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Abstract: Sea ice is one of the typical causes of marine disasters. Sea ice image classification is an
important component of sea ice detection. Optical data contain rich spectral information, but they
do not allow one to easily distinguish between ground objects with a similar spectrum and foreign
objects with the same spectrum. Synthetic aperture radar (SAR) data contain rich texture information,
but the data usually have a single source. The limitation of single-source data is that they do not
allow for further improvements of the accuracy of remote sensing sea ice classification. In this paper,
we propose a method for sea ice image classification based on deep learning and heterogeneous data
fusion. Utilizing the advantages of convolutional neural networks (CNNs) in terms of depth feature
extraction, we designed a deep learning network structure for SAR and optical images and achieve
sea ice image classification through feature extraction and a feature-level fusion of heterogeneous
data. For the SAR images, the improved spatial pyramid pooling (SPP) network was used and texture
information on sea ice at different scales was extracted by depth. For the optical data, multi-level
feature information on sea ice such as spatial and spectral information on different types of sea ice
was extracted through a path aggregation network (PANet), which enabled low-level features to be
fully utilized due to the gradual feature extraction of the convolution neural network. In order to
verify the effectiveness of the method, two sets of heterogeneous sentinel satellite data were used
for sea ice classification in the Hudson Bay area. The experimental results show that compared with
the typical image classification methods and other heterogeneous data fusion methods, the method
proposed in this paper fully integrates multi-scale and multi-level texture and spectral information
from heterogeneous data and achieves a better classification effect (96.61%, 95.69%).

Keywords: sea ice; heterogeneous data; data fusion; feature information

1. Introduction

Sea ice, which accounts for 5–8% of the global ocean area, is the most prominent
cause of marine disaster in polar seas and some high-dimensional regions. Polar sea ice
anomalies affect atmospheric circulation, destroy the balance of fresh water, and affect the
survival of organisms. Mid–high latitude sea ice disasters affect human marine fisheries,
coastal construction, and manufacturing industries, and they also cause serious economic
losses [1]. Therefore, sea ice detection has important research significance, and sea ice
image classification is an important part of it.

It is necessary to obtain effective data in a timely manner for sea ice detection. Re-
mote sensing technology provides an important means for large-scale sea ice detection.
Traditional remote sensing detection data include SAR and optical remote sensing data
with a high spatial resolution and high spectral resolution (such as MODIS, Sentinel-2, and
Landsat). As an active microwave imaging radar, SAR has the characteristics of having an
all-day, all-weather, and multi-perspective collection method with a strong penetration,
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and its images contain rich texture information [2], achieving good results in sea ice classi-
fication [3–5]. With the continuous development of optical remote sensing technology, the
multi/hyperspectral resolution of optical remote sensing images can now provide more
detailed information in the spectral dimension, which provides important data support for
the classification of sea ice images. At present, more and more optical images have been
used in sea ice classification, such as MODIS optical data [6] and Landsat optical data [7],
and good classification results have been achieved.

In recent years, deep learning has rapidly developed in computer vision. With artifi-
cial intelligence, the explosive development of all kinds of deep learning algorithms has
also gradually begun to mature, and these algorithms have come to replace traditional
classification algorithms, such as the support vector machine algorithm (support vector
machine, SVM) [8], which has the problem of giving priority to shallow characteristics in
feature extraction and thus neglecting the deeper characteristics. Deep learning models
do not rely on manual design features and can extract features at different levels, includ-
ing shallow, deep, and complex features, which allows for considerable achievements in
computer vision image classification [9]. The convolutional neural network is an important
deep learning algorithm. The AlexNet deep convolutional neural network proposed by
Krizhevsky et al. [9] won the first prize in the image classification Contest of ILSVRC 2012
(ImageNet Large Scale Visual Recognition Challenge), and the error rate was reduced by
about 10% compared to the traditional classification algorithm. Kaiming He et al. [10]
proposed a deep residual network (Resnet) that can increase the number of layers in a
network to hundreds in order to extract more information on image characteristics. In 2014,
Kaiming He et al. proposed an SPP method [11] that can integrate features of different
sizes. In 2018, Shu Liu et al. proposed the PANet model [12], emphasizing that information
propagation between layers is very important in deep learning networks, and a similar
Feature Pyramid Network (FPN) [13] has achieved excellent experimental results. The
achievement of the convolutional neural network in image classification provides a new
technical means for remote sensing image classification. In the field of remote sensing im-
age classification, the convolutional neural network can be used to directly extract features
of SAR images and optical images [14,15]. At the same time, the deep learning method also
made a new breakthrough in the classification of sea ice. The deep learning model is used
to classify sea ice, and the effect is significantly better compared to that of the traditional
classification methods [16,17]. However, at present, most sea ice detection methods use
only a single data source. Because single-source methods have limited information on
the characteristics of images and another restriction pertaining to the imaging index, the
expression of feature information is not comprehensive [18]. The inclusion of different
types of ice in the detection of class differences between smaller and bigger ice increases
the difficulty of the classification of sea ice. At the same time, the broad classification of sea
ice as a “foreign body with different spectra” causes the ice model to be easily confused.
The method also needs support for more types of feature information. Using a single data
source therefore makes it difficult to further improve the detection accuracy of sea ice.

