
remote sensing  

Article

Comparative Analysis of TMPA and IMERG Precipitation
Datasets in the Arid Environment of El-Qaa Plain, Sinai

Mona Morsy 1,2,3,*, Thomas Scholten 2 , Silas Michaelides 4,5 , Erik Borg 6,7, Youssef Sherief 8,9

and Peter Dietrich 2,3

����������
�������

Citation: Morsy, M.; Scholten, T.;

Michaelides, S.; Borg, E.; Sherief, Y.;

Dietrich, P. Comparative Analysis of

TMPA and IMERG Precipitation

Datasets in the Arid Environment of

El-Qaa Plain, Sinai. Remote Sens. 2021,

13, 588. https://doi.org/10.3390/

rs13040588

Academic Editor: Vincenzo Levizzani

Received: 16 January 2021

Accepted: 4 February 2021

Published: 7 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Geology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
2 Soil Science and Geomorphology, Eberhard Karls University Tübingen, Rümelinstraße 19–23,

D-72070 Tübingen, Germany; thomas.scholten@uni-tuebingen.de (T.S.); peter.dietrich@ufz.de (P.D.)
3 Department of Monitoring and Exploration Technologies, Helmholtz Center for Environmental Research,

04318 Leipzig, Germany
4 Department of Civil Engineering and Geomatics, Cyprus University of Technology, 3036 Limassol, Cyprus;

silas.michaelides@cut.ac.cy
5 ERATOSTHENES Centre of Excellence, 3036 Limassol, Cyprus
6 German Aerospace Center, German Remote Sensing Data Center, National Ground Segment,

D-17235 Neustrelitz, Germany; erik.borg@dlr.de
7 Geoinformatics and Geodesy, Neubrandenburg University of Applied Sciences,

D-17033 Neubrandenburg, Germany
8 Geography Department, Faculty of Arts and Social Sciences, Sultan Qaboos University, Muscat 123, Oman;

sherief@squ.edu.om
9 Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
* Correspondence: mona.ahmad-mahmoud-morsy@ufz.de

Abstract: The replenishment of aquifers depends mainly on precipitation rates, which is of vital
importance for determining water budgets in arid and semi-arid regions. El-Qaa Plain in the
Sinai Peninsula is a region that experiences constant population growth. This study compares the
performance of two sets of satellite-based data of precipitation and in situ rainfall measurements.
The dates selected refer to rainfall events between 2015 and 2018. For this purpose, 0.1◦ and
0.25◦ spatial resolution TMPA (Tropical Rainfall Measurement Mission Multi-satellite Precipitation
Analysis) and IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement)
data were retrieved and analyzed, employing appropriate statistical metrics. The best-performing
data set was determined as the data source capable to most accurately bridge gaps in the limited rain
gauge records, embracing both frequent light-intensity rain events and more rare heavy-intensity
events. With light-intensity events, the corresponding satellite-based data sets differ the least and
correlate more, while the greatest differences and weakest correlations are noted for the heavy-
intensity events. The satellite-based records best match those of the rain gauges during light-intensity
events, when compared to the heaviest ones. IMERG data exhibit a superior performance than TMPA
in all rainfall intensities.

Keywords: precipitation; TRMM; GPM; stressed aquifers; arid areas; Sinai

1. Introduction

Sufficiently accurate measurements of precipitation are indispensable for a large
spectrum of socio-economic human activities [1]. Such precipitation measurements are
essential over a wide range of spatiotemporal scales. However, over several regions
around the world, precipitation measurements from rain gauges or other in situ rainfall
measuring instruments are limited by the scarcity of observations from a locally coarse
network [2–4]. Data from other ground-based platforms (e.g., ground-based weather
radars) cannot fill in the gap. The Sinai Peninsula in Egypt is an example of a region
with insufficient ground-based measurements from rain gauges. Nevertheless, satellites
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can provide estimations of precipitation at broader geographical scales [5–7] and, thus,
satellite-derived rainfall estimations offer a potential source for obtaining higher-quality
spatiotemporal precipitation distributions over the Sinai Peninsula. This is particularly
important in cases where socio-economic activities greatly rely on aquifers for water
resources, as in the geographical area referred to in this case study. However, monitoring
precipitation by the spaceborne sensors in arid areas is a challenging task because such
areas are characterized by low precipitation intensities and large spatial heterogeneities [8].

In arid and semi-arid areas, replenishment of aquifers by precipitation is influenced by
the recharge rate and general water cycle equilibrium [9]. Increased precipitation, especially
during monsoons, reduces stress on aquifers, either by a direct recharge or indirectly by the
reduction of abstraction [10]. Consequently, precipitation is the most prominently analyzed
factor in most hydrological studies, particularly those on flash flood risk assessment,
groundwater location, climate change, and forecasting [11]. Precipitation intensity is
determined by the storm extent, strength, and movement, which varies over small-scale
areas in arid and semi-arid regions [12,13]. Low precipitation rates negatively affect the
continuity of land reclamation [14]. However, the significance of light-intensity events lies
in their frequency. These are the most frequent event types in most arid regions of the
world, when compared to more rare heavy-intensity rain events [15,16]. The contribution of
the most frequent light rainfall events to infiltration and aquifer recharge rates is, therefore,
greater than that of the heavy-intensity events.

Event intensity was previously determined primarily by a combination of rain gauge
and radar data [17,18]. However, rain gauge data on its own produces the most accurate
measurement of precipitation rates both in terms of spatial resolution and rainfall accu-
mulation depth [11,19]. Several types of rain gauges exist, including accumulation gauges,
tipping bucket gauges, weighing gauges, and optical gauges. Each carries its own advan-
tages and disadvantages [11,19,20]. Although rain gauges have been ranked as the most
accurate tool for rainfall detection, they are sparsely distributed or even non-existent in
most developing countries, particularly those in mountainous regions [17,21,22]. However,
there exist numerous, freely available sets of satellite-based rainfall estimates and reanalysis
products, which enable users to bridge gaps in data derived from rain gauge networks.

