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Abstract: The detection and removal of erroneous pixels is a critical pre-processing step in producing
chlorophyll-a (chl-a) concentration values to adequately understand the bio-physical oceanic process
using optical satellite data. Geostationary Ocean Color Imager (GOCI) chl-a images revealed that
numerous speckle noises with enormously high and low values were randomly scattered throughout
the seas around the Korean Peninsula as well as in the Northwest Pacific. Most of the previous
methods used to remove abnormal chl-a concentrations have focused on inhomogeneity in spatial
features, which still frequently produce problematic values. Herein, a scheme was developed to
detect and eliminate chl-a speckles as well as erroneous pixels near the boundary of clouds; for
the purpose, a deep neural network (DNN) algorithm was applied to a large-sized GOCI database
from the 6-year period of 2012–2017. The input data of the proposed DNN model were composed
of the GOCI level-2 remote-sensing reflectance of each band, chl-a concentration image, median
filtered, and monthly climatology chl-a image. The quality of the individual images as well as
the monthly composites of chl-a data was improved remarkably after the DNN speckle-removal
procedure. The quantitative analyses showed that the DNN algorithm achieved high classification
accuracy with regard to the detection of error pixels with both very high and very low chl-a values,
and better performance compared to the general arithmetic algorithms of the median filter and
threshold scheme. This implies that the implemented method can be useful for investigating not only
the short-term variations based on hourly chl-a data but also long-term variabilities with composite
products of the GOCI chl-a concentration over the span of a decade.

Keywords: chlorophyll-a concentration; Geostationary Ocean Color Imager (GOCI); deep neural
network; ocean color; speckle

1. Introduction

The Geostationary Ocean Color Imager (GOCI) is the world’s first geostationary
optical satellite sensor dedicated to ocean observations (as opposed to meteorological
observations). Since its launching in 2010, it has produced ocean color data over the seas
around the Korean Peninsula, with an unprecedented high temporal resolution of 1 h and
eight bands from visible to near infrared (Figure 1a) [1]. It has contributed significantly to
various research fields by taking advantage of geostationary orbit, enabling time-based
observation during the daytime [2–5]. In particular, the ocean-atmosphere interactions
or the responses of marine ecosystems over short-term periods can be studied using
GOCI chlorophyll-a (chl-a) concentration data [6]; several polar-orbit ocean color satellites
launched previously did not offer this advantage. GOCI is expected to be used not only for
investigating short-term variability, but also for mid- to long-term variability studies on
the seas around the Korean Peninsula based on the GOCI database accumulated over the
past 10 years.

Ocean color data have been reported to have noise errors and diverse problems, includ-
ing stray light effects from instruments, difficulties in sensor calibration, and failures with
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atmospheric correction related to contamination from cloud edges, sun glint, whitecaps,
and aerosols [7–15]. Moreover, these were particularly more conspicuous than other vari-
ables in the chl-a concentration products. Similar to previous ocean color satellite sensors
such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution
Imaging Spectroradiometer (MODIS), the level-2 product of the GOCI data also exhibited
problems related to error with extremely high values, i.e., up to 1.00 × 103 times higher
than the neighboring values of the background field. Erroneous low-value pixels are also
apparent in GOCI data. In GOCI chl-a images, these errors frequently appear as speckle
noise in a single pixel, unexpectedly congregated patches, or array-like features; they may
be associated with unsuccessful atmospheric corrections caused by factors such as aerosol
and cloud contamination or instrumental-related artifacts such as slot-related stray light
(e.g., [16]). Unlike traditional ocean color sensors, the target area of GOCI is covered by
16 consecutive acquisitions in 4 × 4 slots, which tends to induce inconsistencies and noise
between the adjacent slots in GOCI products (Figure 1b) [17,18]. The Korea Ocean Satellite
Center/Korea Institute of Ocean Science and Technology (KOSC/KIOST) recently updated
the standard GOCI atmospheric correction by modifying the aerosol model and applying a
vicarious calibration [19,20]. However, although the overall quality of the database was
improved owing to this update of the atmospheric correction, it still contains substantial
noise errors. The errors in the chl-a concentration image need to be processed properly to
enhance the reliability of the data for scientific analysis.

Figure 1. (a) Full disk red-green-blue (RGB) image of the Geostationary Ocean Color Imager (GOCI)
acquired on 1 April 2012 and (b) monthly climatology of chlorophyll-a concentration in April.