Based on the above research, SAR data and optical data are acquired by different
sensors, and the information contained in the images is also different. SAR data are
mostly single-band data, so it is difficult to distinguish between types of sea ice, but SAR
images contain rich texture information. Optical data have more bands and contain rich
spectral information, which can provide detailed data support for sea ice classification.
However, there are certain limitations in terms of discriminating between classes with
spectral similarity (such as gray and white ice). Therefore, combining the rich spectral
features provided by optical remote sensing data and the advantages of SAR images in
terms of texture features, this paper puts forward a method based on deep learning and
the fusion of heterogeneous data from different sea ice image classification methods. We
utilize the advantage of convolution neural networks in terms of the depth of the feature
extraction that are designed for the depth of SAR images and the optical image network
structure, learn through different source data feature extractions, and feature level fusion
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sea ice image classification. For the SAR images, the improved SPP network is used to
realize feature extraction at different scales in order to extract texture information of sea ice
in depth. For the optical data, through the extraction of different types of PANet multi-level
characteristics of spatial and spectral information on sea ice, convolutional neural network
feature extraction is constructed step by step, thus adequately utilizing low-level features.
Finally, features are extracted through the fusion of two models, making full use of the
heterogeneous multi-scale data and multi-level classification of the depth characteristics of
sea ice.

The rest of this paper is arranged as follows: The second section describes the design
framework and algorithm of the proposed method; the third section introduces the exper-
imental data and settings in detail, and the model parameters and experimental results
are discussed and analyzed; and the fourth section summarizes the work presented in
this paper.

2. Sea Ice Classification Method Based on Heterogeneous Data Fusion
2.1. Sea Ice Classification Framework Based on Heterogeneous Data Fusion

The framework of sea ice classification based on the heterogeneous data fusion pro-
posed in this paper is shown in Figure 1, which mainly includes four parts, namely, SAR
image feature extraction, optical image feature extraction, feature fusion, and sea ice classi-
fication and accuracy assessment. Firstly, SAR images and optical images are preprocessed.
The SAR images are processed for thermal sound removal, spot removal, and geometric
correction, whereas the optical images are mainly processed for atmospheric correction,
radiometric calibration, and principal component analysis. The pre-processed image is
resampled to a resolution of 10 m. Then the resampled SAR image is extracted with multi-
scale features through the improved spatial pyramid network and the optical image is
extracted with spatial and spectral information through the PANet network. Next, the two
branches are fused to extract feature information, and the full connection layer is inputted
through the Softmax classifier for classification. Finally, the confusion matrix is calculated
through the overall accuracy and Kappa coefficient, and a classification accuracy assess-
ment is conducted. At the same time, the suggested method is analyzed and compared to
SVM, the two-branch CNN [19], the deep fusion model [20], and other methods.

2.2. Heterogeneous Data Fusion Network Model

The structure of the heterogeneous network model for data fusion is shown in Figure 2.
The model includes a two-branch module and a module for SAR images, because sea ice
in SAR images contains more abundant texture features. This article is based on the SPP
model and puts forward the improved spatial pyramid pooling (ISPP) model in order
to fully extract different scales of sea ice feature information Another module for optical
images, the PANet network model, enhanced by a bottom-up path, makes full use of the
low-level features and enhances the whole level between the low-level features and high-
level features. It also shortens the path of information and further integrates the feature
extraction of useful information at every level in order to enhance the characteristics of
sea ice. The enhanced features extracted from the two branches were fused and inputted
into the full connection layer. Finally, the results of sea ice classification were obtained by
inputting them into the classifier.