The El-Qaa Plain in the Sinai Peninsula was selected as a test site. This region was
chosen for its standing as one of the most promising areas in the Sinai Peninsula for further
development and, in particular, tourism. These prospects have already led to a gradual
increase in the number of inhabitants and expansion of land exploitation. As a result,
local water consumption is gradually increasing in an area where the main source of
groundwater is the regional quaternary aquifer [23,24]. This aquifer extends from Wadi
Feiran to the head of Ras-Mohamed and is mainly recharged by rainfall [25].

For a more effective management of the limited water resources in the area, it is clear
that it is critical to acquire sufficient data on the spatiotemporal distribution of the rainfall
events with special emphasis on light events [26]. The existing coarse rain gauge network
is not sufficient to shed light on this aspect and it seemed that the knowledge gap can be
filled by exploiting rainfall estimates from satellite missions that are capable of providing
data on spatiotemporal distributions of rainfall. In order to demonstrate that satellite-
derived data can meet this need, two sets of satellite-based rainfall data are tested and
compared in this study. The first dataset refers to the most commonly used dataset related
to the Tropical Rainfall Measuring Mission (TRMM). This dataset is the Multi-Satellite
Precipitation Analysis, Version7 (3B42V7), hereafter, denoted as TMPA (Tropical Rainfall
Measurement Mission Multi-satellite Precipitation Analysis) [27–31]. The second dataset
refers to another more recent satellite rainfall measuring effort, the Global Precipitation
Mission (GPM [7]). This dataset is the Integrated Multi-satellite Retrievals for GPM,
hereafter, denoted as IMERG (Integrated Multi-satellite Retrievals for Global Precipitation
Measurement) [32].

The performance of TMPA and IMERG has been investigated in several studies over
different parts of the world and it is still an ongoing topic of study [33–36]. Bearing in mind
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that the availability of the GPM-related dataset started after the launch and operational
functioning of the core observatory in 2015. Studies that make use of IMERG products have
only been published recently. Manz et al. [37] compared IMERG and TMPA in the tropical
Andes and Tan and Duan [38] assessed them over Singapore. Xu et al. [39] evaluated the
two datasets against rain gauge records in the Tibetan Plateau. The study was followed by
another study over the same area by Zhang et al. [40]. A similar study was carried out by
Anjum et al. [41] over another mountainous region in Pakistan. Tan and Santo [42] have
used the two datasets in their study over Malaysia. The performance of the satellite-based
analyses was also tested over the mountainous region of Northwest China [43]. Palomino-
Ángel et al. [44] compared reference and satellite-based mean daily precipitations over
Northwestern South America. In addition, Zhang et al. [45] have assessed the two datasets
over a humid basin in China.

From the above brief listing of the recently published research on the comparative
assessment of TMPA and IMERG, it is evident that the respective investigators have been
focusing mainly on areas where rainfall is not scarce, and a sufficient network for ground
measurements is in place. However, it is challenging to investigate the performance of
these two datasets in an arid environment with the employment of a rather inadequate
rain gauge network where rainfall estimations are highly desirable.

Bearing in mind the above, the objective of the present study is to compare TMPA
and IMERG analyses against ground measurements of precipitation over an arid area
covered with a coarse rain-gauge network. The targeted area is the El-Qaa Plain in the
Sinai Peninsula. The present study will form the basis for making recommendations on
improving and expanding the current rain gauge network. The utilization and contrasting
of the two precipitation data sets against the existing in situ data set was performed
in support of a double-sided study aiming to optimize the design of a new rain gauge
network over the test site. In addition to other decisive factors and the adoption of suitable
statistical metrics, the better performance of the two satellite-based data sets may be used
as providing an objective criterion for site selection of a future denser rain-gauge network.

Several authors have investigated the groundwater localization in the area under
study [24,46–49]. Nevertheless, the local precipitation rate and spatiotemporal distribution
of rainfall have been insufficiently investigated due to the limited number of rain gauges
in the region. Consequently, the present study offers a foundation for addressing the
climatological and hydrological concerns at the test site. Moreover, these results can
promote continual development in the area, as they serve as a basis for the preservation of
the region’s water table. Moreover, this study comprises the first part of the double-sided
study mentioned before. Therefore, the methodology and results of one side of the study
will be launched in the current manuscript and contribute in complementing the other
side, which is targeting the optimization of the existing rain gauge network in the test site,
and will be discussed in a companion paper.

Following this introduction, a brief account of the study area is given in Section 2.
In Section 3, the data used in this study are presented with emphasis on the TMPA and
IMERG data features and the in-situ rainfall measurements. Section 4 presents the method-
ology adopted. Results and discussions are presented in Section 5 with concluding remarks
and plans for future work given in Section 6.

2. Study Area

The Southwestern corner of the Sinai Peninsula contains the El-Qaa Plain, located be-
tween latitudes 28◦30′ and 28◦40′ North and longitudes 33◦17′ and 33◦37′ East and neigh-
boring the Gulf of Suez [47] (Figure 1). Its area is roughly 6070 km2 with a maximum
length of 150 km and a maximum width of 20 km [50]. The El-Qaa Plain was defined by
the Precambrian eastern mountain region that borders the study area to the East and North
and features a maximum elevation of 2624 m and a minimum elevation of 300 m [47].
This section of the Sinai Peninsula comprises several varieties of igneous rock, such as
diorite, granite, meta-gabbro, and volcanic rocks [26,51]. Its sedimentary section comprises
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Gabal Qabaliat in the northwestern region of the study site and features an elevation of
250 m and a moderate slope toward the El-Qaa Plain, separating the Gulf of Suez from
the plain. The central plain is composed mainly of Quaternary deposits, which are not
perfectly flat and are dissected by several wadies, alluvial fans, palaya, and terraces [52].
Sherief [26] distinguished between old alluvial deposits and wadi deposits.
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Figure 1. Satellite map showing the study area. El-Qaa Plain is contained within the black outline
with its five ground-based stations identified (source: Google Earth, 2017).

The study area was separated into two sub-areas on the basis of the topographical
elevation above mean sea level: (a) the Lowland sub-area, ranging in elevation from 0 to
300 m, includes the Ras-Sudr (29.59◦N, 32.71◦E, 12 m) and Abu-Rudeis (28.89◦N, 33.18◦E,
13 m) stations in the northern part of the area, the El-Tor (28.24◦N, 33.62◦E, 13 m) station
in the middle, and the Sharm El-Sheikh (27.93◦N, 34.32◦E, 38 m) station in the South.
(b) The highland sub-area, ranging in elevation from 300 to 2000 m, is represented by the
Saint-Catherine (28.55◦N, 33.98◦E, 1562 m) station in the middle of the area. Generally,
highland receives more of rainfall than lowland.

