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Abstract: The distribution and characteristics of geological lineaments in areas with active faulting are
vital for providing a basis for regional tectonic identification and analyzing the tectonic significance.
Here, we extracted the lineaments in the Qianhe Graben, an active mountainous area on the southwest
margin of Ordos Block, China, by using the tensor voting algorithm after comparing them with the
segment tracing algorithm (STA) and LINE algorithm in PCI Geomatica Software. The main results
show that (1) the lineaments in this area are mostly induced by the active fault events with the main
trending of NW–SE, (2) the box dimensions of all lineaments, NW–SE trending lineaments, and
NE–SW trending lineaments are 1.60, 1.48, and 1.44 (R2 > 0.9), respectively, indicating that the faults
exhibit statistical self-similarity, and (3) the lineaments have multifractal characteristics according to
the mass index τ(q), generalized fractal dimension D(q), fractal width (∆α = 2.25), fractal spectrum
shape (f(α) is a unimodal left-hook curve), and spectrum width (∆f = 1.21). These results are related
to the tectonic activity in this area, where a higher tectonic activity leads to more lineaments being
produced and a higher fractal dimension. All of these results suggest that such insights can be
beneficial for providing potential targets in reconstructing the tectonic structure of the area and
trends of plate movement.

Keywords: fractal and multifractal characteristics; lineaments; Qianhe Graben; tectonic significance

1. Introduction

Geological lineaments are defined as the straight linear elements visible at the Earth’s
surface, such as bedrock faults and joints, stratification, linear sand dunes, and drumlins [1],
and they can be a brighter or darker line or structure than background pixels on remote
sensing images, representing some geological or geomorphological phenomena, such as a
trace of intersection between a planar or sub-planar structural inhomogeneity [2]. The exis-
tence of lineaments has been proven to be closely related to unexposed faults [3], reflecting
patterns and anomalies (e.g., alteration) in the crust and the favorable zone for mineral
deposits and processes [4,5], and controlling the position of deposit and the migration
and accumulation of minerals (e.g., [4,6–10]). In an active fault system, lineaments are
indicative for locating the faults and determining the general structural parameters [11],
and they can indirectly reflect the spatial distribution of groundwater [12], hydrothermal
alteration zones [13,14], and geo-hazards [15]. Therefore, to obtain a more accurate spatial
distribution of lineaments in the geological system, previous studies mainly focused on
the extraction of lineaments from ridge and valley lines across gully areas [11]. Owing to
the characteristics of remote sensing images and Digital Elevation Models (DEMs), such as
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convenient acquisition, rich visual expression information, long-term estimation, and limits
of anthropogenic interference [3], a large number of algorithms, such as the segment tracing
algorithm (STA) [16], Hough transform (HT) [17], and hydrological analysis [18], were
designed and effectively implemented in various regions. However, due to the noise in the
images and the complexities of algorithms, the connectivity and lengths of lineaments vary
and increase or decrease the size and density of the faults [19].

Even though the faults can be extracted using automatic or semiautomatic methods,
e.g., point clouds, images, and geophysical data [20–23], the qualitative description also
restricts the scale and significance of tectonics. Recently, as one of the nonlinear sciences,
fractal theory [24–26] offered geologists new insights to explore complexity and regular-
ity by using the fractal dimension [4,27–33]. The fractal geometry of lineaments helps
geologists to understand very complex systems, which feature very organized patterns
in seemingly chaotic phenomena [4,5]. The fractal dimension, thus, illustrates the com-
plexity of regional faults, in which areas with higher fractal dimensions are more closely
related to faults and fluid routes [1,2,34]. Specifically, the scale of the fractal dimension
is proportional to the frequency and growth of the tectonic movement; that is, a larger
fractal dimension denotes more favorable movement of the bottom mineral deposits and a
greater likelihood of mineralization [14]. As a result, the fractal dimension of lineaments
has become a widespread method for estimating the potential range of the metallogenic
zone (e.g., [3,4,8,35]), and it has been shown to be an effective instrument for mineral
exploration and analysis of migration conditions [36–38]. However, in some locations,
the faults were covered by thick soil, such as the Qianhe Graben in China [11,39], and
they could not provide a reliable quantitative prediction for active faults from the field
measurements. Therefore, as a sign of discontinuity in the surface, the fractal dimension
of lineaments offers a new ability to map and clarify the interaction between lineaments
and faults in these areas and to investigate the mechanical environment of fracture forma-
tion [10]. Furthermore, previous studies showed that the single-fractal dimension (e.g., box
dimension) [4] may be not enough when only considering the number of lineaments [5],
resulting in the other local patterns and distribution of faults (e.g., length, density) being
ignored. Therefore, to address this challenge, the multifractal dimension of lineaments
was also defined using the generalized multifractal dimensions (Dq), the singularity (α),
and the multifractal spectrum f(α) [3,5,37,40,41]. These parameters provide additional
support for metallogenic information and ore deposition [42,43]. Therefore, the multifractal
characteristics of lineaments can also be treated as a signal for tectonic processes.

In this study, the fractal and multifractal dimensions of lineaments in the Qianhe
Graben were estimated using Landsat 8 OLI images and Geographic Information System
(GIS) technology to examine the tectonic significance of active faults. Specifically, the key
purposes of this study were as follows:

• to extract and evaluate the geological lineaments in the Qianhe Graben using vari-
ous algorithms;

• to estimate the dimension and distribution characteristics of the lineaments using
fractal and multifractal analysis;

• to reveal the tectonic significance of lineaments in this area.

2. Geological Background

The Qianhe River, as the major tributary of the Weihe River, forms part of the shrinking
border between the southeastern margin of the Liupan–Longxi Block and the southwestern
margin of the Ordos Block [39], located in the middle of the late Paleozoic–Mesozoic basin
in the Ordos and the Caledonian orogenic belt in the North Qinling Mountains (Figure 1).
The morphology of the area is formed by the four main active faults, with high elevation
on both sides but low elevation in the middle. The Taoyuan–Guichuansi Fault (TGF),
Guguan–Guozhen Fault (GGF), Qianyang–Biaojiao Fault (QBF), and Qishan–Mazhao Fault
(QMF) strike northwest–southeastward (NW–SE) (Figure 1) [44], with an inclination of
50–60◦, constituting the boundary between Precambrian and Quaternary. The NW–SE
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striking faults here mostly follow the course of the Qianhe River in the Qianhe Graben, from
northwest to southeast in the study area. Topographically, the TGF, a normal fault, follows
the boundary between the southwestern Ordos Block and Loess Platform (Figure 1) [44,45],
and it cuts the Loess Platform deeply in the southeast Qianhe Graben, as characterized
by straight lineaments in three-dimensional (3D) images [46]. Moreover, previous studies
investigated the Quaternary activity of the QMF, displaying left-lateral slip in kinematics
with rates ranging from 0.5 to 1.5 mm/year [46]. Other studies have shown that the
horizontal and vertical displacements induced by the latest earthquake were about 3.5
and 1.7 m, respectively [47]. During the late Quaternary, the northwest margin of the
Qianhe Graben featured a horizontal slip rate of 1–3 mm/year and a vertical slip rate of 0.9
mm/year, while the southeastern margin featured a horizontal slip rate of 2–3 mm/year
and a vertical slip rate of 0.2–0.5 mm/year [48] (Figure 1). Although more detailed field
work has been conducted here along the strike and fault scarps of QBF [49,50], there is
no more evidence to show the Quaternary activity during the late Quaternary, indicating
that the QBF is a concealed fault. As for the other normal faults here, TGF and GGF show
opposite orientation, with a vertical displacement of 2 m (TGF) and horizontal displacement
of 15 m (GGF) [51]. Under the block formation, the horizontal spacing distance of the faults
increases gradually from northwest to southeast (approximately 3.9–11.6 m between TGF
and GGF, and 8.9–12.1 m between QBF and QMF) (Figure 1), meaning that the density of
lineaments will decrease along the faults.