2.2.1. Improved SPP Model

The function of the SPP model is that it fuses different features at multiple scales, which
can transform the feature graph of any size into a fixed-size feature vector that is inputted
into the full connection layer. As shown in Figure 3 [11], the feature graph output of the
convolution layer is then inputted into the SPP module, and a total of (16 + 4 + 1)× 256
features can be outputted, where, 16 + 4 + 1 represents the number of spatial bins, and
256 represents the number of convolution cores. In this way, multi-scale feature vectors
are obtained.
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Because SAR images have rich texture information, the SPP module can be used to
extract multi-scale features. In this paper, an ISPP model is put forward using the ideas
of the SPP model in addition to increasing the depth of the network. The convolution
operation is carried out for three max-pooling feature maps, finally the three convoluted
features are fused. As shown in Figure 4, the improved spatial pyramid pooling model can
extract more high-level features, which can further improve the classification accuracy of
sea ice.
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2.2.2. PANet Network Model

PANet is a path aggregation network that aims to promote the flow of feature infor-
mation and connect a feature grid with all feature layers so that useful information in each
feature layer can be directly transmitted to the subsequent sub-network and the feature of
each layer can be fully utilized. As shown in Figure 5 [12], PANet has three convolution
network modules. Module C1 is the process of input image sampling, and Module C3
subsamples module C2 and links the characteristics of the flow at the same time, thus
increasing the speed of the transfer path in Figure 5. The transfer path is the green dotted
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line, which contains less than 10 layers that are spread across the convolution. In contrast,
CNN in FPN has a long path (the red dotted line in Figure 5), which goes from the bottom
to the top and through more than 100 layers.
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In addition to obtaining deep-level features, the convolutional neural network can also
extract low-level and middle-level features. Features extracted from each convolutional
layer express different information [21]. The low-level layer lays emphasis on the contour,
color, and other information, whereas the high-level layer lays emphasis on abstract
features. By analyzing the features of each layer of the optical image, it was found that the
features of the middle and high layers have a great influence on the classification results.
This paper proposes an optical image feature extraction method based on the idea of a
PANet network that can extract multi-level features and be fully utilized by the PANet
network. The specific model is shown in Figure 6 below.
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2.3. Algorithm Implementation Process

After the description of the above framework, the specific implementation process of
its algorithm can be shown as follows (Algorithm 1).

Algorithm 1. The algorithm process in this paper.

Start
Input: raw SAR data, optical data
A. SAR image feature extraction
(1) SAR images are preprocessed by thermal sound removal, speckle removal, geometric
correction, resampling, and normalization;
(2) In the SAR image of step (1), the pixel point corresponding to each label is taken as the center
and the image block with a space field size of 27 × 27 is selected as the input sample of this point;
(3) SAR image samples are only used as training samples. The fused SAR image training samples
are selected according to a certain proportion of the optical training samples, and then the SAR
training samples are inputted into the ISPP network;
(4) Multi-scale feature F1 of the SAR image in ISPP network is obtained; and
(5) Feature extraction of the SAR image is completed.
B. Optical image feature extraction
(6) Atmospheric correction, radiometric calibration, and normalization are performed on the
optical images;
(7) Principal component analysis (PCA) is performed on the basis of (6) an image to extract the
first principal component;
(8) Step (2) is repeated to select the input sample of the optical image;
(9) The input images obtained from (8) are divided into training samples and the samples are
tested, with a ratio of 2:8;
(10) The training sample is inputted into the PANet network;
(11) The middle- and high-level characteristic information F2 of the optical image is obtained in
the PANet network; and
(12) Feature extraction of the optical image is completed.
C. Feature fusion of heterogeneous data
(13) The characteristic sizes of one-dimensional F1 features and F2 features are made to be
consistent;
(14) The features of (13) are fused;
(15) After fusion, the features are inputted into the full connection layer; and
(16) The Softmax classifier is introduced for classification.
Output: confusion matrix, overall accuracy, Kappa coefficient

End

3. Experimental Results and Discussion

In order to verify the effectiveness of the experimental method presented in this paper,
two sets of sea ice image data at different times were used for evaluation and compared
to single-source data network models, such as SVM, 2D-CNN, 3D-CNN, and PANet, as
well as with classification methods of fusion models, such as the two-Branch CNN [20] and
deep fusion [21]. The experimental results were evaluated in terms of the overall accuracy
(OA) and Kappa values.