3. Materials
3.1. TRMM Multi-Satellite Precipitation Analysis (TMPA)

Precipitation-based remotely sensed data can provide a broad solution to the extensive
problems that arise due to the low number and sparse distribution of rain gauges in certain
areas. Moreover, it provides both a high spatial (4 to 25 km) and temporal resolution (every
30 min to 6 h). Furthermore, it offers annual, seasonal, and daily coverage at local and
regional scales [53].

The Tropical Rainfall Measuring Mission (TRMM) provided the first widely used
remote sensing data for estimating rainfall in tropical and subtropical areas [17,54]. TRMM
was a joint space mission between the US National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency (JAXA) [55,56]. The TRMM carried
onboard five instruments: a Precipitation Radar (PR, operating at 13.8 GHz), a TRMM
Microwave Imager (TMI, a nine-channel passive microwave radiometer), a Visible Infrared
Scanner (VIRS, a five-channel visible/infrared radiometer), a Clouds & Earths Radiant
Energy System (CERES), and a Lightning Imaging Sensor (LSI). It operated at one trans-
mitting/receiving frequency and one polarization, providing information about rain type,
strength, and distribution [55]. The TRMM Microwave Imager (TMI) provided quantitative
information about rainfall, water vapor, cloud water content, and sea surface temperature
(SST) [55]. The PR complemented the results of the TMI and passive microwave sensors
to provide measurements of radiance through precipitating clouds along the sensor view
path. Radiance frequency reflects the properties of clouds and precipitation particles [57].
The active microwave sensors provided information about cloud height by measuring a
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backscatter delay [57]. The Visible and Infrared Scanner (VIRS) provided indirect measure-
ments of rainfall intensity, distribution, and type [55,56]. The VIRS provided less reliable
data on its own [57]. However, it provided more frequent data when compared to the
infrequent data captured by the TMI and PR. The LIS was a lightning sensor, which played
an important role in connecting lightning occurrence to precipitation events, while the
CERES allowed for the determination of the total radiant energy balance. Analyzed to-
gether with the latent heating derived from precipitation, it was then possible to construct
a significantly improved picture of our atmospheric energy system [57].

For each of the rainfall events studied here, the temporal resolution is eight TMPA
scenes in a day (i.e., one per 3 h) retrieved from the official NASA webpage (mirador.gsfc.
nasa.gov (accessed on 4 February 2021)) in the netcdf format. The ArcGIS 10.5 software
was subsequently used to process these data. Processing was performed in four steps,
complementing the first stage of the statistical metrics. The data were first opened as a
raster layer and clipped to match the study area. The data pixel size was subsequently
resampled, adopting the nearest-neighbor interpolation, in order to match the IMERG data
spatial resolution. Finally, the value of each pixel was calculated and recorded, including
the starting point of the events (0 h), after three hours (3 h), six hours (6 h), nine hours
(9 h), 12 hours (12 h), and one day (24 h). This time series was sufficient to cover all
rainfall events, as the precipitation ceases after 12 hours. Next, the satellite-based rainfall
data was divided into lowland and highland groups, according to the respective pixel’s
elevation. Data recorded at points with elevations ranging from 0 to 300 m belong to the
lowland group, while those from 300 to 2000 m belong to the highland group. The values
of pixels coinciding with rain gauges were collected at both 0.25◦ and 0.1◦ resolutions on a
daily basis.

After seventeen years with the TRMM satellite in orbit, its mission came to an end
in 2015, and was succeeded by the Global Precipitation Mission (GPM, see Section 3.2).
Nevertheless, the plan is that TMPA will continue to be computed with climatological
coefficients for several months after the IMERG is retrospectively processed to the start of
TRMM in order to allow a transition for users, like in the present study.

3.2. Integrated Multi-Satellite Retrievals for GPM (IMERG)

The Global Precipitation Measurement (GPM) mission is the most recent joint space
venture between NASA (National Aeronautics and Space Administration) and JAXA
(Japan Aerospace Exploration Agency) with contributions from several other countries and
organizations (e.g., France’s CNES, the Indian Space Research Organization (ISRO), the
USA’s NOAA, EUMETSAT, and others). The GPM expands upon the TRMM mission with
higher spatial and temporal coverage and higher accuracy. It provides the next generation
of global rain and snow observations. The scientific community responded immediately to
the availability of the new source of spatiotemporal distributions of rainfall data [58].

The GPM core observatory satellite was launched on 27 February 2014, carrying an
advanced set of instruments onboard. It houses a Ku/Ka-band Dual-frequency Precipita-
tion Radar (DPR) and a multi-channel GPM Microwave Imager (GMI) capable of sensing
light rain and snow fall [7,54,59,60]. The GPM mission is characterized by its distinct
orbit, inclined 65◦, allowing continuous sampling over all hours of the day [59]. The core
observatory is complemented by a constellation of other spacecrafts. The core observatory
provides a new calibration standard for the rest of the satellite constellation. The data from
all satellites comprising GPM form the basis for the products of this mission.

The Integrated Multi-Satellite Retrievals for GPM (IMERG) is the GPM’s Level 3
multi-satellite precipitation algorithm. It combines intermittent precipitation estimates
from all constellation microwave sensors, IR-based observations from geosynchronous
satellites, and monthly gauge precipitation data [47,50]. Three different daily IMERG
products exist: IMERG Day 1 Early Run (near real-time with a latency of 6 h), IMERG Day
1 Late Run (reprocessed near real-time with a latency of 18 h), and IMERG Day 1 Final
Run (gauged-adjusted with a latency of four months) [57]. The IMERG Final Run product

mirador.gsfc.nasa.gov
mirador.gsfc.nasa.gov
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provides more accurate precipitation information than the near-real-time products across
GPCC-gauged (Global Precipitation Climatology Centre) regions [50] (see Table 1).

Table 1. Summary of the differences between TMPA and IMERG [17].

