
convective rainfall, substantially shorten hydrological lead times. In addition, due to the
lack of high-resolution and dense observations, the “throughfall” observed by rain gauges
cannot reflect the realistic rainfall distribution in space and time, thus the accuracy of
forecasting is limited by the layout of the rain gauge network. For processes of runoff and
routing, different dependent processes are added and derived within models including

Remote Sens. 2021, 13, 595. https://doi.org/10.3390/rs13040595 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13040595
https://doi.org/10.3390/rs13040595
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13040595
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/4/595?type=check_update&version=2


Remote Sens. 2021, 13, 595 2 of 21

soil infiltration, overland transport, and channel routing, which result in the complexities
and uncertainties in deducing the generation mechanisms of flash floods. In this study,
we selected two upstream mountainous catchments along the Daqing River in which there
is an urgent need for accurate flood prediction to prevent and reduce risks facing the
construction of the downstream including Xiong’an New Area.

Although recent advances have improved rainfall forecasting [4], several challenges
remain. One such challenge is the reproduction of the magnitude and the disturbance
patterns of rainfall that can assimilate suitable observations into numerical weather pre-
diction (NWP) models [3]. Rainfall is among the variables generated with the greater
errors in NWP models, while it plays an important role in forecasting the atmospheric-
hydrological processes for its influence on the time and scale of floods [5,6]. There are three
main sources of error in rainfall prediction: the initial conditions, the lateral boundary
conditions, and the physical approximations in the model equations. Data assimilation
allows atmospheric information to be extracted from multiple data sources, thereby im-
proving the reliability of coarse resolution data and the complexity of atmospheric motion,
reducing the initial and lateral boundary errors [7,8]. Routray et al. [9] found that weather
research forecasting (WRF) can be used to assimilate observations from different sources
and contribute to a better understanding of mesoscale rainfall convective activity within
the Indian monsoon region. Kumar and Varma [10] further explored a short duration
intense rainfall event in India, demonstrating the potential of WRF to adapt to rainfall
forecast accuracy. Fierro et al. [11] conducted a data assimilation study in the eastern part
of the USA that showed that WRF, in conjunction with data assimilation, could significantly
improve models of local short-term rainfall processes. Although data assimilation can help
NWP models to more accurately capture rainfall and enable rainfall-runoff conversion by
constructing an atmospheric-hydrological model system, its potential to further improve
flood forecasting has not been fully investigated.

A reliable atmospheric-hydrological model system is required to improve rainfall
predictions and hydrological forecasts for early flood hazard mitigation [12]. A promising
method is the coupling of hydrological models to a regional model such as NWP, in order
to rapidly obtain high-resolution rainfall and flood forecasting data. In [13–15], Lin et al.
and Lu et al. discussed the implementation and improvement of the Canadian regional
mesoscale compressible community mode (MC2) rainfall forecasting in the Huaihe Basin
of southern China, concentrating on the Huaihe sub-basin coupled to the Xinanjiang hy-
drological model. Wu et al. [16] further explored MC2 and the multiple linear regression
integrated forecast and found that high-resolution rainfall distributions were problematic
at finer temporal and spatial scales, requiring data assimilation or sub-grid-scale parame-
terization. Yucel et al. [4] and Moser et al. [17] tested WRF data assimilation as the input
for flood forecasting in the Black Sea and Iowa, respectively, both finding an enhancement
in the accuracy of flood warnings.

With regard to the selection of coupled models, it is subject to a diversity of laws
and non-universality, which makes it difficult to accurately express physical movement
processes. The hydrological model has a more comprehensive physical foundation in-
cluding lumped, grid-based, and fully distributed setups [18,19]. Not only the above
physically-based models are used, but machine learning models are also widely applied in
rainfall-runoff forecasting (i.e., artificial neural networks (ANNs) [20], support vector ma-
chines (SVM) [21], and the recent emergence of theory-guided data science (TGDS) [22,23].
For flood forecasting, which is affected by the discretization construction method, different
construction expressions determine variations between heterogeneity analysis and model
calculation structure, and further influence the accuracy of physical expressions in the
prediction processes of the hydrological model [24–26]. To analyze the scale of hydrological
processes, large-scale studies are still the mainstay. During the last ten years, a focus
has been made on downscaling and modeling through appropriate discrete methods [27].
The development of models with high prediction accuracy and computational efficiency
is a key issue for basin-scale flood forecasting. Liu et al. [28] conducted coupled lumped
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hydrological modeling and WRF flood forecasting on a 135.2 km2 catchment with a 10 km
resolution; Li et al. [29] used the rainfall of a 20 km WRF output to drive the distributed
Luxihe model, extending the forecast period of flood forecast in the Liujiang catchment
(58,270 km2). Rogelis [30] compared the flow results of different resolution data (minimum
resolution 1.67 km) driven by WRF on a 380 km2 catchment driving different lumped hy-
drological models. Previous studies have mostly focused on humid regions; consequently,
runoff methods are mostly based on saturation excess, and limited discussion of the appro-
priate construction of atmospheric-hydrological model systems have been conducted for
semi-humid and semi-arid areas.

The coupling system can also integrate land surface models (LSM) with hydrological
models. Most LSM and hydrological models incorporate the same descriptions of water
balance, albeit with different aims [31,32]. LSM evolves from land-atmosphere coupling
models with the purpose of solving the surface energy balance equation and providing the
necessary lower boundary conditions for the atmosphere [31,33]. Inversely, hydrological
models focus less on radiation and more on hydrological changes (i.e., the lateral route
of water along land surfaces). Such models are the most complicated among the current
coupling systems due to their complex structure and the sensitive parameters to be de-
termined in the relevant physical processes as well as hard parameters (fixed parameters
written directly into the source code during the compilation of the model).