Figure 1. (A) Map of China; (B) simplified geological map of the Qianhe Graben, modified from [39,49,52] and overlaid with
the hillshade map from the Shuttle Radar Topography Mission (SRTM) data (https://earthexplorer.usgs.gov (accessed on
29 December 2020)). The four red lines are active faults in the Qianhe Graben: TGF, Taoyuan–Guichuansi Fault; GGF,
Guguan–Guozhen Faults; QBF, Qianyang–Biaojiao Fault; QMF, Qianshan–Mazhao Faults. Cities: Lx, Longxian; Cb, Caobi;
Qy, Qianyang; Xg, Xiangong. (a), (b), (c), and (d) are the regions of interest. The horizontal and vertical slip rates were
collected from [48]. All data were reprojected into WGS_1984_UTM_Zone_48N, and the datum was D_WGS_1984.

From the lithostratigraphy point of view, more than 50% of the study area is cov-
ered by Quaternary loess (Figure 1), and the exposure stratigraphic intervals of bedrock

https://earthexplorer.usgs.gov
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sedimentary strata are from Precambrian to Neogene. Specifically, to the north of QMF,
the lithology predominantly consists of Jurassic sand-bearing mudstone to Cretaceous
feldspathic lithic quartz sandstone [53], which are mainly exposed to the river valley.
Additionally, the exposure stratigraphic intervals of bedrock sedimentary strata are Pre-
cambrian quartz sandstone and tuff, Cambrian limestone, Ordovician dolostone, Triassic
feldspathic sandstone, and Neogene red clay, which are also present to the north of GGF
(Figure 1). Exposed by the eastward extrusion of Longxi Block on the northeastern side of
Qinghai–Tibet Plateau [54,55], there are also outcrops such as Cretaceous conglomerate and
sandstone between GGF and TGF. By contrast, there is also a wide area of Precambrian red
granite and Triassic feldspathic sandstone and siltstone on the west side of TGF (Figure 1).
Fieldwork has shown that the bedrock resistance of southern bedrock is larger than that in
the northern area [50], suggesting that these areas easily generate more lineaments than
the northern margin of the Qianhe Graben.

This region grew rapidly in the Liupan–Longxi Block because of the accelerated extension
and structural deformation of the northeastern margin of the Qinghai–Tibet Plateau since the
Middle Pleistocene [56]. In the Qianhe Graben, the highest elevation is 2735 m; after flowing
through the central loess terrace, the altitude decreases to 548 m. The area with the highest
topographic fluctuation is located in the bedrock area on the southern Qianhe Graben and
the loess ridge on the northern area, whereas, in the middle part, the loess terrace valley
has smaller topographic relief, and the relative altitude between the bedrock area and the
terrace valley is over 1000 m. A vast number of valleys, ridges, and other lineaments are
created under this context by cutting rivers and rising mountains. On remote sensing images
and DEM images, valleys and ridges exhibit apparent linear distribution characteristics [11].
However, the characteristics of faults that can be identified in the research region are few and
concealed from the field-measured work [49]. Therefore, the lineaments here have similar
orientation; therefore, showing the extraction and fractal characteristics of lineaments tends to
be more necessary for tectonic movement and surface processes.

3. Methods
3.1. Lineament Extraction

Previous algorithms related to lineament extraction mainly focused on the extraction
of the ridgeline and the valley line, fracture zone, and geological geometry edge in remote
sensing images and DEMs (e.g., [19–23,57,58]); therefore, the anomaly gradient pixels can
be regarded as lineaments after grayscale transformation. Specifically, on the basis of the
filter, edge detection, threshold, etc., the algorithms can be divided into the segment tracing
algorithm (STA), LINE algorithm in PCI software, and tensor voting.

3.1.1. Segment Tracing Algorithm (STA)

Taking the STA method as an example, the image was firstly filtered using the median
filter to smoothen the image and eliminate much of the noise. Secondly, the pixels were
searched in a given search window with an azimuth (θ) and distance (h) at equal intervals
to find the continuity of two pixels on the same straight line by obtaining the minimum
value of continuity function ε(x) (Equation (1)). Lastly, it was determined whether the pixels
were on a line to set the threshold (T) and calculate the pixel change rate (λ) of two points
(Equation (2)), before connecting the valley pixels into a lineament [16,59,60]. Previous
examples have demonstrated that the improved continuity, stronger reliability, and greater
coincidence of measured faults are the benefits of this algorithm [60]. The disadvantage
is that the auto-connectivity is not good enough when extracting line segments, which is
related to the directional interval and the search window scale.

ε(x) =
∫ a

−a
ω(x + h)[z(x)− z(x + h)]2dh, (1)
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λ =

[
∂2z(x)

∂x2

]2

z(x)
, (2)

where ω(x) is the weight and a is the distance.

3.1.2. LINE Algorithm in PCI Software

Additional studies mainly focused on edge detection operators (Roberts, Sobel, Pre-
witt, LOG, and Canny) [61,62], and their identification was mainly based on the operators
of derivatives, whereby their optimization can reflect the edge grayscale of lineaments
with large variation. Although these algorithms could overcome the problem of interpreter
bias, too much noise and false edges still constrained their development [62,63]. In these
methods, the Canny algorithm is considered better, providing smoother results; its steps
are described below.

(1) Smoothing: The image is filtered with a Gaussian filter to remove the noise as the
edge detection is susceptive to high-frequency edges.