Product Temporal
Resolution

Spatial
Resolution

Spatial
Coverage

Time of
Image

Official
Start Product Main Data Sources

TMPA 3 h 0.25◦ 50◦N–50◦S Time ± 1.5 h 1 January
1998

Geostationary IR (Infra Red), TMI
(TRMM Microwave Imager), TCI

(Temperature Condition Index), SSMI
(Special Sensor Microwave

Imager),AMSR-E (Advanced
Microwave Scanning Radiometer for

Earth Observing System), AMSU
(Advanced Microwave Sounding
Unit), SSMI/S (The Special Sensor

Microwave Imager), MHS
(Microwave Humidity Sounder)

IMERG 0.5 h 0.10◦ 60◦N–60◦S Start time 12 March
2014

Geostationary IR, GMI (Global
Monitoring Mode Image), GCI

(Ground Controlled Interception),
TMI,SSMI/S, AMSR2 (Advanced

Microwave Scanning Radiometer 2),
MHS, GPCC (Global Precipitation

Climatology Centre)

Fifty daily IMERG scenes collected at half-hour intervals were retrieved from the official
NASA Mirador webpage to cover precipitation events from 2015 to 2018 (in a netcdf format).
The data were opened and clipped in ArcGIS10.5 software. The mean of the half-hourly
scenes was calculated every three hours. This step facilitated the statistical comparison
between the half-hourly GPM(IMERG) data and the three-hourly TRMM(3B42V7) data
with eight scenes for each type. The value of each pixel in the previously mentioned scenes
was calculated and stored in a spreadsheet. Next, the pixel values that coincided with rain
gauges were collected in a separate spreadsheet to further calculate statistical metrics.

3.3. In Situ Rain Gauge Data

The in-situ rainfall measurements from a network of tipping bucket rain gauges for
the period from 2015 to 2018 have been provided by the Egyptian Meteorological Authority
(EMA). The rain gauge data are daily totals. A preliminary analysis of the rain records was
carried out in order to select the rainfall events to be included in this study. Bearing in mind
the small number of rain gauges installed in the region of El-Qaa Plain in Sinai Peninsula,
the precipitation events selected for investigation in the present study are comprised of
rainy days for which all the rain gauges have recorded precipitation. On the basis of
these in-situ data, the rainiest days in this period were deduced. The large majority of
records from this arid region exhibit either no precipitation at all (i.e., 0 mm) or very small
precipitation amounts (i.e., 1 mm) at some stations. The preliminary analysis of the data has
revealed that, in this four-year period, there was just a single significant event in each year
that is worth studying. In general, one major day-long event in each year was recorded by
all existing rain gauges. These four significant events were subsequently used to evaluate
the performance of the satellite-based datasets discussed above in Sections 3.1 and 3.2.

The selected events occurred on 25 October 2015, 27 October 2016, 12 April 2017,
and 28 April 2018. Based on Sherief’s [26] rainfall intensity classifications, these four events
were classified as moderate, heavy, light, and light events, respectively.

In all the events studied herein, light precipitation started at around 7:00 a.m., which
was followed by a gradual increase in intensity reaching the peak at 1:00 pm or 2:00 p.m.
and then started to decrease gradually until 7:00 p.m. or 8:00 p.m. It is also worth noting
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that the 2015 and 2016 events characterized as moderate and heavy intensity caused
destructive flash floods that damaged properties and caused loss of lives.

4. Methods
Classification of Rainfall Events

Rainfall events are very rare over the study area. Regional rainfall intensity was
analyzed by Sherief [26], using data collected by the Egyptian Meteorological Authority
over a period of 55 years (1934–1989). He categorized precipitation into light (0.1 to
1 mm), moderate (1 to 10 mm), and heavy (>10 mm) intensity events. The rainfall intensity
distribution revealed that 61% of the yearly events are light, 34% are moderate, and 5%
are heavy. In addition, mean annual precipitation received at the site was 77 mm, 43 mm,
and 6 mm for light, moderate, and heavy events, respectively. From the above, it is
indicated that light events are extremely important. This fact stresses the importance of
the capability of any alternative or complimentary system to the rain gauge measurements
in estimating such light events. This desired feature of the satellite-based estimations will
further be investigated in this study.

Sherief [26] performed an analysis of the underlying rainfall mechanisms in the study
area. He concluded that rainfall can be broadly categorized into three groups. The first
group is associated with a convectional mechanism producing rainfall that usually results
from excessive heating of the near-surface air during the hot seasons. This type is forming
large, thundery clouds that release considerable amounts of water in heavy rainy events.
This type is well known in the Saint-Catherine mountain area in the Eastern side of the
Gulf of Suez. The second group embraces frontal rainfall and mostly affects the coastal
areas, causing intense rainy events with a shorter duration. This type is typical for the area
from El-Tor to Sharm El-Sheikh. The third mechanism is orographic, generating significant
thundery events, especially in the Eastern part of the Gulf of Suez, whereas the effect of
rain shadow renders the lee side mostly dry.

The reader may refer to the Supplementary Material accompanying this paper and
which includes a short discussion on the synoptic evolution for each case study, together
with animations of sequences of the respective surface synoptic analyses, analyses at
500 hPa, and satellite images.

In the following information, a statistical analysis is performed between different
satellite-based data (IMERG and TMPA) on one hand, and between the in-situ rain gauge
measurements and the satellite-based data, on the other hand. The statistical metrics used
are given in the Appendix A.

5. Results and Discussion
5.1. TMPA and IMERG

The separate accumulation of the TMPA (180-min temporal resolution and both 0.25◦

and 0.1◦ spatial resolutions) and IMERG (30-min temporal resolution and 0.1◦ spatial
resolution) were used to generate the daily precipitation maps for each of the selected
rainfall events shown in Figure 2. These spatial distributions illustrate the similarities
and differences between the three resolution-based datasets. TRMM (0.25◦ and 0.1◦)
display very similar distributions. However, noticeable changes are noted between TMPA
and IMERG, especially in the heavy-intensity 2016 event. In the following information,
a comparison between the 0.1◦ resolution TMPA and IMERG data is performed and the
results are shown in Table 2.



Remote Sens. 2021, 13, 588 8 of 19

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 20 
 

 

The results of the Shapiro-Wilk normality test [61] have revealed that both datasets 
are non-normally distributed with psw < 0.05, at all times and for both the lowland and 
highland regions. This test was essential for determining the subsequent statistical analy-
sis to be applied, as elaborated below.  