Methodologies for the removal of erroneous pixels in ocean color images has been
proposed based on the spatial and temporal distribution of the data values [8,9,16,21,22].
Most of them were based on smoothing scheme or thresholds to eliminate speckles in the
chl-a concentration images; however, this is mainly advantageous when the distribution
of the image background field does not change much, or when the speckle values are
extremely high compared with the surroundings. Ocean color properties in the GOCI
observation area vary remarkably from oligotrophic water, known as Case 1, to very turbid
water, known as Case 2, as shown in the monthly climatology map in April (Figure 1b).
The general distribution of chl-a concentration values in the GOCI coverage was divided
into three groups: the Northwest Pacific, East Sea, and Yellow Sea from an image of chl-a
concentration (Figure 2). The three regions each tend to have a unique distribution of
chl-a concentration values in terms of number density. However, the three regions have
some portions with significant overlapping, as shown in Figure 2. In particular, the East
Sea is a mixture of several optical properties based on large spatio-temporal variability
of chl-a concentration caused by large seasonal variability, strong spatial chl-a fronts, and
complicated mesoscale features [23–27]. These wide ranges of variabilities of bio-optical
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conditions make it difficult to detect pixels of abnormal value properly. Thus, a more
advanced methodology should be developed.

Figure 2. Frequency distribution of chlorophyll-a concentration in the GOCI observing area consisting
of the East Sea, Yellow Sea, and Northwest Pacific.

Recently, deep neural networks (DNN), have been rapidly developed to be utilized
for ocean color satellite image processing, such as image classification, target detection,
and prediction of oceanic features [28–30]. One of the most significant improvements of
the deep-learning methods may be found in automated feature extractions, which were
previously performed manually. The DNN were built as a hierarchy of data representations
dealing with spectral information for each pixel. Semantic segmentation is the task of
assigning each pixel of an input image to a specific class, which is an area where deep-
learning has shown particularly good results. Additionally, they can effectively identify
substantial noises, performing well under different background image conditions in remote
sensing. DNN-based ocean color algorithms can also be adopted for operational and near-
real-time satellite observations thanks to their high speed and accuracy [31,32]. Therefore,
the deep-learning method can be applied to improve the quality of GOCI variables by
eliminating potential noises.

The objectives of this study are: (1) to identify the spectral characteristics of erroneous
pixels in the GOCI chl-a concentration images, (2) to develop a detection algorithm for
chl-a speckles based on the DNN method, (3) to compare the monthly composites prior to
and post the speckle removal procedure using GOCI chl-a data for six years from 2012 to
2017, and (4) to verify the capability of the developed DNN algorithm for erroneous pixel
removal procedures.

2. Data and Methods
2.1. Geostationary Ocean Color Imager (GOCI) Data

GOCI level-2 remote-sensing reflectance Rrs(λ, sr−1), chl-a concentration image, and
flag information from 2012 to 2017 were used for detection of erroneous pixels in the chl-a
concentration images. These data were calculated from level-1B data by atmospheric cor-
rections based on GOCI data-processing system (GDPS) 2.0 of the KOSC/KIOST. The GOCI



Remote Sens. 2021, 13, 585 4 of 17

sensor has six visible bands centered at λ = 412, 443, 490, 555, 660, and 680 nm and two
near infrared (NIR) bands centered at λ = 745 and 865 nm. To estimate chl-a concentration
using Rrs data, the GDPS suggests an empirical ocean chl-a algorithm for GOCI (OC3G) by
using three bands:

CHL = 10 f0+ f1×R+ f2×R2+ f3×R3+ f4×R4

R = Max(Rrs(443), Rrs(490))
Rrs(555)

(1)

where CHL represents the chl-a concentration (mg m−3) and the coefficients from f0 to f4
are the empirically regressed coefficients of 0.0831, −1.9941, 0.5629, 0.2944, and −0.5458,
respectively. The GOCI data has a spatial resolution of 500 m × 500 m and a high temporal
sampling capability of eight times per day from 9:30 AM to 4:30 PM local time (KST) [1,33].
In this study, we used all hourly databases of GOCI data for six years, from 2012 to 2017
including a total of 17,522 chl-a concentration images.