(2) Non-maximum suppression: The image gradient is calculated by using the Sobel
operator in both x- and y-directions, and then the background pixel and edge pixel are
distinguished by checking the gradient magnitude (Equations (3) and (4)), where the
magnitude of edge pixels is the local maximum compared with neighboring pixels.

gxy(i, j) =
√

gx(i, j)2 + gx(i, j)2, (3)

θ= arctan(
gy(i, j)
gx(i, j)

). (4)

(3) Hysteresis threshold: The lineament pixels are obtained after comparing the
gradient magnitude of each edge pixel by using the specified hysteresis threshold (gmax and
gmin, where gmax is two or three times the value of gmin). More specifically, the pixels whose
gradient is larger than gmax are marked as edge pixels, whereas pixels whose gradient is
lower than gmin are removed. As for the gradient of pixels within the range (gmin, gmax), the
pixels are searched again in the 3 × 3 neighboring pixel domain and kept if the gradient is
larger than gmax.

This method offers an algorithm for edge detection according to the requirements for
optimization, and it is included in the PCI software [61,64]. However, threshold selection
depends on the interpreter, resulting in a small false edge.

3.1.3. Tensor Voting (TV)

According to previous studies [11,65,66], the TV method can be described by the
following steps:

(1) Data preprocessing: By using radiometric calibration, atmospheric correction, image
clipping, and principal component analysis of Landsat 8 OLI remote sensing images, it is
possible to produce and handle the best component as the fundamental data for subsequent
analysis. Then, a high-pass Gaussian filter is used to eliminate low-frequency noise [67].

(2) Edge detection: The pixels are encoded into stick-and-ball tensors by tensor vot-
ing [68,69]. The attribution of pixels (edge point and non-edge point) relies on combining
their significance in the linear combination of the tensor, and the edge pixel points are
retained. Each pixel in the remote sensing image forms a tensor with another pixel in the
neighborhood; then, a tensor field is formed with all neighborhood pixels. In a different
voting scale and path, each pixel receives votes from the neighborhood pixels. Therefore,
in all pixels, the final voting outcome is separate. They can be considered as points on the
same edge when the salient characteristics are compatible. According to the matrix spectral
decomposition, the tensor T can be expressed as a linear combination of eigenvalues and
eigenvectors, as follows:

T = (λ1 − λ2)
⇀
e1

⇀
e1

T
+ λ2(

⇀
e1

⇀
e1

T
+

⇀
e2

⇀
e2

T
), (5)
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where λ1 and λ2 are eigenvalues, and λ1 ≥ λ2 ≥ 0;
⇀
e1 and

⇀
e2 are the corresponding eigen-

vectors.
⇀
e1

⇀
e1

T
and (

⇀
e1

⇀
e1

T
+

⇀
e2

⇀
e2

T
) are the stick-and-ball components (Figure 2), whereas

(λ1 − λ2) and λ2 are significant indicators of the corresponding stick-and-ball components.

Figure 2. Geometric decomposition of tensor voting [65,70].

Figure 2 also demonstrates that an ellipse, i.e., the tensor, can be uniquely determined
by given values of β, λ2, and λ1 − λ2. The tensor of each pixel is accumulated after voting
to get a new tensor T′. The new tensor is decomposed into the form of Equation (5), and
the corresponding eigenvalues and eigenvectors are obtained, including the significance
index λ

′
1 − λ

′
2 and λ

′
2 of the new stick-and-ball components. The grayscale of lineaments

changes rapidly on remote sensing images; consequently, the sum of the vectors of the
edge points varies greatly after voting, whereas the sum of non-edge points hardly changes.
Therefore, the linear edges can be retained.

(3) Lineament extraction: Even though the lineaments can be shown after tensor
voting, their connectivity is still limited. By using Hough transform [71,72], the problem
of line extraction in the image space can be transformed into the peak problem in the
parameter space, and then the edge point of the image domain can also be transformed
into a parameter curve in the Hough domain. Mapping the final lineaments after the
cumulative degree of intersection provides the maximum.

3.2. Fractal and Multifractal Analysis

For a long period, the development of faults was not described quantitively, as the
surface uplift is not a simple tectonic movement but induced by multiple factors. Therefore,
Euclidean geometry cannot accurately describe these series of irregular linear or planar
movements. However, the advent of fractal theory has become a new tool to predict
or explore this phenomenon, using the dimension as a novel parameter to quantify the
geological geometries. A fractal is a shape that remains similar to the whole even after
local magnification [73], indicating that no matter how small the object is, it can be well
expressed after rescaling, translation, and rotation. These objects are neither totally regular
nor random, and the same applies to their so-called self-similarity. The main step is to count
the characteristics of geological geometries under various scale conditions and quantify
the power-law relationship shown in Equation (6) [25,26,74].

N(r) = Cr−D, (6)

where the C is a constant, and the D is the fractal dimension.
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3.2.1. Fractal Characteristics

The conventional methods of calculating fractal dimension are the box dimension,
circle covering dimension, length–frequency mathematical dimension, and concentration–
area dimension [74,75]. In this study, the box dimension method was used to determine the
fractal result of lineaments in the Qianhe Graben. Specifically, the grid number N(r) of the
square inner body with side length r was calculated, and then the size (r1, r2, r3, . . . , rn) of
square side length r was continuously changed before calculating the corresponding N(r). If
the scattered plot (ri, N(ri)) satisfied the power-law relationship shown in Equation (6), the
lineaments could be considered to have fractal characteristics.

We obtained the logarithm on both sides as follows:

log N(r) = −D log r + C. (7)

The limit exists when r→ 0, i.e.,

D = lim
r→0

log N(r)
− log r

. (8)

Thus, the linear fractal of the region can be determined when the logr and logN(r) show a
linear function form, and D is the absolute slope of Equation (7). As a result, the solution of
Equation (8) can be transformed into a simple slope absolute problem of Equation (7).

3.2.2. Multifractal Characteristics

Due to the differences among the bedrock uplift, climate change, lithological strength,
and mechanical properties, various directions, sizes, and lengths are shown in lineaments
in response to the changes in these factors and scales. As the box dimension only considers
the number of the boxes and neglects their weight (e.g., the length and density) in the
calculation, this complex dynamic geological phenomenon is hard to be characterized
and described, as is the dynamic tectonic mechanism of displacement under the faults. In
other words, when the objects remain similar to the whole even after local magnification
on various scales, it can be said that the objects are multifractals [74,76]. Therefore, a
multifractal is a combination of multiple single fractals in space, whereby a single fractal
is a special case of a multifractal, and a multifractal is a promotion of a single fractal.
In realistic applications, the generalized dimension (D(q)) and the multifractal spectrum
(f(α)) can be used to describe the fractal characteristics at various levels [77]. Taking
the spatial singularity of branch sets into account, the multifractal method can better
reveal the relationship between individual and total in fractal characteristics. It is the
normalized probability distribution of the research content in the framework of the research
material, which can reflect the complexity and uncertainty of lineaments in various ranges.
Specifically, the generalized fractal dimension and multifractal spectrum of lineaments can
be calculated as described below.