3.1. Research Area and Data Preprocessing

Hudson Bay, located in Northeastern Canada, is one of five hot spots for sea ice
monitoring in the Canadian Ice Center (CIS). Sentinel-1 (S1) and Sentinel-2 (S2) are Earth
Observation satellites FROM the European Space Agency Copernicus Project. S1 carries a
C-band synthetic aperture radar, and S2 is a high-resolution multi-spectral imaging satellite
carrying a multi-spectral imager (MSI).

The experimental data were downloaded from the European Space Agency (ESA)
official website, wherein the SAR dataset of S1 is the Ground Range Detected (GRD)
product, and the optical dataset of S2 is the Level-1C (L1C) product. Two datasets from
partial areas of Hudson Bay were selected for analysis. Each dataset contained S1 and S2
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images, which were acquired for the same area at the same time. Among them, the first
dataset (Data 1) was from 6 February 2020, and the second dataset (Date 2) was from 6
April 2020. The geographical location of the study area is shown in Figure 7.
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Before the experiment, the selected remote sensing images were preprocessed. In
the S1 images, spot filtering, radiometric calibration, and geographic correction were
performed. The S2 images were corrected by atmosphere and radiation. Due to the
different resolutions of the S1 and S2 images, it was necessary to resample the resolution
of the S1 images to 10 m, and resample the bands with 20 m and 60 m resolutions in
the S2 images to 10 m. Since optical images contain multiple bands, in order to reduce
the calculation cost, the remote sensing classification model adopts the two-dimensional
convolutional neural network. At the same time, in order to obtain as much information
on the optical image as possible, principal component analysis (PCA) is used to reduce the
dimension of the optical image. After dimension reduction, the image retains the main
spectral features and also contains the spatial information. SAR images and optical images
are normalized, and the Min-Max normalization method is adopted. The normalization
formula is as follows:

Result = (DN − DNmin)/(DNmax − DNmin) (1)

In the formula, Result is the normalized result value, DN is the pixel value of the
original image, and DNmin and DNmax are the minimum and maximum value of the
pixel in all bands, respectively.

In remote sensing imaging after preprocessing, according to the Canadian ice condi-
tions provided by an ice chart, the first dataset types were divided into medium first-year
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ice, gray-white ice, thin first-year ice, and icebergs. The second dataset was divided into
thick first-year ice, gray ice, thin first-year ice, and icebergs through manual annotation
tag sample production from the label sample library. The ice chart link is as follows:
https://iceweb1.cis.ec.gc.ca/Archive/page1.xhtml (accessed on 5 January 2021).

The number of samples of each type of label selected from the two sets of optical
image data according to ice type is shown in Table 1.

Table 1. Total number of labels in the S2 data sample.

Number Color Class
Data1 Data2

S2 S2

1 Medium
first-year 4257 -

2 Gray-white 5033 -
3 Thin first-year - 4014
4 Gray - 4074
5 Thick first-year 4091 3139
6 Iceberg 4629 3078

The model training sampling was conducted in accordance with the types of sea ice
label samples, and the concrete steps are as follows: For each pixel within a certain range,
it is highly likely that the space within the neighborhood of the adjacent pixels belongs
to the same category, so it is centered in the M × M neighborhood and all pixels in the
neighborhood are taken as input data. The final formation of a block of data with the
size M × M × B, as model training samples, spectral information, and spatial information,
can be used simultaneously. As shown in Figure 8, a square represents a pixel, take the
3 × 3 image size as an example, taking the pixel m as the center, its spatial neighborhood
is m1~m8, and the pixel m and its spatial neighborhood belong to the same category in
a great probability. So the image block [m1, m2, m3, m4, m5, m6, m7, m8] is taken as the
training sample of pixel m. In this way, we could obtain an image size of n × n as the
model sample sample. In the experiment presented in this paper, we used an image block
of 23 × 23 for training.
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3.2. Experimental Setup

In the experiment, we used multi-spectral optical remote sensing sea ice data (S2) to
carry out an experimental analysis, and the ratio of the training samples to test samples was
2:8. Meanwhile, the feature information from the SAR data (S1) was fused in the experiment
to further improve the sea ice classification accuracy. In the proposed method, the multi-
scale features information of SAR images was extracted with the ISPP network, and the
PANet network was used to extract the mid-level and high-level features of optical image
information. Then these features from heterogeneous data were fused and inputted into
the Softmax classifier. The test samples were classified by the trained classifier, and finally
the overall classification accuracy was calculated by using a confusion matrix. The overall
classification accuracy of sea ice in the experiment was the average of the classification
results of five experiments.