Limited research has been undertaken to model atmospheric-hydrological processes
in semi-humid and semi-arid regions of northern China. Consequently, there is a lack of
effective atmospheric-hydrological coupling forecasting systems for this region. Herein,
we used WRF models, three-dimensional variational (3DVar) data assimilation modules
coupled to three model sets of varying complexity to construct the required model systems.
To test the influence of various levels of complexity, three types models were selected,
namely the lumped Hebei model, the grid-based Hebei model, and the WRF-Hydro
model. These models were both standalone and coupled with the WRF model and three-
dimensional variational (3DVar) data assimilation module. Four typical storm flood events
with different spatial and temporal rainfall distributions, all of which occur in the upper
catchment of the Daqing catchment, were explored before and after data assimilation.
The purpose of this study was to investigate the impact of data assimilation on forecasting
different types of rainfall-runoff events after coupling with variable hydrological structures.
It should be noted that the atmospheric-hydrologic coupling in this study refers to “one-
way” coupling of the three standalone hydrological model structures with the WRF and
3DVar data assimilation module, which means that the hydrological models are driven
by the WRF and 3DVar outputs without feedback to the atmospheric modeling processes.
The results obtained in this way can simply reflect the direct effects of data assimilation on
rainfall as well as runoff forecasts.

There were four basic questions we aimed to explore:

• What are the differences in the improvement of rainfall before and after data as-
similation for the storm events with different spatial and temporal distributions in
semi-humid areas of northern China?

• What are the corresponding runoff effects of different coupling systems on the im-
proved rainfall from WRF and its assimilation mode?

• What differences exist between the runoff processes modeled by the coupled systems
of different complexity before and after assimilation?

• How does the complexity of the hydrological structure affect the transmission of
rainfall improvement from data assimilation to runoff?

2. Study Area and Events
2.1. Study Area

We studied two mountainous catchments of the Daqing River (i.e., Fuping (2210 km2)
and Zijingguan (1760 km2)). Two catchments lie along the upper reach of the Shazhi
River on the south branch and the upper reach of the Juma River on the north branch,
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respectively (Figure 1). Low vegetation coverage, bare hills, mountains, and thin soil layers
cause uneven infiltration capacity distribution across the study areas, and the surface often
features extra-infiltration flow, which means surface flow occurs when the intensity of
infiltration exceeds the intensity of precipitation. Rainfall occurs primarily during the
flood season from late May to early September. The combined effects of the western
Pacific subtropical high, the westerly cold vortex, and the western Taihang Mountain uplift
influence the heavy convective rainfall that prevails in the region. Additionally, due to
steep terrain, it is easy to form high intensity, short duration floods with a large peak flow.
These floods cause damage in the region. According to statistics of torrential rain and flood
data from 1958 to 2015 in both catchments, floods that occurred more than once a decade
occurred five times in Fuping and six times in Zijingguan, with increasing frequency in
extreme events in recent years.
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2.2. Storm Events

Four storm events in the Fuping and Zijingguan catchments were screened. The events
were divided according to their spatial and temporal distribution. In comparison to the
southern part of China, it is difficult to find absolute homogeneous rainfall events in
northern China, either in spatial or temporal dimensions. Herein, we calculated the storm
events’ coefficient of variance (Cv) values to indicate the relative response to the spatio-
temporal homogeneousness of the flood events [34]. Cv values were calculated as follows:

Cv =

√√√√√ N
∑

i=1

( xi
x − 1

)2

N
(1)

where x is the average of xi. When calculating Cv in the temporal dimension, xi is the
catchment areal rainfall at the ith hour and N is the total number of hours of the storm
event. In this case, time Cv represents the temporal deviation of the catchment areal rainfall
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at each time step. When calculating Cv in the spatial dimension, xi is the 24 h rainfall
accumulation at the ith gauge and N is the number of rain gauges. In this case, the Cv value
reflects the spatial deviation of the rainfall accumulation at each rain gauge.

The results are shown in Table 1, where larger Cv values represent a more uneven
spatio-temporal distribution. Based on this criterion, the spatio-temporal consistency of
the rainfall-runoff events listed in Table 1 were classified. Events 1 and 2 had relatively
uniform spatial and temporal distributions, whereas Events 3 and 4 featured rainfall with
uneven spatial and temporal distributions. As shown in Figure 2, the rainfall-runoff events
had a flood recession time with different lengths, so we used a 72-h time window for Event
1 and Event 2, a 60-h time window for Event 3, while for Event 4, a 36-h time window was
adopted. Different time windows were used to calculate the statistics when evaluating the
forecasting results. Event 4 occurred on 21 July 2012, bringing the largest flood disaster
in 60 years to Beijing and the Daqing River. The rainfall at the largest monitoring point
corresponded to an event that occurred once in more than 500 years. In the Zijingguan
catchment, its 24 h maximum single station cumulative rainfall was 355 mm, and the
maximum flow at the outlet reached 2580.0 m3/s. Figure 2 and Table 1 show other rainfall
and flood characteristics.

Table 1. Storm events and spatio-temporal rainfall evenness characterized by Cv.