(1) The study area is covered with small squares of varying sizes (r), and the total
length Ni(r) of the inner lineaments of the i-th square is counted. Therefore, the probability
Pi(r) that the lineament length in each small square accounts for the total length of the
lineaments in the entire region can be obtained as follows:

Pi(r) =
Ni(r)

n
∑

i=1
Ni(r)

. (9)

Different weights of q can be selected (−∞ < q < +∞), and the q order partition function
can be defined on the fractal subset as follows:

χq(r) =
n

∑
i=1

Pq
i = rτ(q). (10)
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(2) The logarithm of r and χq(r) can be obtained, and the result is projected into the
coordinate system (logr, logχq(r)). The fractal is proven when the slope of the fitting curve
τ(q) satisfies the following power-law relationship:

χq(r) ∝ rτ(q), (11)

where τ(q) is also called the mass exponent of q order.
In other words, if τ(q) is a linear function of q, then the lineaments have a single-fractal

feature. Conversely, if τ(q) is a convex function of q, it has a multifractal feature [37]. Due
to the value of r being different, the lineament complexity will be different.

(3) According to the definition of previous studies [78], the generalized fractal dimen-
sion is calculated as follows:

D(q) =
1

q− 1
lim
r→0

ln χq(r)
ln r

=
τ(q)
q− 1

, (12)

where D(q) is a monotone decreasing function in q. When the q values are equal to 0, 1, and
2, D0, D1, and D2 are the ability dimension, the information dimension, and the correlation
dimension, respectively [79]. Specifically, D0 can characterize the distribution range of
lineament length, where a larger value denotes a broader distribution range. D1 represents
the accumulation of lineament length, where a smaller D1 denotes a more concentrated
distribution of lineaments. D2 describes the uniformity of lineaments at test intervals,
where a greater value denotes greater uniformity. In general, the capacity dimension ≥
information dimension ≥ correlation dimension. In particular, when the three dimensions
are equal, the distribution of lineaments is a single fractal.

(4) By using the Legendre transformation in physics, the multifractal spectrum f (α)-α
can be obtained as follows:

α(q) =
dτ(q)

dq
, (13)

f (α) = qα(q)− τ(q), (14)

where the α(q) is a singular exponent and a monotone decreasing function, which reflects
the singularity intensity of lineaments and represents the probability of lineaments in the
scope of the study.

Through this treatment, the multifractal can be divided into multiple singularity
degrees for further study. Generally, if the α values at different lengths (r) are equal, then
the lineaments have a single-fractal characteristic [80]. On the contrary, when the singular
exponent is a monotone decreasing function in q and the α values are different [81], then it
has multifractal characteristics. Within the fault zone, the spectral width ∆α = αmax − αmin
is used to describe the uniform state of the probability distribution, such as the length and
density of the fracture, where a larger ∆α denotes a more violent fluctuation of lineament
length, resulting in a more uneven probability distribution. Unlike D(q) and α(q), the fractal
spectrum (f (α)) is a convex function of an approximate parabola [81], and its symmetry is
generally expressed as shown in Equation (15). Previous studies have shown that a grid
number with large probability is larger than a grid number with small probability when
f (α) is a left-hook curve [3]. By contrast, a grid with a small probability has a higher number
when f (α) is a right-hook curve [82]. This feature can refer to the range of development
and stability of regional faults.

∆ f = f (αmin)− f (αmax). (15)

4. Results
4.1. Lineament Extraction and Validation
4.1.1. Lineament Extraction Results

Considering the number of remote sensing images and the processing ability of
the computer, the subareas (a), (b), (c), and (d) in Figure 1 were used as the basic data
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for subsequent processing. Firstly, to verify the accuracy, the lineaments obtained by
visual interpretation of the four subareas were used as known lineaments and verified by
30 researchers in geology, geomorphology, and remote sensing (Figure 3a–d). Furthermore,
the STA, PCI, and tensor voting algorithms were used to extract the lineaments of the study
area (Figure 3e–p).

Figure 3. Comparison of extracted lineaments using different algorithms. (a–d) were selected from Figure 1, and the base
map is the 7-5-2 band composite image. (e–h) are the lineaments extracted from the STA. (i–l) are the lineaments extracted
from the PCI. (m–p) are the lineaments extracted from the Tensor Voting. Red lines are lineaments, yellow regions are false
edge areas, and white ellipses represent the continuity feature from the algorithms.
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On the basis of the visual result, the three algorithms could identify the lineaments
of the study area to a great extent, but the extraction effect was different. The regional
lineaments in the study area were mostly near the ridgeline and valley line (Figure 3a,b),
the geomorphological dividing line (e.g., the dividing line between the mountain and
plain) (Figure 3c,d), and the fault/fracture zone, which is highly consistent with previous
theoretical findings [11]. The lineaments extracted by the STA and PCI algorithms were
shorter than the known interpretation results, especially in the mountainous area (a) and
(b) in Figure 3, where the terrain is more complex and the gully ridge is crossed. Therefore,
there was a lot of noise (yellow elliptical field in Figure 3) full of false edges, while the
tensor voting algorithm generated little or no noise. The presence of noise is linked to
the fragmentation of the landscape in the covered area. For instance, in the areas with
dense lineaments (Figure 3a,b), the exposure stratigraphic intervals of bedrock sedimentary
strata were mainly Ordovician dolostone, Triassic feldspathic sandstone, and Cretaceous
conglomerate, indicating that these areas are not stable and easily generate more lineaments.
Consequently, the degree of fragmentation was greater than the edge pixels of lineaments.
There were also some over-detection phenomena in the terrace area, whereas linear pixels,
such as roads, were also identified as lineaments (Figure 3h), as related to the edge detection
algorithm (where the results from STA are related to the line pixel direction change rate
threshold T, while PCI uses Canny edge detection). However, these roads detected as the
lineaments are false edges and should be removed. Moreover, the continuity of lineament
segments generated from STA and PCI algorithms was also worse than that from tensor
voting (the white elliptical region in Figure 3). More specifically, in a similar direction,
the lineaments generated from these algorithms did not link into a line as the interval
was too large. Therefore, increasing the search radius to complete the link seems more
necessary. Furthermore, redundant or repeated edges often appeared in the results, which
led to increasing noise and a higher false detection rate, and some lineaments were even
inconsistent with the real geomorphological phenomena. The advantage of tensor voting
is that it relies not only on the surrounding pixels but also on other data sources, such
as DEMs. Furthermore, there was a binary noise reduction after the high-pass Gaussian
filter. Additionally, with the tensor voting algorithm, the missing detection rate was low
since only small noise edges were observed, and the position in the dense voting was more
reliable, making the algorithm more stable. Visually, the lineaments derived by tensor
voting were more consistent with the known lineament results, followed by the STA and
PCI algorithms.