First, given that the data was determined to be non-normally distributed, the Wilcoxon 
signed-rank test [62] was applied in order to elucidate the similarities and differences between 
the two sets. For the 2015 lowland event, no significant differences between the two datasets 
were noted at the start of the event, but significant differences were noted later. Moreover, the 
two data sets pertaining to the highland region featured significant differences at all time 
thresholds of the precipitation event. For the 2016 event, a large difference was observed 
between the two datasets, in both the lowland and highland regions nearly every time. 
For the 2017 event, no significant differences were noted between the lowland datasets at 
time thresholds 0 h, 6 h, and 9 h. Significant differences were, however, apparent at the 3 h, 
12 h, and 24 h time marks. Regarding the highland region, there were significant differences 
at 0 h, 6 h, 9 h, and 12 h, and no significant differences at 3 h and 24 h. The 2018 event 
featured highly significant differences between the two sets collected over the lowland re-
gion at 0 h, 6 h, and 9 h. However, no differences were recorded at 3 h, 12 h, and 24 h. The 
highland region is marked with no significant differences between the two datasets at 3 h 
and 6 h, but with highly significant differences at 0 h, 9 h, 12 h, and 24 h. Comparing the 
dataset differences during light-intensity events with those of the moderate-intensity to 
heavy-intensity events, it is clear that the data associated with light-intensity events gen-
erally features reduced variability and higher coherence. Comparing data from the low-
land and highland regions, there was also a greater uniformity over the lowland region 
(Figure 3 and Table 2). 

 
Figure 2. Spatial distribution of rainfall over the area for each of the four events studied using TMPA and IMERG
accumulated scenes (mm/d).

The results of the Shapiro-Wilk normality test [61] have revealed that both datasets
are non-normally distributed with psw < 0.05, at all times and for both the lowland and
highland regions. This test was essential for determining the subsequent statistical analysis
to be applied, as elaborated below.

First, given that the data was determined to be non-normally distributed, the Wilcoxon
signed-rank test [62] was applied in order to elucidate the similarities and differences
between the two sets. For the 2015 lowland event, no significant differences between the
two datasets were noted at the start of the event, but significant differences were noted
later. Moreover, the two data sets pertaining to the highland region featured significant
differences at all time thresholds of the precipitation event. For the 2016 event, a large
difference was observed between the two datasets, in both the lowland and highland
regions nearly every time. For the 2017 event, no significant differences were noted
between the lowland datasets at time thresholds 0 h, 6 h, and 9 h. Significant differences
were, however, apparent at the 3 h, 12 h, and 24 h time marks. Regarding the highland
region, there were significant differences at 0 h, 6 h, 9 h, and 12 h, and no significant
differences at 3 h and 24 h. The 2018 event featured highly significant differences between
the two sets collected over the lowland region at 0 h, 6 h, and 9 h. However, no differences
were recorded at 3 h, 12 h, and 24 h. The highland region is marked with no significant
differences between the two datasets at 3 h and 6 h, but with highly significant differences
at 0 h, 9 h, 12 h, and 24 h. Comparing the dataset differences during light-intensity events
with those of the moderate-intensity to heavy-intensity events, it is clear that the data
associated with light-intensity events generally features reduced variability and higher
coherence. Comparing data from the lowland and highland regions, there was also a
greater uniformity over the lowland region (Figure 3 and Table 2).
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Table 2. Results of the statistical metrics for comparing TMPA and IMERG data over the highland
and lowland regions at successive times of 0 h, 3 h, 6 h, 9 h, 12 h, and 24 h from the start of the
rainfall event: (a) the Wilcoxon signed-rank tests (pw, values pw < 0.05 are denoted as D, indicating
a significant difference between the two sets, otherwise they are denoted as ND (No Difference),
(b) the Spearman correlation coefficient (Rs; negative values indicate a negative correlation), (c) the
Spearman p-value range (ps, where VS (Very Strong) denotes very strong evidence for rejecting the
null hypothesis [ps < 0.01], S strong evidence [0.01 ≤ ps < 0.05], W weak evidence [0.05 ≤ ps < 0.1],
and VW (Very Weak) very weak evidence [ps ≥ 0.1].

Event Region Time
(Hours)

Wilcoxon
p-Value

Spearman
Correlation

Spearman
p-Value

pw Rs ps

20
15

Lo
w

la
nd

0 ND [0.1873] −0.16 VW [0.1922]
3 ND [0.5814] 0.61 VS [8.919 × 10−8]
6 D [3.325 × 10−6] 0.39 VS [0.0015]
9 D [3.189 × 10−15] 0.28 S [0.0228]

12 D [1.62 × 10−15] 0.43 VS [0.0003]
24 D [2.894 × 10−16] 0.46 VS [0.0001]

H
ig

hl
an

d

0 D [0.0002] −0.04 VW [0.6976]
3 D [0.0002] −0.03 VW [0.7823]
6 D [9.49 × 10−14] −0.33 VS [0.0003]
9 D [2.2 × 10−16] −0.52 VS [9.125 × 10−10]

12 D [2.2 × 10−16] −0.44 VS [3.934 × 10−7]
24 D [2.2 × 10−16] −0.28 VS [0.0018]

20
16

Lo
w

la
nd

0 D [1.722 × 10−7] 0.68 VS [3.609 × 10−10]
3 ND [0.0630] 0.44 VS [0.0002]
6 D [7.602 × 10−6] 0.03 VW [0.7942]
9 D [1.763 × 10−12] −0.51 VS [1.097 × 10−5]

12 D [1.641 × 10−13] −0.52 VS [7.236 × 10−6]
24 D [1.641 × 10−13] −0.52 VS [7.236 × 10−6]

H
ig

hl
an

d

0 D [2.2 × 10−16] 0.87 VS [2.2 × 10−16]
3 ND [0.4478] 0.91 VS [2.2 × 10−16]
6 D [1.541 × 10−7] 0.49 VS [3.234 × 10−8]
9 D [2.2 × 10−16] −0.14 VW [0.1266]