2.2. Speckle Detection Based on Deep Neural Network Approach

We developed a neural network algorithm based on a deep-learning model to classify
the pixels into three categories: normal, abnormally high, and abnormally low values
of chl-a concentration in a GOCI image. In this study, a multilayer feedforward neural
network (MFNN) was utilized through DNN with three hidden layers. For the MFNN
presented in this work, a back-propagation learning technique with a Levenberg-Marquardt
optimization, also known as the damped least-squares method, was implemented [34–37].
The input layer comprised 11 datasets of Rrs(λ) of eight bands, a chl-a concentration
image, a 3 × 3 median filtered chl-a concentration image, and monthly climatological data
on chl-a concentration that were used to consider the spectral shape of each pixel and
the spatiotemporal variability of the field (Figure 3). The monthly climatological chl-a
concentration data were acquired by taking an average of level-2 chl-a concentration data
over the six years from 2012 to 2017 for each month after applying a median filter within a
3 × 3 window for smoothing. Each input layer received data from an entire GOCI image,
with pixel sizes of 5685 × 5567, in latitudinal and longitudinal directions. The output
layer returned a pixel-wise confidence metric from 0 to 1 continuously for the classes
being processed. Pixel-wise calculations in the model, which are based on the spectral
characteristics and spatiotemporal properties of chl-a, enable the detection of both sporadic
and patch-type errors.

2.3. Construction of Dataset

To reduce the range of calculations required during the MFNN process as well as
the resulting uncertainty, the input data were conditionally masked using the following
criteria. Various level-2 flags were rendered as invalid pixels to discard low-quality data,
that were in turn clearly marked with flag information including divergence from the
iterative atmospheric condition, a high aerosol concentration, negative normalized water-
leaving radiance, negative Rayleigh-corrected NIR, turbid water, a high possibility of pixel
contamination, and an invalid condition to derive chl-a, with zero or empty Rrs values.
After the flags were applied, the pixels were rejected from the subsequent process when
any of the Rrs values of 443, 490, and 555 nm used in the chl-a retrieval algorithm were
negative and when Rrs(660) was infinite, these were also invalid pixel conditions for Rrs
that were not filtered out by flags. To prevent overfitting errors during the development
of the algorithm, the input data were randomly divided into three groups as follows:
70% for training, 15% for validation, and 15% for testing as a completely independent
dataset for network generalization. The training set was used to compute and update
the neural network model. The validation set was not involved in the training process;
instead, it was used to determine the optimal learning. The model stopped updating
when the minimum error was reached in the validation set. The test set was used to
evaluate the final performance of the model after the training process was completed.
The training, validation, and testing datasets were constructed from a total of 72 chl-a
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concentration images using a 1:30 PM (KST) image obtained on the 15th of each month
during 2012–2017, to utilize the maximum possible chl-a spatiotemporal variability in the
study area. Actual (target) data, that defined the pixels with abnormal values compared to
the normal pixels, were determined based on the threshold scheme described in previous
research on speckle removal in ocean color images [14]. Pixels detected as speckles were
divided into abnormally high- and low- value pixels using the ratios between the chl-a
concentration image, its 3 × 3 median filtered image, and the monthly climatology chl-a
concentration image; the thresholds of 1.3 and 0.7 were provided for high and low values,
respectively, prior to the application of the deep-learning procedures.

Figure 3. Schematic diagram of the construction of the error detection MFNN algorithm.

2.4. Statistical Errors

The performance of the MFNN model was quantitatively evaluated in terms of the
accuracy, precision, and sensitivity based on a confusion matrix (Figure 4). The accuracy of
the model (MAccuracy) in equation (2) gives the overall accuracy of the model. This means
that it is the fraction of the total samples that were correctly classified by the algorithm
on the basis of the pixel classification among the true positive (TP), true negative (TN),
false positive (FP), and false negative (FN), where the positive and the negative signify the
target pixel and not target pixel of each class, respectively. To calculate the accuracy, the
following Equation (2) was used:

MAccuracy =
TP + TN

TP + TN + FP + FN
. (2)

The sensitivity of the model (MSensitivity) identifies the fractions of all positive samples
correctly predicted as positive by the model given by Equation (3):

MSensitivity =
TP

TP + FN
(3)



Remote Sens. 2021, 13, 585 6 of 17

The precision of the model (MPrecision) indicates what fractions of predictions as a
positive class were actually positive, as presented in the following Equation (4):

MPrecision =
TP

TP + FP
(4)

F-score of the model (MF−score) is calculated from the MSensitivity and the MPrecision to
find the optimal balance between the two as the harmonic mean of Equation (5):

MF−score =
2

MPrecision−1 + MSensitivity−1
(5)

All segmented values of the model near 1 show better segmentation. The output of the
MFNN algorithm is an erroneous pixel confidence metric ranging from zero to 1; therefore,
a threshold value must be determined for classification. In this study, we used a fixed
threshold value of 0.6 for the output classes, when evaluating the models.

Figure 4. Confusion matrix showing the probability values inherent in the general framework for
model verification.