4.1.2. Accuracy of Lineament Algorithm

To ensure the accuracy of the initial fractal dimension, the premise is to achieve higher-
precision lineaments. The total number was firstly calculated, as shown in Table 1. The total
number of the lineaments extracted from STA was the largest while the manual method
produced the smallest. The tensor voting algorithm produced a larger total number than
the PCI, and this difference occurred in the subareas (b) and (d).

Table 1. The total number of lineaments in the four subareas of the Qianhe Graben. STA, segment
tracing algorithm.

Region Manually STA PCI Tensor Voting

(a) 65 213 183 185
(b) 58 146 123 114
(c) 55 205 128 147
(d) 55 206 238 140

Additionally, due to the existence of false edges of lineaments, more quantitative
analyses are needed to evaluate the accuracy of these algorithms. In all sections detected
as lineaments, non-lineaments may be included, but they are all regarded as lineaments.
The accuracy is good only when the segments are detected close to the reference map.
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Therefore, four indices (accuracy (A), precision (P), recall (R), and F1) were used, described
in Equations (16)–(19) [66]. The statistical results are shown in Table 2.

A =

TP
TP + FP + FN

+
TP
D

2
× 100, (16)

P =
TP

TP + FP
, (17)

R =
TP

TP + FN
, (18)

F1 =
2P× R
P + R

, (19)

where D represents the total length of the lineaments known to be interpreted, TP represents
the length of true lineaments detected as lineaments, FP represents the length of non-
lineaments detected as lineaments, FN represents the length of true lineaments detected as
non-lineaments, A defines the ratio of the correct part of the linear results to all the results
detected, P describes the ratio of the correct detections to all parts detected as lineaments,
and R represents the ratio of correct detections to all lineaments, where all lineaments
include not only the true lineaments detected correctly, but also the true lineaments ignored.
The F1 value is the harmonic index of P and R, and its value ranges from 0 to 1. A larger F1
denotes a better ultimate result.

Table 2. Comparison of accuracy using different algorithms. TV, tensor voting; TP, true positive; FP,
false positive; FN, false negative.

Region Methods TP
(km)

FP
(km)

FN
(km)

A
(%)

P
(%)

R
(%) F1

(a)
STA 125.19 41.24 39.07 68.47 75.22 76.21 0.76
PCI 114.32 45.02 49.69 62.06 71.75 69.70 0.71
TV 146.19 29.59 21.43 81.45 83.17 87.22 0.85

(b)
STA 130.19 32.40 25.32 78.52 80.07 83.72 0.82
PCI 111.67 30.21 38.64 68.56 78.71 74.29 0.76
TV 131.50 28.90 23.72 80.03 81.98 84.72 0.83

(c)
STA 98.61 29.68 23.45 74.35 76.86 80.79 0.79
PCI 102.27 22.68 19.24 78.87 81.85 84.17 0.83
TV 109.34 24.49 13.34 83.56 81.70 89.13 0.85

(d)
STA 90.69 27.09 20.97 72.11 77.00 81.22 0.79
PCI 94.33 28.69 17.74 74.52 76.68 84.17 0.80
TV 107.12 20.11 7.59 86.31 84.19 93.38 0.89

Specifically, in region (a), the A value derived by the LINE algorithm in the PCI
software was the lowest (62.06%), which represents that the proportion of correct lineaments
was lowest in the region with all detection results. The main explanation is that the
algorithm extracted the least correct results in the region (114.32 km). By contrast, the FP
value was the largest (45.02 km), which means that many edges that were non-lineaments
were recognized; thus, the P value was lower. The FN value was also the largest among the
three algorithms, suggesting that the edges of the lineaments were not effectively identified,
resulting in the lowest recall rate R. Upon synthesizing the P and R results, the region was
found to have the lowest F1 value (0.71). Subregion (a) is located at the northern part of the
Qianhe Graben and is jointly controlled by the three faults TGF, GGF, and QMF (Figure 1).
The spacing between the faults is 3.5 km (TGF–GGF) and 9.6 km (GGF–QMF). The surface
height is continuously uplifted and the river is eroded by the water system in the areas of
dense fault distribution. As a result, more nonlinear edges (such as roads and mountain
shadow lines) were also identified as lineaments, while the local linear uplift of the surface
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caused by faults was not detected. Therefore, the lineament extraction effect of the PCI
algorithm in the area with a complex surface coverage was worse.

Similar to region (a), region (b) was located in a hilly area with serious surface breakage,
with the difference being that the area is only controlled by the two faults of TGF and GGF,
where the distance between the faults is 3.9–4.5 km. As a result, this region has less surface
fragmentation, and fewer lineaments were detected than in region (a), but they were longer
in length. The TP and FN values in the extraction results of the STA algorithm were close;
thus, the A and R values of the two algorithms were closer, meaning that the extraction
results of STA and TV were more consistent in the complex terrain fragmentation. However,
the TV algorithm was slower than STA, and PCI was fastest, which was related to the
method of edge detection. Hence, when extracting such lineaments, the TV algorithm can
be substituted with STA.

The difference between region (c–d) and region (a–b) lies in the terrace plain areas,
which led to the TP values of lineaments in region (c) extracted by STA being lower than
those extracted by the PCI and TV algorithms, with the latter two methods are closer.
Therefore, the correct proportion of lineaments extracted in the plain region was lower.
Notably, the FP extracted by PCI was lower (22.68, lower than 24.49 obtained using the
TV algorithm); that is, few edge pixels which are non-lineaments were recognized as
lineaments in this region. Nevertheless, the FN value of this algorithm was lower, and
some lineaments were not effectively recognized using the LINE algorithm in PCI. As a
result, the F1 value of the two algorithms was only 0.02, whereas the extraction result from
the TV algorithm was optimal.

As for area (d), divided by the QMF, the loess occupies the terrace to the south of the fault,
and the ridge is to the north of the fault. The results were inferior to those of the PCI and TV
algorithms in region (c) derived by the STA algorithm. In this field, the coverage of the terrace
area is larger, resulting in discontinuity of the linear edge in the valley area, and then the FN
value in the PCI algorithm was larger than that in the TV algorithm. Meanwhile, the areas
with some noise, such as roads, which are non-lineaments, were also identified as lineaments,
resulting in higher FP values for PCI and STA. The difference in F1 values between PCI and
STA in the region was only 0.01; therefore, it was not of much practical significance to simply
study the P and R values in this subarea. For geologists, it is more desirable to extract results
with larger F1 values, such as the F1 obtained using the TV method.

Therefore, in terms of accuracy, the TV algorithm is more reliable in areas with higher
surface fragmentation, followed by STA and PCI, whereas the LINE algorithm in PCI is
better than STA in areas with complex forms of geomorphology. All of these findings
show that the TV algorithm has a better detection effect and greater coincidence with
results of visual interpretation. These findings can be utilized in the study of lineament
extraction and further analysis of the fractal dimension. To further analyze the lineament
characteristics of the Qianhe Graben, a lineament distribution map of the entire area was
extracted using the TV algorithm (Figure 4).