3.2.1. ISPP Model Structure

The ISPP network was used to extract the features of the SAR image of sea ice in
the experiment. The specific network structure and parameters are shown in Table 2
below. The model consists of two layers of convolution and one layer of pooling. The
training sample size was 27 × 27, the number of convolution kernels at the first layer
was 64, the stride size of the convolution operation was 1 × 1, the number of convolution
kernels at the second layer was 128, and the stride size of the convolution operation was
1 × 1. After two convolutions, the feature map was inputted into the ISPP module for
feature extraction at three different scales. The stride sizes of the three pooling layers were
2 × 2, 4 × 4, and 8 × 8, respectively. Then the feature map after each pooling was further
convoluted to extract deep semantic information, and the obtained deep information was
featured by feature fusion. During the whole training process, the learning rate of the
model was 0.001, the dropout value was 0.5, and the activation function used was Rectified
Linear Unit (ReLU).

Table 2. Network parameters for extracting SAR image features.

Input Conv1 Pool1 Conv2
Max-Pool (ISPP) SConv (ISPP)

MaxPool1 MaxPool2 MaxPool3 SConv1 SConv2 SConv3

Kernel Size Strides - 64 - - - - - 256 256 256
Map size - [1,1] [2,2] [2,2] [2,2] [4,4] [8,8] [1,1] [1,1] [1,1]

Kernel Size Strides 27 × 27 25 × 25 12 × 12 10 × 10 5 × 5 3 × 3 2 × 2 1 × 1 1 × 1 1 × 1

3.2.2. PANet Model Structure

Multi-layer feature extraction and a fusion model using the PANet network were
used in the experiment for the optical image of sea ice. The fusion model consists of three
modules, two subsampling modules (modules M1 and M3) and one upsampling module
(module M2). The features of each layer are connected, and the middle and high features in
the network are finally fused. The network structure and parameters are shown in Table 3.
The size of the training image input in the experiment was still 27 × 27. In module M1,
feature extraction was carried out on the input training image. The module includes three
convolutional layers and two pooling layers. The stride of the three convolution layers
was 1 × 1; the number of convolution kernels was 32, 64, and 128 for M1, M2, and M3,
respectively; and the stride of the two pooling layers was 2× 2. In module M2, upsampling
is mainly carried out by module M1 and connects the features extracted from module
M1. Upsampling methods included deconvolution and unpooling, with two layers of
deconvolution and two layers of unpooling, and the stride was 1× 1 and 2× 2, respectively.
In module M3, the features of PConv1 were obtained by subsampling, and the feature
information extracted by module M2 was connected. The module contains two pooling
layers and two convolution layers.
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Table 3. PANet network parameters.

Layers Feature Map Size Strides Number of Kernels

M1

Conv1 26 × 26 [1,1] 32
Pool1 13 × 13 [2,2] -
Conv2 12 × 12 [1,1] 64
Pool2 6 × 6 [2,2] -
Conv3 5 × 5 [1,1] 128

M2

PConv1 26 × 26 - 32
Upool1 26 × 26 [2,2] -

Upconv2 13 × 13 [1,1] 32
Upool2 12 × 12 [2,2] -

Upconv3 6 × 6 [1,1] 64

M3

PConv1 26 × 26 [1,1] 32
PPool1 13 × 13 [2,2] -
PConv2 12×12 [1,1] 64
PPool2 6 × 6 [2,2] -
PConv3 5 × 5 [1,1] 128

3.3. Analysis of the Experimental Parameters
3.3.1. Influence of the PANet Model Training Sample Size

The training sample size is an important factor affecting the classification accuracy
of the model. The selection of training sample size comprehensively considers the spatial
information contained in the sample and the depth of the network model. The larger
the size of the training sample is, the more spatial information it contains, which can
improve the depth of convolution network and mine more feature information. However,
because the surrounding samples may not belong to this category, it will also bring some
errors. The smaller the size of training sample, the smaller the error caused by adjacent
pixels, but the smaller training sample size contains less spatial information. At the same
time, due to the size limitation of training sample, it will reduce the number of layers of
convolution network, and it is difficult to obtain more deep information, on the contrary,
it will reduce the classification accuracy. Considering the above factors, five training
sample sizes 19 × 19, 21 × 21, 23 × 23, 25 × 25, 27 × 27 for the sea ice classification were
evaluated. The experimental results show that the training sample size of 27 × 27 can
obtain better classification results, so this training sample size is chosen in this paper, as
shown in Table 4.

Table 4. Influence of different training sample sizes on classification accuracy.