Storm
Event Catchment Storm Duration 24 h Rainfall

Accumulation (mm)
Peak Flow

(m3/s) Temporal Cv Spatial Cv

Even 1 Fuping 29 July 2007 20:00 to 30 July 2007 20:00 63.4 29.7 0.6011 0.3975
Event 2 Fuping 30 July 2012 10:00 to 31 July 2012 10:00 50.5 70.7 1.0823 0.1927
Event 3 Fuping 11 August 2013 07:00 to 12 August 2013 07:00 30.9 46.6 2.3925 0.7400
Event 4 Zijingguan 21 July 2012 04:00 to 22 July 2012 04:00 172.2 2580.0 1.8865 0.6098
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3. Three Atmospheric–Hydrologic Coupled Systems
3.1. The Numerical Weather Prediction (NWP) Model

The mesoscale NWP model has limited skill in convective precipitation forecast, even
in the WRF model. One of the considerable reasons for the poor performance is due to its
nonlinear and chaotic nature, since solving quasistationary meso-β and meso-γ processes
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is complicated [35,36], and the power spectrum of the turbulence in convective motion
has a resolution of a few kilometers [37,38]. 3DVar data assimilation could merge the fine
rainfall information into the modeling system to obtain accurate high-precision rainfall
data. The following are detailed descriptions of the WRF model configurations and the
3DVar data assimilation techniques used in this study.

3.1.1. Weather Research Forecasting (WRF) Model Configurations

As a next-generation mesoscale forecasting model and data assimilation system,
the simulated scale used in the WRF spans tens of meters to thousands of kilometers, and is
mainly used to enhance understanding and forecasting of mesoscale weather, assist oper-
ational forecasting, and improve atmospheric research. Detailed descriptions of specific
WRF model settings are shown in Table 2 and Figure 1. The inner research area includes the
Taihang Mountains, Bohai Sea, and major cities in Beijing, Tianjin, and Hebei. A warm-up
time period is necessary for both WRF and WRF-Hydro. A seven-day length warm-up time
period was set to generate the restart file, which serves mainly as the starting condition for
WRF, and was also used to provide the initial soil moisture condition for WRF-Hydro to
generate more realistic runoff. The WRF has an output time step of 1 h and an integration
step of 6 s. Global Forecast System (GFS) data in each 6 h window was to provide the initial
side boundary and atmospheric background conditions.

Table 2. Detailed configurations of the weather research forecasting (WRF).

Subject Chosen Option Subject Chosen Option

Driving data GFS each 6 h WRF output interval 1 h

Integration time step Dom1: 18 s domain center 39◦04′15” N, 113◦59′26” E
Dom2: 6 s Vertical discretization 40 layers

Horizontal
resolution

Dom1: 9 km Pressure 50 hPa
Dom2: 3 km Projection resolution Lambert

Horizontal grid
number

Dom1: 140 × 140 Longwave radiation RRTM
Dom2: 150 × 120 Shortwave radiation Dudhia

The parameterization scheme chosen can affect the mode of operation of the WRF;
different parameterization schemes have different emphases on physical processes. The di-
versity of parameterization schemes and the corresponding differences in rainfall events
in specific regions result in difficulties inherent to the accurate simulation of spatial and
temporal rainfall distributions and cumulative rainfall. For the four rainfall processes
in this study, we chose the optimal physical parameterization based on the relevant ex-
perimental research on the selection of sensitive parameterization schemes for ensemble
rainfall forecasting (more details can be found in Tian et al. [39,40]). The microphysical
parameterization schemes chosen for our forecasts included Purdue-Lin (Lin) [41] and
WRF Single-Moment 6 (WSM6) [42]; the cumulus convection schemes included the Kain-
Fritsch (KF) [43] and Grell-Devenyi (GD) [44] ensembles; and the planetary boundary layer
schemes included the Yonsei University (YSU) [42] and Mellor-Yamada-Janjic (MYJ) [45]
schemes. The specific parameterization details of the four studied storms are shown in Table 3.
It should be noted that the cumulus parameterization was not used in the innermost
domain, where the convective rainfall generation was assumed to be explicitly resolved.

Table 3. Optimal physical parameterization for the studied storm events.

Ensemble Scenarios Event 1 Event 2 Event 3 Event 4

Microphysics scheme Lin 4

WSM6 4 4 4

Cumulus convection
KF 4 4

GD 4 4

Planetary boundary layer YSU 4 4 4

MYJ 4
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3.1.2. Data Assimilation with WRF-3DVar

3D variational assimilation has numerous advantages, for example, that the objective
function contains physical processes and utilizes the model itself as a dynamic constraint
(i.e., it can efficiently represent complex nonlinear constraint relationships). The objective
function of WRF-3DVar assimilation can be expressed as follows:

J(X) =
1
2
(X− Xb)

T B−1(X− Xb) +
1
2
(H(X)−Y0)

T R−1(H(X)−Y0) (2)

where X is a parameter reflecting the atmosphere and surface conditions; Xb is the back-
ground field at the time of change; B is the corresponding background field error covariance
matrix; and H is the observation function containing X variables. H can change the vari-
ables in the atmospheric model from model space projected into the observation space.
Y0 represents the assimilated observation vector and R is the error covariance matrix
from observation.

Global Telecommunications System (GTS) data and Doppler radar data were used
as the assimilation data in this study. In previous studies, we have demonstrated that the
assimilation of radar reflectivity can improve local rainfall processes, especially for data
<500 m, and can thus improve the reliability of assimilation information for forecasting
systems [46,47]. Taking into account the spatial resolution of data from different sources and
maintaining the stability of the atmospheric motion, we chose to assimilate <500 m radar
reflectivity data in the inner domain (Dom2) and GTS data in the outer domain (Dom1).
This assimilation method was supported by multi-source data assimilation experiments
carried out in the same study area [47].