Firstly, the lineament density in this area ranged from 0.0 to 3.0 fractures per km2, and
a higher density was distributed near the four active faults (Figure 4a). The distribution also
showed the main location and distribution direction of the faults in the Qianhe Graben. In
other words, the lineament extraction results can serve as the interpretation marker of regional
faults. These lineaments are the linear segments and structures caused by different stresses
with similar directions in this area. In addition, the uplift of the fault causes the surface to be
squeezed and broken, and more lineaments are denser closer to the fault. The density of the
southern lineaments was larger than that of the northern lineaments (the average density in
the southern area was 0.23, while that in the northern area was 0.19) (Figure 4a). At the same
time, the spacing of faults gradually affected the density of lineaments, i.e., a smaller spacing
led to greater density and vice versa. The density of lineaments in the entire area decreased
gradually from northwest to southeast, which was related to the gradual decrease in spacing
between faults. In brief, the tectonic uplift of the southern area in the Qianhe Graben is greater
and decreases gradually from northwest to southeast [39].
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Figure 4. Distribution of lineaments in the Qianhe Graben. (a–c) are the density, length, and azimuth distribution maps of
the lineaments in the Qianhe Graben, respectively. (d) is the vector map of the principal strain rates of the Qianhe region
(unit: 10−8/year), collected from [83–85].

Secondly, a total of 2454 lineaments were extracted from the Qianhe Graben in the
total area with an average length of 1316.3 m, which was related to the range of loess
coverage. The average length in the southern region was larger (1354.9 m) than that in the
northern region (1274.1 m). The length and number of lineaments approximately followed
a normal distribution, among which 596 lineaments with a length of 1.2–1.5 km reached
the maximum (Figure 4b). Due to the coverage of loess, a large number of lineaments were
unexposed. The length of lineaments that could be identified was, thus, shorter. A higher
hilly area is more likely to generate and more easily generates lineaments relative to the
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loess terrace in the middle. In other words, areas that can be identified as lineaments have
greater potential to form faults.

Lastly, the lineaments of the region had a main direction of NW–SE, followed by
NE–SW (Figure 4c). Previous studies used high-precision GPS observations from the
China Crustal Movement Observation Network to build a plate kinematic model of crustal
deformation in the Fenwei Basin, China [83,84]. The results also showed that the current
tectonic strain feature of the Qianhe Grabren is the interior of the NE–SW compressional
stress, whereas the shallow part is subject to NW–SE tensile stress (Figure 4d). Therefore,
the number of lineaments in the NW–SE direction is greater than that in the NE–SW
direction. In particular, the Ganqing Block in the western margin of the Qianhe Graben
shows compressional strain with an approximately NE–SW direction. All of these results
are consistent with the first and second directions of lineaments in the Qianhe Graben. We
note that tectonic strain is a complex process, and we cannot use these lineament directions
to directly replace tectonic strain in the Qianhe Graben; however, this measure provides
new insights to estimate the direction of tectonic strain.

In summary, through the analysis of the length, density, and direction of lineaments,
the location, range, and direction of fault events in this area were estimated, which has
great geological significance for exploring the tectonic history of this area.

4.2. Fractal Characteristics

In the Qianhe Graben, the fractal dimensions of lineaments in the region were primar-
ily calculated using the steps below.

(1) The Qianhe Graben was taken as the reference, and a square with a length of L = 97 km
was drawn to cover all lineaments in the entire area.

(2) The side length of the square was changed, i.e., r = L/2, L/3, L/4, L/5, L/6, . . . , as
well as the covering on the lineaments. As a result, there were 22, 32, 42, 52, 62, . . . small squares
covered, and the number of small squares containing lineaments was calculated as N(r).

(3) According to Equation (7), the logr–logN(r) curve was drawn and fitted using the
least square method, where D is the absolute slope of the straight fitted line. The correlation
coefficient (R2) was used to assess whether the lineaments have fractal characteristics, that
is, whether they have statistical self-similarity or not.

As shown in Figure 5, the box dimension in the 97× 97 km2 grid cells of the lineaments
across the whole Qianhe Graben was 1.60, and the box sizes for this box dimension were
48.5, 32.2, 24.3, 19.4, and 16.2 km. There was an excellent linear correlation between
logr and logN(r), with a higher coefficient (R2 = 0.995). Therefore, the lineaments in the
study area showed statistical self-similarity and fractal characteristics. Since the main
directions of lineaments in this area were NW–SE and NE–SW (Figure 4c), to further study
the fractal characteristics of lineaments in different directions in Qianhe Graben, their
fractal dimensions were also determined in these directions. According to fractal theory
and Equation (7), DNW and DNE were estimated, with values of 1.48 and 1.44 (R2 > 0.9),
respectively (Figure 5). Therefore, the lineaments in different directions also showed fractal
characteristics and good self-similarity. As the fractal value in the NW–SE direction was
greater than that in the NE–SE direction, the faults in the former direction were more active
and well developed.

To further analyze the spatial distribution of the fractal characteristics of lineaments in the
Qianhe Graben, the study area was divided into squares with a length of 9.7 km, where the box
sizes for measuring the box dimension in each 9.7 km2 cell were 4.8, 3.2, 2.4, 1.9, and 1.6 km. By
caring out kriging interpolation, a fractal dimension isogram was drawn and superimposed
with the faults in the study area (Figure 6). The overall fractal dimension of the Qianhe Graben
lineaments was higher with a mean value of 1.80 (1.53–1.98), slightly higher than the box
dimension of 1.60 in Figure 5, which was related to the spatial distribution of lineaments in the
Qianhe Graben.



Remote Sens. 2021, 13, 587 15 of 24

Figure 5. The fractal dimension of lineaments in the Qianhe Graben.

Figure 6. Fractal dimension isogram of lineaments in the Qianhe Graben.
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4.3. Multifractal Characteristics

In the Qianhe Graben, small squares with various side lengths r = L/3, L/4, L/5, L/6,
L/7, L/8, and L/9 were used to cover all the lineaments. After determining the length and
probability of the lineaments in the squares using Equation (9), a logXq(r)–logr diagram
was drawn under different q values by transforming different weights of q (Figure 7). The
weights of q ranged from −10 to 10 with a step size of 1. As shown in Figure 7, with an
increase in q, logXq(r) maintained a good linear attenuation and aggregated to logXq(r) = 1.
Therefore, the power-law relationship with logr in Equation (11) was fulfilled by logXq(r).
In the specified scale range, the graph had higher scale invariance, showing the tendency of
the partition function of probability changing with the side length under different weight
factors q, and the multifractal characteristics appeared to be more evident. When q > 0 and
q < 0, logXq(r)–logr showed linear characteristics with a slope ( 6=0), whereas, when q > 0,
logXq(r) changed more rapidly (Figure 7). By contrast, logXq(r) varied more slowly when
q < 0. When q was close to 1, logXq(r) was closer to the transverse axis. As the weight factor
decreased, smaller local features were effectively highlighted. In other words, the focus
of the large scale was the fractal feature of lineaments as a complex element in the entire
region, which is a global self-similar feature, whereas the small scale highlighted the local
fractal features.