Data 1 Data 2

OA (%) Kappa×100 OA (%) Kappa×100

19×19 89.89 88.71 90.09 88.97
21×21 91.13 89.84 91.15 89.65
23×23 92.74 90.67 91.85 89.93
25×25 93.32 91.01 92.33 90.27
27×27 93.76 91.94 93.07 91.32
29×29 93.45 91.53 92.87 91.07

3.3.2. Influence of the Convolution Kernel Size of the PANet Model

The convolution operation is the main way to extract the features of the CNN model,
and the size of the convolution kernel plays an important role in the performance evaluation
of the model. As shown in Figure 2 above, in the PANet network, the model conducts
multiple upsampling and subsampling processes, connects the features of different layers,
and finally extracts the features of the middle- and high-level images.

Based on the above network model, experiments were conducted on S2 data in Data 1
and Data 2. In the experimental comparison of the size of the input model, the final size
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selected in the experiment was 27 × 27. In view of the model structure and the size of
the input training image, experiments were carried out on 2 × 2 and 4 × 4 convolution
kernel sizes.

During the experiment, the training samples were randomly selected. In order to
avoid the contingency in the final experimental results, five experiments were conducted
for each dataset, and the average value was taken as the overall classification result. Table 5
shows the classification accuracy results obtained when different convolution kernel sizes
were adopted in the two datasets.

Table 5. Influence of different convolution kernel sizes on classification accuracy.

Data 1 Data 2

OA (%) Kappa×100 OA (%) Kappa×100

2×2 93.76 91.94 93.07 91.32
4×4 93.12 91.21 92.64 89.99

It can be seen from Table 5 that the classification accuracy of the model varied with the
convolution kernel size. In the two sets of experimental data, when the convolution kernel
size was 2 × 2, the model achieved good classification accuracy and the overall accuracy of
Data 1 and Data 2 reached 93.76% and 93.07%, respectively. In the following experiments,
the convolution kernel size was 2 × 2.

3.3.3. Influence of the Number of Samples for SAR Data Fusion

Due to the rich texture information contained in SAR data, SAR image feature infor-
mation can be used to effectively improve the classification performance. In the experiment,
SAR data and optical data were trained separately to extract features. First, the ISPP model
was used to extract multi-scale features from SAR image data, and the extracted features
were processed one-dimensionally. In addition, the PANet model was used to extract the
feature of the middle level and high level of the optical images, and these features were
also one-dimensionally processed and fused with the multi-scale features of SAR images.
Finally, they were inputted into the full connection layer to classify the optical images.

In the feature fusion experiment, training samples of SAR images were randomly
selected from the S1 sample base for training. An optical image of the training sample was
randomly selected from the S2 sample for training, and the test sample was the optical
images in the dataset. In the following experiments, SAR training label features and optical
label features were extracted and fused. Two different kinds of characteristics from the
source data integration analysis concerning the result of the sea ice classification are shown
in Table 6 below.

Table 6. Proportion of SAR training samples (S1) and optical image training samples (S2).

Data
Set Data 1 2 3 4 5 6 7 8 9 10

Data 1
S1 3585 1792 1195 896 717 597 512 448 398 358
S2 3585 3585 3585 3585 3585 3585 3585 3585 3585 3585

Data 2
S1 2858 1426 852 714 571 476 408 357 317 258
S2 2858 2858 2858 2858 2858 2858 2858 2858 2858 2858

Ratio S1:S2 1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10

The classification accuracy and Kappa coefficient results, obtained with different
fusion ratios listed in Table 6, are shown in Figure 9 below, and the classification accuracy
is the average of the results of five experiments.
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In the above experiment, multi-spectral optical remote sensing sea ice data (S2) were
used to carry out the experimental analysis, and the ratio of the training samples to the
test samples was 2:8. Meanwhile, the characteristic information from the SAR data (S1)
was fused in the experiment to further improve the sea ice classification accuracy. Figure 9
shows the results of the comparative analysis when different proportions of SAR training
samples were fused in the experiment. As can be seen from Figure 9, when the number of
training samples of the optical image remained unchanged, the proportion of the training
samples of the fused SAR image was adjusted. After the feature fusion of the two kinds
of heterogeneous data, the final classification accuracy of sea ice was different. In Data 1,
when the ratio of SAR training samples to optical training samples was 1:3, the overall
accuracy reached the highest value of 96.61%, and the Kappa coefficient was 95.68, which
was 2.85 percentage points higher than the accuracy of 93.76% when using optical data
alone for classification. In Data 2, when the ratio of the number of SAR training samples to
the number of optical image training samples was 1:4, the classification accuracy of sea ice
was the best, and the overall accuracy reached 95.69%, which was 2.63 percentage points
higher than the classification accuracy of 93.07% using optical data alone.
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The abovementioned experimental results show that compared to using optical images
alone to classify sea ice, the classification accuracy was significantly improved after fusing
the feature information of the SAR image. In addition, by fusing different proportions
of SAR image samples, the improvement of classification accuracy was different. Too
many training samples of a fused SAR image reduce the generalization ability of the
model, and too few samples of a fused SAR image cannot achieve the desired effect.
By choosing the appropriate proportion of fusion samples, we can obtain better sea ice
classification accuracy.