GTS data are a collection of traditional ground and upper air meteorological data
including barometric pressure, wind direction and velocity, temperature, and humidity.
GTS data have wide coverage in both the vertical and horizontal directions. These data
are updated at 6 h intervals and are therefore widely used in large-scale atmospheric
studies. GTS data provided by the National Center for Atmospheric Research (NCAR)
were assimilated for the outer domain, sourced from sounders, ground-based weather
stations, pilot balloons, and aircraft observations. An observation preprocessor with
defined observation error covariance was employed to ensure quality control of the GTS
data prior to assimilation, and a default U.S. Air Force (AFWA) OBS error file was also
used for processing the GTS data and identifying instrumental and sensor errors.

The forecasting radar site of the Shijiazhuang s-band Doppler weather radar and
specific coverage is shown in Figure 1. Its reflectance spatial resolution was 1 km × 1◦

with a scan radius of 250 km (i.e., it covered both the Fuping and Zijingguan catchments).
The radar completed a cycle every 6 min at nine different scan elevation angles (0.5◦, 1.5◦,
2.4◦, 3.4◦, 4.3◦, 6.0◦, 9.9◦, 14.6◦, and 19.5◦). Raw data for the radar were obtained from the
National Meteorological Administration of China and, following quality control, the radar
reflectivity was programmed to conform to the WRF-3DVar data format.

The absorption of radar reflectivity data by the WRF-3DVar module presupposes that
the total water mixing ratio is used as a control variable and that a warm rainfall process
is simultaneously introduced into the assimilation module. Assuming a Marshall-Palmer
raindrop size distribution and no ice relative reflectivity effect, the following equation can
be derived for radar reflectivity Z by introducing a rainwater mixing ratio qr, in which ρ is
the density of air in kg m−3:

Z = 43.1 + 17.5 log(ρqr) (3)

For the four storm events, we selected a uniform 24 h time window that completely
described the entire process of rainfall. The duration of the WRF is required to cover the
start and end of the rainfall time window; therefore, the assimilation data started to be
merged 6 h before the storm events, then assimilated every 6 h until five assimilation
cycles were completed, for a total running duration of 36 h (6 × 6 h). Figure 3 presents a
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schematic diagram of the assimilation using Event 4 for further explanation. As illustrated
in Figure 3, there was a seven day warm-up time period (indicated with a dashed line)
and a 6 h spin-up time period (indicated with dotted lines) for WRF, and run1 presents
the initial WRF run with no data assimilation. Data assimilation started at 00:00 on 21 July
2012 and, subsequently, run2, run3, run4, run5, and run6 were executed at 6 h intervals
(i.e., at 00:00, 06:00, 12:00, and 18:00 on 21 July 2012 and 00:00 on 22 July 2012, respectively).
The first output file generated in the previous run was used to provide the initial and
lateral boundary conditions for subsequent runs and was treated as a benchmark reflecting
improvements in rainfall simulation after data assimilation.
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3.2. Hydrological Models with Differing Complexity
3.2.1. The Lumped Hebei Model

The lumped Hebei model was developed based on rainfall-runoff mechanisms iden-
tified in semi-humid and semi-arid catchments in northern China and has been applied
to real-time flood forecasting in Hebei Province. The model comprehensively considers
the two inflow mechanisms of infiltration excess and saturation excess (shown in Figure 4).
W’ and WMM represent the point storage capacity and the storage capacity of the maxi-
mum point in catchments. γ and λ are the proportion of the infiltration capability beyond
a certain value and the proportion of runoff generation in the catchment. When rainfall
intensity was greater than infiltration intensity during the studied period, surface runoff oc-
curs, whereupon continuous infiltration supplements the soil moisture deficiency until the
system reaches the point soil water capacity, generating underground runoff. The model
divides soil into two layers, in which soil depth should be determined according to the
conditions of the catchment. The volume of infiltration (ft), surface (rs), and groundwater
(rg) can be calculated using Equations (2)–(4) as follows:

ft =
t

∑
i=1

f i =

(
i− i(1+n)

(1 + n) f n
m

)
e−um + fc (4)

rs = pt − ft (5)

where pt (mm/h) is the rainfall rate during the ith hour and f i (mm/h) is the ith hour
empirical infiltration rate computed by a variant of Horton equation; m (mm) is the
surface soil moisture; and u is an index accounting for the decreasing infiltration rate with



Remote Sens. 2021, 13, 595 9 of 21

increasing soil moisture. fc (mm/h) and fm (mm/h) are the stable infiltration rate and the
infiltration capacity, respectively. It follows that:

rg =

{
ft + pa − et − wm pa + ft ≥ wm

ft + pa − et − wm + wm

(
1− ft+pa

wm

)1+b
pa + ft < wm

(6)

where et is the evaporation volume; pa (mm) represents the rainfall influenced; wm (mm) is
the average storage capacity; and b is a coefficient of the water storage capacity curve.
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3.2.2. The Grid-Based Hebei Model

The grid-based Hebei model retains the runoff generation concepts behind the lumped
Hebei model. Furthermore, it develops terrain index T [48,49] to obtain a grid-type repre-
sentation of soil moisture storage and infiltration capacity. T = ln(α/tanβ), where α and β
are the grid scale and shape parameters, respectively. The value of T in the Fuping and
Zijingguan catchments were statistically analyzed. Experimentation demonstrated that the
cumulative distribution curves of T values between different regions are always similar [50].
The T values of different grids in the same region can be expressed by a parabolic empirical
formula. Hence, the soil water storage capacity and infiltration capacity of different grids
can be determined as followed:

Wi
WMM

= exp

{
−
[

ln(Ti − Tmin + 1)
α

]β
}

(7)

fi
fm

=

{
1−

[
1− exp[− 1

α
[ln(Ti − Tmin + 1)]β

]b
}1/n

(8)

where i is a certain grid cell, and Ti and Wi (mm) are the corresponding moisture storage
capacity and terrain index of the ith grid. Tmin is the minimum value of the grid terrain
index. In a non-channel grid, surface runoff outflow qso = qsi + qs, where qs is the grid
surface runoff. qs occurs when the rainfall intensity exceeds fm. qsi denotes the runoff values
generated via the surrounding upstream grid. Similarly, the generated groundwater runoff
from upstream grid (i.e., qg, is transmitted to the groundwater runoff outflow according
to qgo, qgo = qgi·(1− µ) + qg, where µ is the ratio coefficient). The grid-based Hebei
model adopts a simplified form of the Saint Venant equations for confluence calculation.
Due to perennial channel water shortage and substantial channel seepage in the study
area, an additional Horton infiltration equation was considered in the grid-based Hebei
model [50].
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3.2.3. The WRF-Hydro Modeling System

The open-code WRF-Hydro model is a multi-core parallel, multi-physics, multiscale,
fully distributed hydraulic model. It can be operated only with meteorological data or cou-
pled with the WRF model to constitute the atmospheric-hydrological model system. Its mul-
tiscale 3D land surface hydrological simulation mode can improve the one-dimensional
vertical generalization of water transport using the original LSM Noah and Noah-MP.
WRF-Hydro can use additional modules to achieve lateral flow exchange between the
surface and subsurface, thereby improving upon the “column-only” one-dimensional
vertical structure. It uses a disaggregation-aggregation solution module between the land
model and terrain routing grid, which enables convergence processes occurring at a smaller
resolution. WRF-Hydro can set the variables of the scale factor including soil moisture and
excess infiltration into the fine grid values.

Noah or Noah-MP LSM are connected to WRF-Hydro to calculate water and heat flux
exchange processes. In Noah-MP, a column cylinder structure is used to substitute soil lay-
ers into thicknesses, from top to bottom, of 0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm.
The inputs required by WRF-Hydro include meteorological forcing data such as rainfall, air
temperature, relative air humidity, surface pressure, wind speed, downward longwave radi-
ation, and downward solar radiation. Gochis and Chen [51] described a sub-grid, spatially
weighted disaggregation-aggregation solution to coordinate the land model and terrain
routing grid in WRF-Hydro. Its runoff generation method uses a simple water balance
(SWB) [52]. Similar to the Hebei model, when the rainfall capacity exceeds the infiltration
capacity, a surface infiltration excess occurs in the top soil layer and the corresponding
change in surface water depth h (m) is:

∂h
∂t

=
∂pe

∂t

1−

[
4
∑

k=1
Zi(δs − δk)

][
1− exp

(
−S Rdt

R f d
∆t

86400

)]
pe +

[
4
∑

k=1
Zi(δs − δk)

][
1− exp

(
−S Rdt

R f d
∆t

86400

)]
 (9)

where h (m) refers to the change in surface water depth; ∆t (s) is the model time step; k is
the integer number of the soil layer (i.e., 1–4), Zk (m) and δk (m3m−3) are the depth and
grid soil moisture of the kth soil layer; δs (m3m−3) is the maximum soil moisture content;
S is a coefficient given by Richards’ equation to regulate runoff infiltration; and Rdt and
Rfd represent the tunable surface infiltration coefficient and saturated hydraulic conductiv-
ity, respectively.

Subsurface routing followed the approach of Wigmosta and Lettenmaier [53] by using
a quasi-3D flow taking into account topography, saturated soil depth, and saturated hy-
draulic conductivity with soil depth. Overland routing is a fully unsteady finite-difference
and diffuse wave approach, implemented as described in Downer et al. [54]. River routing
is similar to the overland case, using an explicit, one-dimensional, variable time-step diffu-
sion wave equation. Details of specific rainfall-runoff processes can be obtained from the
official user guide [55].

3.3. Establishment of Three Coupled Atmospheric-Hydrological Systems

Figure 5 shows a flood prediction diagram for coupled systems comprising three types
of hydrological models, WRF models, and WRF-3DVar data assimilation modules. Rainfall
in the WRF model was enhanced through optimal parameter scenarios and assimilation.
GTS data and radar reflectivity were assimilated every 6 h to generate 3 km grid data
in the inner layer Dom2. To eliminate the deviation of rainfall, for each storm, the best
performance in the assimilated rainfall ensemble was selected as the forecast forcing data.
Subsequently, predicted rainfall was converted into discharges using the aforementioned
three models, with parameters calibrated using 17 historical rainfall-runoff events from
the two studied catchments since the 1980s. For the calibration of WRF-Hydro, previous
parameter sensitivity analysis in the study area noted several key parameters that can
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cause large fluctuations in flooding prediction including the runoff infiltration parameter
(REFKDT), the channel Manning roughness parameter (MannN), the surface retention depth
scaling parameter (RETDEPRTFAC), and the overland flow roughness scaling parameter
(OVROUGHRTFAC). To evaluate the impact of data assimilation on the obtained runoff,
WRF outputs under the selected optimal parameterization scheme were also used to drive
the model for runoff forecasting; the results of the three systems before and after data
assimilation were compared as described below.
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Figure 5. Framework for the coupled atmospheric-hydrologic modeling systems used for rainfall-
runoff prediction.

The three coupling systems tested showed three types of rainfall input at different
resolutions. The lumped model gives selected grid-averaged rainfall data across the
sub-basins, whereas the grid-based Hebei model and WRF-Hydro directly pass the grid
coordinates to locate forcing data. The former has a rainfall resolution of 3 km, and the latter
has a grid division factor of 10 to allow further downscaling from the WRF assimilation
data to 300 m of routing data.