Figure 7. The distribution of logXq(r) as a function of logr.

As shown in Figure 8a, the slope τ(q) of the fitting line between logXq(r) and logr was
obtained. Even though τ(q) increased with q, there was not a linear relationship between them.
Specifically, when q < 0, τ(q) grew almost linearly; however, when q = 0, the growth rate of
τ(q) slowed down and gradually deviated from the original linear relationship (the red line
in Figure 8a), resulting in a broken line shape. Therefore, τ(q) was not a linear function of q,
indicating that the lineaments in the Qianhe Graben have multifractal characteristics.
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Figure 8. Multifractal analysis of lineaments in the Qianhe Graben. (a) Diagrams of τ(q) and q, where the red line has no practical
significance and only represents the τ(q) changes with q when there is no deviation; (b) diagram of D(q) and q; (c) diagram of α
and q; (d) the red line is the original multifractal spectrum f(α)-α, and the black line is the fitted fractal spectrum.

As shown in Figure 8b, the generalized fractal dimension D(q) was a monotone
decreasing function, in line with the characteristics of the multifractal dimension. The
values of D0, D1, and D2 were 1.744, 1.737, and 1.728, respectively, i.e., D0 > D1 > D2,
indicating that the lineaments in the Qianhe Graben are not single fractals. D0 = 1.744 shows
that the lineament length was widely distributed, being closer to the fractal dimension of
fault structures in Weibei Plateau (1.45), Weihe Basin (1.55), and North China (2.01), which
indicates that the fault activity in this area is complex and coincides with the background
of block movement and contact zone. D1 did not tend to 0, indicating that the lineaments
are scattered in some regions, whereas D2 indicated that lineaments are more uniform in
the test interval.
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Similar to D(q), α(q) was also a monotone decreasing function (Figure 8c), in line with
the characteristics of multifractals. Here, α(q) depicts the change speed of mass index
τ(q). Thus, the range of α(q) determines the domain and symmetry of fractal spectrum
f(α). The value of α(−1) is located in the middle of the curve, and the spacing with α(0) is
shorter than that with α(−2). Therefore, it can be inferred that f(α) is the left deviation. The
multifractal width (∆α) in this area was 2.25, which is larger than that of previous studies,
as shown in Table 3.

Table 3. Multifractal width with different areas.

No. Region ∆α References

1 Fault zone of Jiaozuo mining area in Henan, China 0.3–2.0 [82]
2 Altay, Xinjiang, China 0.81 [36]
3 Tongling metallogenic area, China 1.35 [74]
4 Northeastern Yunnan Pb–Zn metallogenic belt, China 1.60 [3]

The multifractal spectrum f(α) appears as a parabola, which is typically a left-hook
shape (the red line in Figure 8d). To better describe its distribution, the quadratic equation
fitting (f(α) = A(α − α0)2 + B(α − α0) + C) can be adjusted and calculated [86], where
the parameter B describes the symmetry of the fractal spectrum. When B = 0, then f(α) is
symmetric, whereas, when B 6= 0, f(α) is a left deviation or right deviation. Here, f(α) was
still a left hook, as shown by the black line in Figure 8d, and it reached the maximum at
α = 2.44. According to Equation (16), ∆f was calculated with a value of 1.21 (>0). Therefore,
f(α) was not symmetrical and the length of regional lineaments was different.

To sum up, the mass index, generalized fractal dimension, fractal width, and fractal
spectrum of lineaments in the Qianhe Graben all show that the length of lineaments in this
area is in accordance with multifractal characteristics. Moreover, by expanding the range
of q, even if the positive and negative values tended to be infinite, the changing trend of
each graph in Figure 8 could not be altered [87], and the influence on τ(q), D(q), α(q), and
f(α) was minimal.

5. Discussion
5.1. Why Do the Lineaments Have Fractal and Multifractal Characteristics?

Previous studies mainly focused on lineament extraction and fractal analysis, ignoring
the causes of fractal characteristics. The cause of fractal characteristics depends on the
formation and development of tectonic processes. Thus, what is the main cause of the
fractal characteristics seen in lineaments in the Qianhe Graben?

Firstly, all lithological strata are covered by the lineaments (Figures 1 and 4) and only
differ in the density of lineaments. Thus, the lineaments are not mainly controlled by the
lithological formation. Secondly, as the rainfall also has an impact on the surface frag-
mentation, more valley lines are identified as lineaments. Therefore, annual mean rainfall
data were derived from the Tropical Rainfall Measuring Mission (TRMM TMPA/3B43,
https://trmm.gsfc.nasa.gov/ (accessed on 29 December 2020)) over the past 20 years, with
a range of 574–654 mm (Figure 9); however, they did not show the same pattern with the
fractal dimension isogram. Therefore, the climate is not the main reason for the lineaments.
Lastly, previous studies have shown that the lineaments can be generated in a fault zone,
and they have a higher fractal dimension [3,5]. Other studies have also addressed that
the distribution of lineaments is related to the seismic activity and can be transformed
into faults. Specifically, the surface fragmentation was attributable to the northeastward
extrusion induced by the May 2008 Wenchuan earthquake [83], gradually permeating to the
Liupan–Longxi Block. As a result, more lineaments in the NW–SE direction concentrated
in the Qianhe Graben and linked into big faults. Furthermore, the lineaments can reflect
the bedrock deformation and stress concentration caused by the faults and seismic activity.
Similar to these studies, the lineaments in the Qianhe Graben were near to the four active

https://trmm.gsfc.nasa.gov/
https://trmm.gsfc.nasa.gov/
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faults (Figure 4a), which could be verified from fieldwork [49,50]. Therefore, the lineaments
were most likely generated from the changes in tectonic processes and seismic activity.

Figure 9. Annual mean rainfall map in 2000–2020 in the Qianhe Graben, resampled from the Tropical Rainfall Measuring
Mission (TRMM TMPA/3B43, https://trmm.gsfc.nasa.gov/ (accessed on 29 December 2020)).