3.4. Analysis of Experimental Results
3.4.1. Comparison with Other Image Classification Methods

Table 7 shows the comparative analysis results of the method presented in this paper
and other typical image classification methods using single-source data, among which
several commonly used classification methods only use optical data for classification. It can
be seen from the experimental results that the method presented in this paper achieved the
best classification results compared to other methods, and the overall accuracy was 96.61%
and 95.69% for the two datasets, respectively. It was 6.56% and 5.95% higher, respectively,
than that of the SVM. This is because the SVM model mainly extracts the shallow features,
which limits the improvement of its classification accuracy. The 2D-CNN model mainly
classifies using high-level feature information but does not make full use of middle-level
feature information and spatial information. The accuracy was 91.78% and 91.06%, re-
spectively, which was 4.83% and 4.53% lower, respectively, than the method presented
in this paper. In the 3D-CNN model, spatial and spectral information can be extracted
simultaneously, which can effectively improve the classification accuracy. The accuracy
for the two datasets was 93.65% and 93.15%, respectively. The PANet network utilizes
middle-level and high-level feature information, but, like 2D-CNN, it does not extract
much spatial information. The overall classification accuracy was 93.76% and 93.07% for
the two datasets, respectively. Compared to the commonly used classification methods, the
method proposed in this paper showed the best classification effect in experiments due to
the multi-scale feature of SAR images and the middle–high-level feature of optical images.

Table 7. Comparison of the methods presented in this paper and the classification methods based on single-source data.

Medium
First-Year

Ice

Gray-
White

Ice

Thin
First-Year

Ice

Gray
Ice

Thick
First-Year

Ice
Iceberg OA Kappa×100

Data 1

SVM 92.31 89.87 - - 90.23 89.43 90.05 89.12
2D-CNN 92.53 91.34 - - 91.91 90.97 91.78 90.81
3D-CNN 94.76 92.98 - - 93.83 92.47 93.65 92.09

PANet 94.55 93.02 - - 94.30 92.71 93.76 91.94
Proposed 96.86 96.26 - - 96.71 97.02 96.61 95.68

Data 2

SVM - - 90.21 90.45 89.67 89.12 89.74 88.26
2D-CNN - - 92.12 91.23 90.02 90.34 91.06 90.24
3D-CNN - - 93.89 94.01 92.12 92.34 93.15 91.34

PANet - - 94.21 93.78 92.78 92.31 93.07 91.32
Proposed - - 96.11 95.94 95.37 95.55 95.69 94.43

3.4.2. Comparison of Different Fusion Methods

In order to further verify the performance of the proposed method in multi-source
remote sensing data fusion classification, the proposed method was compared to other
fusion methods. The experimental results are shown in Table 8. The SVM (S1+S2) method
was used to train an SAR image and optical image after the training samples were mixed.
The two-branch CNN utilizes the tow convolutional neural network to extract the character-
istics of two kinds of heterogeneous data. The deep fusion model uses multiple networks
to extract features from heterogeneous data.
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Table 8. Comparison of different fusion methods.