3. Results
3.1. Speckles from Annual Maximum

The annual maximum value of chl-a and the month with the annual maximum were
computed for each pixel by using all the chl-a concentration images for the year 2015
to investigate the appearance of abnormally high speckles per year. Figure 5a shows
the spatial distribution of yearly maximum values randomly distributed in the forms
of salt and pepper noises or patched chl-a concentration. The enlarged area (Figure 5b),
marked in the red box in Figure 5a, also reveals a discontinuous noise and patch type with
abnormally high chl-a concentrations. These unusual features are notably different from the
general distribution of normal chl-a concentration values in space, as shown in the monthly
climatology map of Figure 1b. The annual maximum values in the East Sea and northwest
Pacific are higher at approximately 60 and 40 mg m−3, respectively, which are even higher
than the highly turbid Case 2 water of the Yellow Sea in Figure 5b. Furthermore, they are
much higher than the April monthly climatology distribution, shown in Figure 1b, for
the spring bloom season of phytoplankton in the East Sea [4,38–40]. The distribution of
the month with the annual maximum in each region also tended to be very sporadic and
locally patched (Figure 5c). In the northern part of the East Sea, there are high chl-a patches,
mainly observed in winter and early spring (December to March) (Figure 5c). This is not
the local maximum bloom season or at the beginning of bloom [4,38–40]. Therefore, it is
unlikely that an intensity bloom of up to 60 mg m−3 will appear in the northern East Sea
during winter or early spring.
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Figure 5. (a) Maximum chlorophyll-a (chl-a) concentration in 2015, (b) enlarged area of red box in (a),
and (c) distribution of month with the yearly maximum chl-a concentration.

3.2. Abnormal Chlorophyll-a Features around Clouds

There are many types of cloud passing over the seas around the Korean Peninsula,
depending on the local atmospheric and oceanic conditions. The GOCI instrument takes
8-band images sequentially for 2 min at each pixel in a slot and approximately 30 min
for all pixels within the entire region in total. During a 2-min period, the locations of
the clouds may be shifted from their original locations between the first and last bands,
which generates time differences between each band observation, resulting in a cloud pixel
registration error. Unlike the interior thick and large patched cloud pixels with a high
spatial uniformity of reflectance, the boundaries of the clouds are affected by the rapid
changes in the reflectance values for each GOCI band. The cloud pixel registration error
can constitute an inappropriate band spectrum and may produce abnormally high- or low-
value errors around the cloud edges. Thin or small fragmented clouds, by contrast, are not
likely to be detected during the atmospheric calibration process. If clouds are not properly
classified as cloud pixels, the pixels may retrieve abnormal chl-a values owing to higher
reflectance than their surroundings originating from the ocean.

The grayscale image of Rrs(555) shows bright pixels of high reflectance considering
clouds in the central (red ellipse) and lower-left (blue ellipse) areas of Figure 6a. At the lo-
cation of the blue ellipse in Figure 6a, abnormally high and low chl-a values appear around
the boundary of the scattered clouds, as marked in white pixels in Figure 6b. The scattered
abnormal values along the cloud patches are distinguished from the background chl-a
concentrations at approximately 0.4 mg m−3 (~−0.4 on a log10 scale). Other forms of
erroneous values can be found in Figure 6b from the position, marked in the red circle, in
Figure 6a. Relatively high chl-a values appear in the type of a small triangle-like patch,
which is approximate 6-times higher than the surroundings. These abnormal distributions
of the chl-a values are likely due to some failures in the cloud detection.

Figure 6. Example of failure in cloud detection in the (a) grayscale image of Rrs(555) and (b)
chlorophyll-a concentration image on 3 June 2015.

3.3. Dual Structure of Speckles

Figure 7 represents other examples of erroneous pixels near various types of clouds
in chl-a concentration image on 3 June 2015. One intriguing feature of Figure 7a is the
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appearance of a dual structure of abnormal chl-a values with higher values aligned with
unexpected lower values across the cloud pixels, as marked in white. There are three arrays
of elongated clouds across which two arrays of higher chl-a concentration values on the left
side and lower chl-a concentration values on the right side are detected. This trend is also
apparent near the patchy-type clouds between two elongated cloud arrays in the lower
portion of Figure 7a. More systematic features, with the dual structure, were detected from
the scattered clouds in Figure 7b. Both higher and lower values appear systematically near
the clouds except for the pixels inside the clouds illustrated in white. Such structures had
remarkably different values of chl-a concentration, as compared with the background chl-a
image showing spatially consistent variations with high uniformity.