The Nash efficiency coefficient (NSE), relative flood peak (Rp), and relative flood
volume (Rv) were used to analyze the flow discharge forecasts as follows:

NSE = 1−

n
∑

i=1
(q′i − qi)

2

n
∑

i=1
(qi − q)2

(10)

Rp =
(
q′p − qp

)
/qp (11)

Rv = (r′v − rv)/rv (12)

where i is the time step; n is the total i of flood processes; q′i, qi, and q are the simulated,
observed, and averaged flood discharge, respectively; q′p and qp are the simulated and
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observed discharge; respectively; and r′v and rv are the simulated and observed flood
volumes, respectively.

4. Results

The forecasting results for the three coupled systems before and after data assimilation
for the four studied rainfall-runoff events are shown in Figure 6. In each single subfigure,
the black bars and black solid curve indicate observed rainfall and runoff, respectively.
Red and blue bars and curves indicate rainfall and runoff before and after data assimilation.
For the studied coupling systems, assimilation had different degrees of enhancement on
rainfall and runoff. The following analyses were conducted separately for data assimilation
on the rainfall, runoff, and model systems.
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4.1. Effect of Data Assimilation on Rainfall Prediction

Figure 7 shows the cumulative precipitation variation over the simulated period
caused by the cycling assimilation processes. The black solid curve represents the observed
precipitation, while the other colors represent different assimilation periods. As above-
mentioned, run1 was a non-assimilated precipitation process. Under conditions of data
assimilation every 6 h, it was found that the cumulative rainfall gradually approached the
observed values by the end of run6. For Event 2 and Event 3, the performance of run2 and
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run3 relative to run1 was impressive. For Event 1, run4 and run5 changed and improved the
temporal distribution of precipitation within a few hours after data assimilation, while run2
and run3 seemed to show slightly worse results than run1, if no further assimilation took
place. Generally, forecasts of cycling data assimilation after five cycles were largely stable
for all events and the final curve integrated by the data assimilation runs (run2 to run6)
was enhanced relative to the original run (run1). In addition to showing good performance
for selected typical precipitation events, the cycling data assimilation gradually improved
the temporal variability.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 22 
 

 

if no further assimilation took place. Generally, forecasts of cycling data assimilation after 
five cycles were largely stable for all events and the final curve integrated by the data 
assimilation runs (run2 to run6) was enhanced relative to the original run (run1). In addi-
tion to showing good performance for selected typical precipitation events, the cycling 
data assimilation gradually improved the temporal variability. 

 
Figure 7. Cumulative rainfall curves before and after data assimilation under different assimila-
tion run conditions. 

Table 4 presents further statistics regarding the performance of data assimilation in 
improving cumulative rainfall. This shows that precipitation significantly increased com-
pared to the period of no data assimilation. Overall, the relative error (RE) before and after 
assimilation was reduced by 0.26; Event 3 errors resulted in the most significant change, 
with a reduction in deviation of 0.342, while Event 4 rainfall increased most after assimi-
lation by 19.76 mm. 

Table 4. Observed and forecasted rainfall accumulation before and after data assimilation. 

Storm 

Event 
Observed 

No data Assimilation Data Assimilation Improvement 

Forecasted RE Forecasted RE Forecasted RE 

Event 1 63.38 49.35 −0.221 67.46 0.064 18.11 0.157 

Event 2 50.48 37.22 −0.263 52.18 0.034 14.96 0.229 

Event 3 30.82 19.05 −0.382 29.58 −0.040 10.53 0.342 

Event 4 172.17 128.36 −0.254 148.12 −0.140 19.76 0.114 

Average 79.21 58.49 −0.280 74.34 −0.020 15.85 0.260 

The normalized Taylor diagrams of cumulative rainfall (in which the horizontal and 
vertical coordinates are normalized by dividing by the standard deviation (SD) of the ob-
served series) before and after assimilation are shown in Figure 8. The variations of the 

Figure 7. Cumulative rainfall curves before and after data assimilation under different assimilation
run conditions.

Table 4 presents further statistics regarding the performance of data assimilation
in improving cumulative rainfall. This shows that precipitation significantly increased
compared to the period of no data assimilation. Overall, the relative error (RE) before
and after assimilation was reduced by 0.26; Event 3 errors resulted in the most significant
change, with a reduction in deviation of 0.342, while Event 4 rainfall increased most after
assimilation by 19.76 mm.

Table 4. Observed and forecasted rainfall accumulation before and after data assimilation.

Storm
Event Observed

No Data Assimilation Data Assimilation Improvement
Forecasted RE Forecasted RE Forecasted RE

Event 1 63.38 49.35 −0.221 67.46 0.064 18.11 0.157
Event 2 50.48 37.22 −0.263 52.18 0.034 14.96 0.229
Event 3 30.82 19.05 −0.382 29.58 −0.040 10.53 0.342
Event 4 172.17 128.36 −0.254 148.12 −0.140 19.76 0.114
Average 79.21 58.49 −0.280 74.34 −0.020 15.85 0.260

The normalized Taylor diagrams of cumulative rainfall (in which the horizontal and
vertical coordinates are normalized by dividing by the standard deviation (SD) of the
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observed series) before and after assimilation are shown in Figure 8. The variations of the
assimilated results were closer to the actual observations. The correlation coefficients (CC)
for both cumulative rainfall before and after assimilation were above 0.9 and the correlation
coefficient and root mean square error (RMSE) after data assimilation showed a significant
improvement compared to the corresponding values before assimilation, especially for
Event 1, in which the CC increased from 0.93 to 0.99. In the case of Event 3, a decrease in
CC from 0.98 to 0.96 occurred after assimilation; a similar trend was noted during Event 4.
The previous calculations of the temporal Cv values for precipitation events showed that
the two precipitation events were more heterogeneous in time and space than Event 1 and
Event 2. In Event 3, for example, the temporal Cv value of 2.3925 was much higher than that
of Event 1 (0.6011). This may explain the increased bias in assimilation, since the improved
effectiveness of the rainfall forecast after assimilation is determined by the amount of
effective information contained in the data. It is clearly easier for radar and GTS to capture
data during periods of rainfall that are homogeneously distributed in space and time.
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The above results demonstrate that WRF-3DVar effectively improved the consis-
tency of simulated precipitation. Specifically, cycling assimilations of radar reflectivity
and GTS data in the study area were able to improve both initial and lateral boundary
conditions, providing a basis for future research into the accurate modeling of atmospheric-
hydrological systems.