12 D [2.2 × 10−16] −0.21 S [0.0244]
24 D [2.2 × 10−16] −0.1 S [0.0244]

20
17

Lo
w

la
nd

0 ND [0.2178] 0.56 VS [1.06 × 10−6]
3 D [0.02497 0.38 VS [0.0020]
6 ND [0.7156] 0.52 VS [8.462 × 10−6]
9 ND [0.9647] −0.27 W [0.0294]

12 D [0.0004] 0.14 VW [0.2550]
24 D [2.039 × 10−6] 0.23 VW [0.0671]

H
ig

hl
an

d

0 D [0.0012] 0.15 VW [0.1070]
3 ND [0.1134] 0.01 VW [0.9563]
6 D [8.091 × 10−6] −0.02 VW [0.8219]
9 D [0.0001] −0.55 VS [1.234 × 10−10]

12 D [0.0002] −0.46 VS [1.133 × 10−7]
24 ND [0.261] −0.10 VW [0.2988]

20
18

Lo
w

la
nd

0 ND [0.0612] 0.42 VS [0.0085]
3 ND [0.0556] 0.71 VS [0.0002]
6 D [0.0046] 0.70 VS [5.82 × 10−5]
9 ND [0.1368] 0.64 VS [0.0007]

12 ND [0.1368] 0.64 VS [0.0007]
24 ND [0.1368] 0.64 VS [0.0007]
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Table 2. Cont.

Event Region Time
(Hours)

Wilcoxon
p-Value

Spearman
Correlation

Spearman
p-Value

pw Rs ps

H
ig

hl
an

d

0 D [2.2 × 10−16] 0.42 VS [1.776 × 10−6]
3 ND [0.7851] 0.71 VS [2.2 × 10−16]
6 ND [0.3289] 0.70 VS [2.2 × 10−16]
9 D [0.0329] 0.64 VS [2.2 × 10−16]

12 D [0.0329] 0.64 VS [2.2 × 10−16]
24 D [0.03293] 0.64 VS [2.2 × 10−16]

Secondly, the calculations for the Spearman’s rank correlation coefficient (Rs) and its
associated p-value (ps) revealed a very strong evidence for a positive correlation between
the two 2018 satellite-based datasets at all times and for both the lowland and highland
regions. However, for the other events, the situation is not straightforward. At the onset
of the 2015 event, very weak evidence that the data are correlated was observed over the
lowland region. However, strong or very strong evidence of correlation was found for the
subsequent time thresholds. Over the highland region, the 2015 satellite-based datasets
exhibit a negative Rs at all times, with a very weak evidence for correlation at onset and
at 3 h, but with very strong evidence afterward. For the 2016 event, there is very strong
evidence that the two data sets are correlated except for limited times after the onset of
the events. Additionally, the correlation was found to be negative for all time thresholds
from 9 h onwards, for both the lowland and highland regions. For the 2017 event, the
lowland region exhibits evidence for a very strong correlation during the first 6 h of the
event, which subsequently changes into a weak or very weak event. The correlation is
positive at almost all time points. Regarding the highland region, the situation is generally
reversed with very weak evidence during the first 6 h, subsequently changing into very
strong events. The correlation coefficient is positive initially, but it turns negative in the
later stages of the event.
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(d) Highland 2016, (e) Lowland 2017, (f) Highland 2017, (g) Lowland 2018, and (h) Highland 2018.

5.2. Satellite-Based Versus In-Situ Data

The Spearman correlation coefficient and the respective p-value were also calculated in
an attempt to establish the relationship between the in-situ rain gauge records, on the one
hand, and the 0.25◦ resolution TMPA data, on the other hand. In this respect, it was found
that Rs = 0.328 and ps = 0.157 (see Figure 4). A similar approach was followed in establishing
the relationship between the in-situ rain gauge records and the 0.1◦ resolution TMPA, where
Rs = 0.546 and ps = 0.012. For the relationship between the in-situ rain gauge records and
the 0.1◦ resolution IMERG, Rs = 0.745 and ps = 0.00016. Bearing in mind these results,
it can be inferred that IMERG exhibited the strongest evidence for correlation with the rain
gauges, whereas the 0.25◦ resolution TRMM data showed evidence for correlation with the
rain gauges was very weak. Moreover, the 0.25◦ and 0.1◦ spatial resolution TMPA records
revealed an underestimation of precipitation during the moderate and heavy-intensity
events, while the light event records were highly coherent with the rain gauge records.
IMERG displayed this same coherence with the light events, but both underestimated and
overestimated values were recorded during the heavy-intensity events.

The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Bias (BIAS)
metrics were calculated for each event and are summarized in Table 3. The IMERG dataset
displayed the lowest RMSE values for the 2015, 2016, and 2018 precipitation events (10.677,
10.562, and 1.883 mm, respectively). In addition, IMERG exhibited the lowest MAE values
for the 2015, 2016, and 2018 events (6.726, 8.076, and 1.367 mm, respectively). The values
from the TMPA 0.1◦ dataset were close to those of the TMPA 0.25◦ dataset, but with
better performance. As expected, the lowest bias is related to the coarsest resolution data
set, namely IMERG. Furthermore, in the BIAS test for the 2015 and 2016 events, IMERG
exhibited values closest to 0.
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Table 3. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Bias (BIAS) for each
recorded event with spatial resolutions specified.

Event (Product)
Metric

RMSE (mm) MAE (mm) BIAS (%)

2015 (TMPA 0.25◦) 11.51 7.45 0.63
2015 (TMPA 0.1◦) 11.23 7.35 0.64
2015 (IMERG 0.1◦) 10.67 6.72 −0.00
2016 (TMPA 0.25◦) 10.43 8.93 0.69
2016 (TMPA 0.1◦) 10.72 9.03 0.68
2016 (IMERG 0.1◦) 10.56 8.07 0.36
2017 (TMPA 0.25◦) 0.82 0.72 −1.62
2017 (TMPA 0.1◦) 0.76 0.57 −0.81
2017 (IMERG 0.1◦) 1.20 0.89 −1.71
2018 (TMPA 0.25◦) 1.94 1.47 0.96
2018 (TMPA 0.1◦) 1.91 1.37 1.01
2018 (IMERG 0.1◦) 1.88 1.36 1.01