In addition, as shown in Figure 4b, the main direction of lineaments in the Qianhe
Graben is NW–SE, similar to the main active faults. Moreover, the lineaments around faults
have a higher density (Figure 4a). As in the western parts of Weihe Basin, previous studies
have shown that the regional stress–strain field of the Qianhe Graben mainly underwent
three evolutionary stages: early Tertiary, Miocene, and Pliocene–Quaternary [83,84,88].
The principal stress field changed from tensile stress in the NWW–SEE direction in the
early Tertiary period into the extensional stress from NW–SE to NE–SW direction in the
Miocene period. However, due to the crustal material of the Tibetan Plateau tending to
move eastward [83,89], the compression regime is formed by the collision of the eastward-
moving crust with the Ordos block. Therefore, during the Pliocene–Quaternary period,
the compressive strain in the NE–SW direction dominated in the Qianhe Graben, followed
by the tensile stress in the NW–SE direction. Furthermore, the direction of lineaments is
also consistent with the tectonic strain field, indicating that the lineaments could be used
as an aid to analyze regional tectonic stress fields, whereby the lineaments were mainly
generated from the changes in regional tectonic strain. All of these results suggest that the
lineaments in the Qianhe Graben have a self-similarity, and the shapes of τ(q), D(q), α(q),
and f(α) showed that the lineaments have multifractal characteristics.

5.2. Analysis of the Fractal Dimension and Multifractal Characteristics in the Qianhe Graben

To compare with other regions, the box fractal dimensions in different regions were
determined, including ore bodies and fault zones, with the statistical results shown in
Table 4. The results suggest that the box dimension of lineaments in the Qianhe Graben
is in the middle and upper deviation. In the Qianhe Graben, the area where the fractal

https://trmm.gsfc.nasa.gov/
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dimension value is greater than 1.8 was mainly concentrated in the mountains on the
northwestern and hilly areas on both sides of the Qianhe River. In these regions, more
lineaments were generated by tectonic uplift, and the fault spacing was smaller than that
in the southeastern; thus, more lineaments were identified, and the fractal dimension
was higher. The area with the highest fractal dimension was located at the outlet of the
tributary at the northwestern end of Longxian County (LX) (Figure 8). In this area, the
distance between faults reached the minimum (3.5 m) [50]; thus, the tectonic activity
was stronger and the fractal dimension was higher. In addition, the fractal dimension
decreased gradually from northwest to southeast, which indirectly reflects a similar trend
of tectonic activity in this area. By contrast, the fractal dimension in the loess terraces,
such as Longxian–Caobi, was less than 1.8, which indicates that the tectonic activity of the
terrace around the main stream was lower than that of the mountain range on both sides.

Table 4. Box dimensions of different regions.

No. Region Box Dimensions References

1 Polymetallic ore field in Hutouya, China 1.09 [4]
2 Jiuyi Mountain fault zone in southern Hunan, China 1.12 [90]
3 Maoping Pb–Zn Mine in Zhaotong, Yunnan, China 1.28 [91]
4 Metallogenic area in Tongling, China 1.29 [74]
5 Shanghang–Yunxiao metallogenic belt, China 1.36 [92]
6 Central Sichuan Basin fault zone, China 1.53 [93]
7 Pb–Zn district in Fozichong, China 1.53 [75]
8 Croatia Zumberak Mountain fault zone, Croatia 1.69–1.78 [94]
9 Pb–Zn metallogenic belt in Northeastern Yunnan, China 1.98 [3]

Specifically, the width of fractal spectrum ∆α in the Qianhe Graben was larger than 0,
showing that the lineaments in the study area have multifractal characteristics; furthermore,
the range of length change is large and the range of length is wider, denoting that the
sizes of lineaments in Qianhe Graben are variable. However, the asymmetry (∆f) was also
greater than 0, which indicates that the lineaments with longer lengths were more common
than shorter lineaments; that is, the scale of lineaments in this area is mostly large–medium
range. Previous studies have shown that, when the multiple fractal spectrum is a left-hook
curve, there are more faults of medium and small scale in the region [3,5]. On the contrary,
when the multiple fractal spectrum is a right-hook curve, there are a few large faults in the
region [82]. The multifractal spectrum of lineaments in the study area was a left-hook curve
(Figure 8d). Thus, the lineaments are medium–small scale. The reason for this difference is
that the lineaments are discontinuous in space, and the faults connect better. Therefore, the
multifractal spectrum is mostly a left-hook curve.

In addition, previous studies have shown that the fractal dimension of the fault is
1.22–1.38 [36], and the difference is mainly related to the change in fault direction and
basement lithology. According to this study, when the regional fractal dimension D is larger
than that of the interval, the faults in this region are more continuous in direction and the
lithology permeability of the basement is stronger. In the formation of fault processes, the
fault acts continuously on the distribution and formation of geomorphology and lithology,
before gradually stabilizing in the region. Therefore, the fractal dimension of fault events
is variable, which leads to the multifractal distribution of regional faults. Moreover, the
generalized fractal dimension D of lineaments in the Qianhe Graben was 1.744, which
is larger than the interval (1.22–1.38), indicating that the fault distribution in the Qianhe
Graben is more complex and still active, controlling the formation and distribution of
regional morphology, lithology, mineral resources, and groundwater.

Lastly, previous results have also shown that the D value is related to the complexity
of the regional fault [95]; that is, a larger D value denotes more complex regional fault
activity and less stable regional faults. When D∈ (1.5, 1.8), secondary faults are few but
still visible and complex. Although tectonic activity is strong, it is not frequent [95]. Over
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time, original smaller faults gradually mature, connecting to form a larger fault. The D
values of lineaments in this graben belong to the interval (1.5, 1.8), which is sufficient to
prove that the graben has small but unstable fault development, with complex and strong
activity, which is still not frequent. This is why more fault features cannot be found in field
exploration, while interpretation features can be found on remote sensing images.

In summary, the multifractal characteristics of lineaments in the Qianhe Graben show
that the faults in this area are of medium scale and easily generate tectonic lineaments.

6. Conclusions

To validate a better method of extracting lineaments in the Qianhe Graben, we ex-
tracted the lineaments using the tensor voting algorithm after comparing its performance
with the segment tracing algorithm (STA) and LINE in PCI. The distribution of lineaments
in terms of length, density, and direction showed that the lineaments in this area were
mostly induced by faults with the main trending of NW–SE, with the higher density in the
southern area indicating the main concentrating location of active faults in this area. On the
other hand, the fractal and multifractal characteristics of lineaments provided a perspective
for tectonic activities in the study area. Specifically, the box dimension of the lineaments of
the whole Qianhe Graben was 1.60, and it exhibited statistical self-similarity, showing that
the lineaments are on the middle and upper deviation when compared with other areas,
making them better for fluid migration and exploration. These results are related to the
seismic activity in this area, where a higher tectonic activity leads to more lineaments being
formed and a higher fractal dimension. Furthermore, the mass index τ(q), generalized
fractal dimension D(q), fractal width (∆α = 2.25), fractal spectrum shape (f(α) is a left-hook
curve), and spectrum width (∆f = 1.21) of lineaments in the Qianhe Graben all showed that
the lineaments in this area have multifractal characteristics, indicating that the fault activity
in this area is greater and coincides with the background of block movement. For further
geological measurements and exploration, such results can be necessary and beneficial for
providing new insights into tectonic processes and plate movement.
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