Class
Data1 Data2

SVM (S1 + S2) Tow-Branch
CNN Deep Fusion Prop-osed SVM (S1 + S2) Tow-Branch

CNN
Deep

Fusion Prop-osed

Medium first-year ice 93.04 96.89 96.43 96.86 - - - -
Gray-white

ice 90.14 96.03 96.32 96.26 - - - -

Thin first-year ice - - - - 91.67 95.55 95.92 96.11
Gray ice - - - - 91.23 95.32 95.43 95.94

Thick first-year ice 92.31 95.96 95.78 96.71 90.12 94.89 95.71 95.37
Iceberg 92.78 96.84 96.59 97.02 90.88 94.82 94.51 95.55

OA 92.50 96.28 96.31 96.61 90.96 95.28 95.42 95.69
Kappa×100 90.03 95.12 95.24 95.68 89.87 94.14 94.37 94.43

As can be seen from the experimental results, compared to other methods, the pro-
posed method achieved the best classification results. The overall classification accuracy for
the two datasets was 96.61% and 95.69%, respectively, and the Kappa coefficient was 95.68
and 94.43, respectively. Compared to the SVM method, the accuracy of the SVM method
was improved by 4.11% and 4.63%, respectively. Because the SVM extracted features were
shallow features, it was difficult to obtain a higher classification accuracy. The two-branch
CNN mainly extracted high-level semantic features, which limited its classification accu-
racy to 96.28% and 95.28%, respectively. The accuracy of the deep fusion model was 96.31%
and 95.42%, respectively, due to the lack of low-level features. The method proposed in
this paper, on the one hand, fuses the different features from different data sources; on the
other hand, it fuses the multi-scale and multi-level features for different data sources to
further improve the classification effect and obtain the highest classification accuracy.

Compared to different fusion methods, the fusion algorithm of multi-source features
proposed in this paper achieved good results, the classification accuracy of the two sets of
data was 96.61% and 95.69%, respectively. In order to verify the validity of the proposed
algorithm and better show the sea ice classification effect of this method, the results of
the above heterogeneous fusion model were visualized as shown in Figure 10. It can be
seen from the figure that the classification results of the proposed method were in good
agreement with the original image.
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In terms of time efficiency, the results of the comparison of the proposed method
with other fusion methods are shown in Table 9. All experiments were run on the same
equipment, and the average running time of the five experiments was taken as the result.
Since SVM (S1 + S2) is a shallow learning method, it had the best performance in terms
of time efficiency compared to the deep learning methods. The deep fusion network uses
three deep frameworks (two CNNs and one DNN), and it took a relatively long time to
train the model.

Table 9. Training time of the different methods (unit: seconds).

SVM (S1 + S2) Tow-Branch CNN Deep Fusion Proposed

Data 1 102.73 501.25 582.37 509.95
Data 2 87.62 391.33 491.16 393.58

Both the two-branch CNN and the proposed method in this paper adopt two deep
network frameworks, which had little difference in terms of time efficiency. However, the
proposed method achieved better classification accuracy.

4. Conclusions

In this article, SAR data and the optical characteristics of a remote sensing data
fusion are applied in the classification of sea ice, making full use of the abundant sea ice
texture features in SAR data and optical remote sensing images to provide high-resolution
spectral characteristics, design a sea ice deep learning model to extract heterogeneous
multi-scale feature and multi-level feature information, and improve classification accuracy.
Through the analysis and comparison to other classical image classification methods and
heterogeneous data fusion methods, this paper proposes a method to obtain a better sea
ice classification result, which provides a new method and idea for remote sensing sea
ice image classification using heterogeneous data fusion. The specific contributions are
as follows:

(1) Optical remote sensing data are rich in spectral features, and a SAR sensor can obtain
abundant ground texture information. Heterogeneous data fusion can overcome the
limitations of single-source data and make full use of the characteristic information
of data from different data sources in order to realize complementary advantages,
providing a new way of thinking of the classification of remote sensing sea ice images.

(2) Based on the advantages of convolution neural networks in extracting deep features,
a deep learning and heterogeneous data fusion method for sea ice image classification
designed for the convolution neural network structure of SAR images and optical
images, the extraction of heterogenous multi-scale features and multi-level features,
and the implementation of sea ice image classification using feature level fusion, the
sea ice image classification accuracy is obviously increased.

(3) The training sample size of the deep learning model, the size of the convolution
kernels, and the heterogeneous data integration of different data fusion ratios impact
the sea ice classification accuracy. To further improve the learning effect of deep
learning models and thus the sea ice classification accuracy, the parameters of the
deep learning model were analyzed and compared in terms of the size of the training
sample, the size of the convolution kernel and the fusion ratio of SAR data, so as to
further improve the accuracy of sea ice classification.

In addition, because the SAR sensor can penetrate through clouds and mist, it is not
affected by clouds or mist, whereas optical remote sensing is be affected by the interference
of clouds and mist. Through heterogeneous data fusion, data complementary can be
realized, and the advantages of heterogeneous data can be fully utilized to further expand
the scope of sea ice detection and improve the accuracy of sea ice detection, which is our
next research content.
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