The third group of categorical statistics was applied to the three different precipitation
thresholds: 0.1 mm, 1 mm, and 10 mm. The results illustrated the high capability of the
TMPA and IMERG analyses in detecting light-intensity events, as the 0.1-mm threshold
performed best with both types of remote sensing data, calculating a 1 in the Probability of
Detection (POD) and Critical Success Index (CSI) tests (Figure 5a,d), and 0.4 and 0.2 in the
False Alarm Test (FAR) test. The second threshold also results in a 1 in the POD test for
both data sets, but the CSI calculates at 0.8 and 1, and the FAR test results in 0.4 and 0.5
(Figure 5b,e). The last threshold, 10 mm, produces the worst results. TMPA amounts to a 0
on all the previously mentioned tests. IMERG records a 1, 1, and 0.3 for the POD, FAR, and
CSI, respectively (Figure 5c,f). In general, the IMERG data shows better results than that of
the TMPA. Both datasets featured higher certainty for light-intensity events.
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6. Concluding Remarks

With an increasing spatiotemporal resolution of the satellite-based rainfall datasets,
more emphasis is given worldwide in using these sources of rainfall analyses for a wide
range of applications. Two such datasets have been utilized in the present study, namely,
TMPA and IMERG. These datasets were compared between them and again a local rain
gauge network in El-Qaa Plain, Sinai Peninsula. The IMERG dataset now includes TRMM-
era data extending back to 2000, rendering this dataset a valuable tool in many hydrological
applications. Research in the application of the IMERG database in several sectors that need
rainfall records will certainly continue in the years to come and this study is a contribution
toward better assessing this valuable data source.

The statistical metrics used demonstrate the low correlation and significant differences
between the pixel values of the TMPA and IMERG datasets in the moderate and heavy-
intensity 2015 and 2016 events. Datasets from the light-intensity events, namely, 2017 and
2018, were more highly correlated. Additionally, the values recorded over the lowland
region were more uniform than those of the highland region, where a greater variation
was observed.

When the two satellite-based rainfall datasets were compared to the rain gauge data,
it was noted that their performance was best during the light-intensity events, particu-
larly around the event onset (3 h and 6 h). In contrast, poorer performance was noted
during intense events and at the later precipitation stages in such events (12 h and 24 h).
These findings are in good agreement with the findings by Wu et al. [63] who performed
a similar comparative analysis over China. However, the two geographical areas have
different climatic characteristics. The same authors found that both satellite-based products
overestimate light rain, whereas both underestimate moderate to heavy rainfall. Further-
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more, data coherence and uniformity were lower in the highland region (referenced to
the Saint-Catherine station) when compared to the lowland region data (derived from
the Ras-Sudr, Abu-Rudies, El-Tor, and Sharm El-Sheikh rain gauge stations). TMPA and
IMERG were compared to the limited rain gauge records, using various statistical metrics
to evaluate their effectiveness in replicating in-situ observations. Performance varied, with
the IMERG data demonstrating the best performance, producing the lowest RMSE, BIAS,
and MAE values. This was followed by the 0.1◦ resolution TMPA, and, lastly, the 0.25◦

resolution TMPA data, with the latter exhibiting the weakest performance.
In the present study, categorical statistics have indicated high performance by both

the TMPA and IMERG, during the light-intensity events. However, a low certainty was
observed for the high-intensity events. Overall, the IMERG datasets performed better
than the TMPA in all thresholds. The findings of this study could be used to support the
postulation on the superior performance of IMERG over TMPA in arid and semi-arid areas,
but this cannot be generalized. Several comparative studies confirm the superiority of
the IMERG product over the TRMM-era one. For example, Kim et al. [17] compared the
performance of TRMM (3B42v7) and GPM (IMERG) over Far-East Asia during the pre-
monsoon and monsoon seasons. Their results showed that GPM-3IMERGHH performed
better than TRMM3B42V7. However, both satellite-based products had several drawbacks
with regard to topographical factors, especially for orographic regions. Moreover, they
found that GPM-3IMERGHH is a useful next-generation rainfall product not only for
acquiring ancillary datasets at ungauged locations (especially in a complex terrain), but also
for enhancing observations of both light precipitation and convective rainfall, which has
been a limitation of TRMM 3B42 V7. In addition, Chen et al. [64] compared the performance
of the TRMM 3B42V7 and IMERG over the Huaihe River basin in China and they confirmed
that the IMERG product had better performance for detecting precipitation and provided
more accurate precipitation estimates than TRMM 3B42 v7 data due to finer spatial and
temporal resolutions. They underscored the need to assess the potential of the IMERG
product in hydrological applications in a range of different environments. However,
in contrast to the above two examples, the comparative study by Yuan et al. [65] in the
Chindwin River basin, Myanmar, did not find any superiority of one of the satellite-derived
precipitation products over the other. The authors underscore the importance of IMERG
algorithm refinement in order to improve the accuracy of IMERG products over the country,
where plenty of rainfall data are urgently needed for hydrological utilities, as indicated in
the present study. For a more comprehensive survey of the literature on IMERG and TMPA
comparisons, the reader is referred to Retalis et al. [66].

Despite the superior performance of the IMERG dataset in the present study, gaps in
data persisted over mountainous regions as well as heavy-intensity precipitation events,
indicating that it would not be used as a substitute for rain gauge data. However, it can
be used as a promising alternative for rain gauge records during the relatively frequent
light-intensity events until a new rain gauge network is in place, optimized, and imple-
mented. Even when such an upgrade network is put into operation, IMERG can continue
to supplement the in-situ data, either for monitoring purposes or for filling-in gaps in
the network.

The results of this study show that any alternative or complementary rainfall estimat-
ing system (i.e., satellite-based) adopted in arid and semi-arid environments receive most
of their precipitation during cases with small amounts of rainfall. The skill of such a system
to estimate precipitation adequately during such events is very important.