4.2. Effect of Data Assimilation on Runoff Prediction

In addition to the above analyses of the precipitation process, the performance of the
data assimilation on the runoff process was also of interest. We found that runoff forecasts
were relatively effective when data assimilation was used. For example, the coupling
system from the lumped model simulated Event 2 had significant improvements in flood
peak after assimilation (Figure 6).

The evaluation of the NSE, Rv, and Rp indices heat map among the flood processes for
the four studied events are given in Figure 9. To evaluate the effects of data assimilation on
runoff prediction, the indices of events were averaged from the results of the three coupled
systems with different complexities. Figure 9 also shows the degree of improvement of the
three types of indices after assimilation, demonstrating an overall improvement in NSE, Rv,
and Rp of 0.386, 0.474, and 0.252. Event 1 presented a relatively homogeneous distribution
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in space and time and showed the most significant improvements in Rp and NSE after
assimilation compared to the case of no assimilation, by 0.502 and 0.597, respectively.
In contrast, although Event 3 showed the largest improvement in assimilating the RE in
cumulative rainfall (Table 4), it resulted in the smallest improvement in both Rv and NSE
of 0.293 and 0.322, respectively. This improved mitigation performance may stem from
the poor spatial and temporal homogeneity of Event 3 of the studied storms, which poses
difficulties for coupled systems prediction, even if the overall rainfall input does not differ
significantly from the actual observations. The indices measured are thus a reflection of the
complexity of rainfall-runoff processes.
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Figure 10 shows the normalized Taylor diagrams of runoff events for the atmospheric-
hydrological coupling systems before and after assimilation. The assimilated runoff pro-
cesses corresponded to smaller RMSE and SD results closer to the mean observation series,
with the exception of Event 3. Assimilated flood discharge may have a higher CC than
the case of no data assimilation, but this was not always the case; indeed, parts of the
spatio-temporally heterogeneous rainfall-runoff events in all three coupling systems were
slightly smaller. The CC values after rainfall data assimilation were mostly above 0.6,
such that only WRF-Hydro simulations of Event 2 and Event 3 had smaller CC, as shown
in Figure 8. This corresponds to the rainfall processes of Event 2 (where there were two
rainfall peaks) and Event 3 (featuring a short and concentrated rainfall process).
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4.3. Effect of Data Assimilation on Coupled Systems with Variable Complexity

Smaller catchments are particularly vulnerable to uncertainties and spatial shifts in
rainfall patterns that may result in poor streamflow performance [27]. Figure 10 illustrates
the coupling systems’ stability from the grid-based model in blue, WRF-Hydro in yellow,
and the lumped model in red. It can be observed that the CC for the grid-based model both
before and after assimilation reached above 0.9 and that the values of RMSE were smaller
than those of the other coupling systems, with the exception of Event 3. The lumped model
had the next highest CC values, between 0.6 and 0.9, whereas WRF-Hydro exhibited a more
scattered CC distribution. Nonetheless, after assimilation, the latter captured a better flood
peak for Event 4. Detailed indices are given below for storm events, followed by further
distinctions in between the effects of varying coupled systems under different types of
rainfall before and after assimilation, as shown in Figure 11.
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4.3.1. Results with the Lumped Hebei Model

Most lumped models lack the spatial information required to describe hydrological
processes [56]. The lumped Hebei model consistently responds to spatial variability with
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probability functions (i.e., infiltration excess and saturation excess curves), thus ignoring
the true spatial distribution. For the studied storms, the lumped model generally obtains
an early flood peak for rainfall-runoff events, being 8 h and 4 h earlier for Event 3 and
Event 4, respectively (Figure 6). Both Event 3 and Event 4 exhibited inhomogeneous spatial
and temporal rainfall distributions. For the studied events, forecasts from the lumped
model increased the inaccuracy of the peak present time. This may be due to the fact that
when the catchment-averaged rainfall is used as an input, the effect of spatial variability in
the underlying surface layer on runoff generation can only be considered when the spatial
distribution of the rainfall is homogeneous (i.e., neither the combined effect of spatially
heterogeneous rainfall distribution and underlying surface layer variability, nor the effect
of net rainfall processes as multiple input sources when the spatial distribution of rainfall
is heterogeneous).

4.3.2. Results with the Grid-Based Hebei Model

Based on the grid-based Hebei model, an atmospheric-hydrological coupling system
was constructed for different rainfall resolutions and applied to the study area. This ap-
proach further demonstrated that descriptions of rainfall-runoff generation are compatible
with local rainfall and flood forecasting, and that the grid-based Hebei model is more stable
for forecasts both before and after assimilation compared with the other coupling systems
tested. Flood forecasts before assimilation were slightly less accurate than WRF-Hydro for
Event 1 and Event 2, but were generally better than the lumped model. Particularly, for the
flood processes of Event 4, the grid-based Hebei model obtained the best NSE results
(0.643 before assimilation and 0.874 after assimilation), demonstrating that this model is
well-adapted to modeling flash floods. Although there was no clearly defined division of
soil in the grid-based hydrological model, the influence of spatial heterogeneity due to soil
type was somewhat reduced due to the relatively homogeneous nature of the study area.