Due to the limited amount of in-situ data, the effect of elevation on the estimation of
rainfall from satellite-derived products cannot be done in a satisfactory way in the present
study. This is a very challenging viewpoint that has been pursued in other studies with
more ground-based data [58,66]. This challenging viewpoint will be part of future work
to investigate this aspect as well but following a substantial upgrade of the rain gauge
network over the area.
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The value of the current study stems, on the one hand, from the impact it will have
on the test site. The installation of the upgraded rain gauge network proposed by the
authors (which will be presented in a companion paper) is a direct outcome of the present
study. The upgraded network will drastically change the future of this arid area in many
respects. On the other hand, it is clear from the present study that the available ad hoc
data sources are limited and that there are also limitations in the resources of acquiring
information about the rainy events in the test site, associated with the inadequate use of
the corresponding remote sensing data (e.g., an extensive verification of the satellite-based
precipitation estimations was not feasible). However, many of these limitations will be
removed when the proposed network is put in operation. In addition, developers of IMERG
algorithms will then have access to more on-the-ground information after the installation
step is completed.

The inconsistencies between the satellite-derived products and the in-situ measure-
ments underline the necessity for improving future versions of IMERG algorithms, by
taking into account variations in meteorology and geography, especially in semi-arid ar-
eas of the globe. The need is for more efficient physically-based algorithms, based on a
comparison with surface observations across all major precipitating synoptic conditions.

Most of the arid regions feature a very limited number of rain gauges, thus, reducing
the reliability of the results produced. The study for the upgrade of the existing network,
which is under preparation will put forward a series of steps for overcoming the issue
of data scarcity. Once resolved, this could then promote the greatly needed hydrological
studies on topics, such as the spatiotemporal distribution of rainfall, the mitigation of flash
floods hazards, and the minimization of soil erosion.

The study site contains only five rain gauges. This small number of in-situ instru-
mentation is an obstacle to the optimum understanding of the rainfall frequency and rain
rates as well as the possible recharge options. Therefore, the second part of the study will
suggest the most suitable sites for 31 new rain gauges. These new stations will provide the
most efficient and appropriate coverage.

In the upcoming study for a proposed, upgraded network of stations, a Digital Ele-
vation Model and IMERG data will be used to identify the most suitable locations. These
two datasets will be clustered using a k-means clustering to produce an elbow graph
whose elbow-shaped region offers several possible options for the number of optimum
clusters at the test site. Three different cluster sizes (namely, 3, 6, and 9) will be used to
calculate the possible centroids for each size. These centroids will be tested using the
Empirical Cumulative Distribution Function (ECDF), once the sum of the IMERG scenes,
the scene limits, and the elevation map limits are determined. At this stage, the optimal
size established is nine. Nine centroids are, therefore, taken, along with the existing five
gauges, as a basis for standard error kriging. This allows a gradual minimization of the
error via looping. The proposed rain gauge sites will be tested with an ECDF. The complete
spectrum of rainfall and elevation is efficiently covered by 31 new rain gauge locations,
and the five existing gauges.

Lastly, the present study lays the foundations for further meteorological and hydro-
logical studies at the test site. The results statistically affirm the superior performance of
the IMERG dataset compared to the TMPA data typically used at the test site. Therefore,
IMERG data is recommended for the optimization of a new, expanded rain gauge network
with additional gauges steered by the local topography of the site. Taken together, this can
promote the transformation of the study site from a dormant to a commercially active state.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/4/588/s1. Document S1: Synoptic Discussions of case studies.
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Appendix A. Statistical Metrics

The first set of statistical tests was performed with the purpose of evaluating the
differences, coherence, and correlation between the TMPA data and the IMERG data,
both with 0.1◦ spatial resolution. These tests include the Shapiro-Wilk normality test [61].
This test rejects the hypothesis of normality when the respective p-value (denoted by psw)
is less or equal to 0.05 (i.e., psw ≤ 0.05). The Wilcoxon signed-ranked test [62] compares
two dependent samples to determine if their populations have the same distribution
by comparing their medians. The two samples show no differences and considerable
dependency when the respective p-value (denoted by pw) is greater than 0.05 (i.e., pw > 0.05).
The Spearman correlation coefficient (denoted by Rs) determines the correspondence
between two variables. If the two samples exhibit a perfect positive correlation, then
Rs = 1. For a perfect negative correlation, Rs = −1 and, for no correlation, Rs = 0. The null
hypothesis (H0) that any correlation between the two variables due to chance is tested
by calculating the Spearman test p-value (denoted by ps). This test examines whether the
rankings of each data set are similar (the relationship does not have to be linear). In this
study, for ps < 0.01, H0 is very strongly rejected, for 0.01 ≤ ps < 0.05, H0 is strongly rejected,
for 0.05 ≤ ps < 0.1, the evidence for rejecting H0 is weak and, for ps ≥ 0.1, the evidence for
rejecting H0 is very weak.

The second group of verification statistics was selected with the purpose of identifying
the remote sensing product with higher compatibility to the in-situ gauges. A Spearman
correlation coefficient test was applied between the rain gauge data and the TMPA (0.25◦),
TMPA (0.1◦), and IMERG (0.1◦) data, which were all collected between 2015 and 2018.
This was done to determine the correlational strength between the remote sensing data
and the benchmark. The verification statistics used here are the Root Mean Square Error
(RMSE, Equation (A1)) and the Mean Absolute Error (MAE, Equation (A2)). A BIAS test
(Equation(A3)) was also used [17,54].

RMSE =

√
1
n

Σn
i=1
(

Psati − Pgaui

)2 (A1)

MAE =
1
n

n

∑
i=1

∣∣Psati − Pgaui

∣∣ (A2)

BIAS =
1
n

n

∑
i=1

(
Psati − Pgaui

)
(A3)
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In the above relationships, Psat refers to satellite precipitation records, Pgau represents
the records derived from the in-situ rain gauges, and n is the number of samples.

A third group of categorical statistics was used to verify the potential of the satel-
lite products in detecting rainfall at various rainfall thresholds (i.e., 0.1, 1, and 10 mm).
These are the Probability of Detection (POD, Equation (A4)), the False Alarm Ratio (FAR,
Equation (A5)), and the Critical Success Index (CSI, Equation (A6)), calculated for each
single event [17,54].

POD =
Hits

Hits + Misses
(A4)

FAR =
false alarms

Hits + false alarms
(A5)

CSI =
Hits

Hits + faIse alarm + Misses
(A6)

Hits are defined as rain detected by both gauges and satellites and misses as rain
observed by gauges but not detected by a satellite. False alarms were described as rain
detected by satellites but not observed by ground rain gauges [54].
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