4.3.3. Results with the WRF-Hydro Modeling System

WRF-Hydro exhibited the opposite prediction accuracy compared with the lumped
model. A better forecast for the spatio-temporally heterogeneous Event 3 and Event 4 was
noted than for Event 1. With the exception of Event 4, flooding processes were found to
exhibit faster surface runoff recession, which may be related to rainfall-runoff generation
and interactions between land surface that occurs at every short integration time step in the
WRF-Hydro. This increased the volume of infiltrated precipitation, producing higher soil
moisture and reducing runoff [57]. For Event 1, which had a small flood magnitude and
long flood duration, the flood process was subject to a rapid recession, resulting in a poor
NSE (−0.5 before assimilation and −0.107 after assimilation). Nevertheless, WRF-Hydro
provided a more favorable forecast for Event 4, demonstrating its potential ability to
predict flash floods. Overall, however, the accuracy of the WRF-Hydro forecasts was poor,
supporting the findings of previous studies by Wang et al. [58] and Sharma et al. [31].

4.4. Improvement with Different Coupled Systems after Data Assimilation

Figure 12 provides further statistics on the extent to which the three coupled systems
contribute to an overall improvement in response to flood events. The indices of systems
were averaged from the results of the four studied storm events with different spatial and
temporal characteristics.
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Data assimilation promoted flooding in all three coupled systems. The coupling
system using the lumped model had a weak response with no data assimilation, denoted
by low Rp (−0.640) and Rv (−0.504) values, and therefore the most significant enhancement
in Rp and Rv after assimilation, especially Rp, with an enhancement of 0.604. Before assimilation,
the grid-based system was found to be more stable than the other two systems, so that
the improvement was moderate among the three systems. For the WRF-Hydro system,
responses to the Rp of Event 3 and Event 4, which were spatially and temporally heteroge-
neous rainfall events, was better before assimilation, but problems such as rapid surface
runoff recession remain a concern. The improvements in Rp and Rv were more obvious
after assimilation, whereas NSE was less improved.

5. Discussion

The forecasting accuracy of the flood peaks of the lumped model seems to be more
demanding in terms of the accuracy of the input rainfall than the two other coupling
systems, since the flood peaks of the lumped model were more moderate when unas-
similated rainfall was poorly simulated such as in Event 4, where less than a quarter of
the observed flood peaks were simulated before assimilation. Although the results of
the corresponding indices were better following assimilation, this characteristic greatly
increased the uncertainty of the atmospheric-hydrological coupling process, which can
easily lead to errors when studying flash floods since it is difficult to guarantee the accuracy
of the rainfall forecasting.

Although data assimilation improves the precipitation input required by WRF-Hydro,
it is still insufficient for complex model systems due to the need to input more meteoro-
logical variables. To improve the performance of the coupled system in the prediction
of hydrological processes, research on WRF-Hydro also includes the assimilation of soil
moisture variables [59] and real-time flood assimilation. Indeed, the coupling system of
the WRF-Hydro model has a stronger basis in physical processes than the former two
coupled systems; however, the complexity of parameter estimation that emerges from
the model also poses a greater challenge, which is a typical problem in many complex
physics-based models such as the variable infiltration capacity model and the community
land model (CLM) [60]. In addition to data assimilation, more precise expressions of
regional rainfall-runoff mechanisms also need to be further explored. The hydrodynamic
parameters developed for local areas may not necessarily be applicable to mesoscale areas;
therefore, although the model structure is feasible, the parameters of WRF-Hydro in terms
of soil properties are not fully calibrated for northern China. There is an urgent need to find
easily available parameters and expression equations that reflect the spatial heterogeneity
of local infiltration processes across the region as an alternative to model application.

6. Conclusions

In this study, WRF-3DVar data assimilation experiments were conducted, in which
radar reflectivity and GTS data were assimilated with the involvement of coupled hy-
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drological structures of different complexity for rainfall-runoff prediction. The perfor-
mance of three atmospheric-hydrological systems, established by coupling WRF with the
lumped Hebei model, the grid-based Hebei model, and the fully distributed WRF-Hydro,
were compared and analyzed for storms with different temporal and spatial distribution
characteristics before and after data assimilation. We further explored model potentials and
limitations in the localization of flood events. Focusing on the impact of data assimilation
on flood forecasting after improving different types of rainfall and coupling systems of
varying complexity, we found that WRF-3DVar produces more accurate rainfall forecasts,
and that the assimilated model system provides higher confidence in the flood forecasts.

When the lumped model was coupled, its input rainfall was averaged over all
grid points at the catchment scale, which may conceal the potential advantages of high-
resolution rainfall datasets. The grid-based Hebei model obtained better flood forecasting
results, but it did not provide a more comprehensive description of the spatial and tempo-
ral processes of the land-surface hydrology. The WRF-Hydro system, on the other hand,
is built on the basis of water balance and heat balance in terms of the physical processes,
thus clearly necessary for future flood research. The main reasons for the lack of accu-
racy of the WRF-Hydro predictions might be the preciseness of the input meteorological
elements and the structure of the modeling system. Demonstrating the former requires
further exploration of the transition from multi-source data assimilation to multi-process
data assimilation. The coupling system of WRF-Hydro may differ from actual regional
characteristics in its representation of the rainfall-runoff mechanisms, and thus its spatial
scale and applicability need to be further explored in the future, especially in relation to the
high-resolution land surface and hydrological processes that are essential for flash flood
forecasting. There is also a need for future work to build on the strengths of this model and
tailor atmospheric-hydrological coupling systems to the study area.
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