Figure 7. Example of erroneous chlorophyll-a concentration around clouds in the (a) Yellow and (b)
East Sea on 3 June 2015.

All of these features seemed to be related to the failure in cloud detection due to
the movement of the clouds during GOCI observations within a slot of 2 min. When
these features are given into a composite procedure to produce a monthly map, the re-
sulting composite will bring errors with spatially much less uniformity of chl-a values.
Water leaving radiance around shallow coastal areas disturbed by seafloor reflectance and
stray light originating from land also have the potential to cause incorrect atmospheric
correction results. These complex optical properties may influence the retrieval of low
chl-a concentrations compared to background images near the island and mainland. In
addition, high-altitude aerosol conditions around cloud edges are likely to be different
from the aerosol type of the background field especially in the open ocean, which makes
it difficult to choose the proper aerosol model in the atmospheric correction procedure.
This type of improper selection in the aerosol models may also lead to the emergence of
an unexpected low chl-a concentration distribution [16]. Thus, the spectral characteristics
of such erroneous pixels should be investigated. The following section deals with the
spectrum with respect to the wavelengths corresponding to the GOCI bands.

3.4. Spectral Characteristics of Speckles

To examine the spectral characteristics of the speckles, the Rrs values of the speckles
and normal pixels were averaged for each GOCI band, as shown in Figure 8. Normal pixels
that retrieve proper chl-a concentration values have been revealed to have spectral patterns,
as shown in Figure 8a. Each average spectral shape was obtained from 30 contaminated
pixels in the Northwest Pacific, East Sea, and Yellow Sea, respectively in 3 June 2015, as
representative optical types from oligotrophic to turbid water. The GOCI Rrs spectral
signatures averaged over three different ranges of chl-a concentration, 0.1 mg m−3 and
0.4 mg m−3 illustrate the decreasing tendency of Rrs with respect to wavelengths. In the
range of approximately 2.0 mg m−3, the Rrs values tended to increase from 412 nm to
reach a peak at 555 nm, subsequently decreasing to the 865 nm wavelength. The shapes
differ depending on phytoplankton, colored dissolved organic matter (CDOM), or other
substances in seawater. Previous studies have mentioned that the spectral dependency for
the different chl-a concentrations groups show that the shapes of the Rrs spectra change
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from a blue-wavelength peak to a green-wavelength peak with increasing chl-a concentra-
tion [41,42].

Figure 8. Average spectra for the chlorophyll-a concentration of (a) normal pixels ranging 0.1, 0.4,
and 2.0 mg m−3 and (b) abnormally high (red line) and low (blue line) pixels from a GOCI level-2
remote sensing reflectance image on 3 June 2015.

In contrast to normal pixels with overall patterns in Figure 8a, abnormally high and
low chl-a concentrations had more flattened Rrs shapes as a function of wavelengths
(Figure 8b). Unlike the normal pixels, Rrs values of 555 and 660 nm were close to zero
with very small positive or negative Rrs of pixels with very low chl-a concentration of
approximately 0.01 mg m−3. The ratio between small values in the green band (Rrs(555))
and the large value in the blue band (Rrs(443), Rrs(490)) may induce extremely low chl-a
concentration due to the constant f1, which has a value of –1.9941, in the OC3G algorithm
(Equation (1)). Pixels with very high chl-a concentration of 30 mg m−3 average, suspected
as speckle error, show unexpected negative Rrs values in all visible bands except for the
NIR 745 and 865 nm bands (Figure 8b). Among them, Rrs(443) is the closest to 0, so the
absolute value of Rrs(443) is the smallest. In this case, contrary to the normal values, the
retrieval of chl-a concentration according to Equation (1) can be amplified owing to the
small value of Rrs(443).

3.5. Implementation of Multilayer Feedforward Neural Network (MFNN) Model

The results of applying the deep-learning model removing the erroneous pixels in
individual level-2 chl-a images are presented in Figure 9. Figure 9a shows unexpected
speckles along the boundary of cloud patches crossing the narrow upwelling area off the
coast of the East Sea at 13:30 KST on 3 June 2015. This might be related to the movement
of the clouds over a few minutes within a relatively short time of the sensor observation
period. The speckle values are not constant; they are randomly distributed, with values
that are spatially dominant compared with neighboring pixels a short distance from the
cloud boundary. Figure 9b shows the disappearance of the erroneous pixels, marked in
white, as a result of the MFNN model. Considering that the high chl-a concentrations
bloom occurred during extensive upwelling events in summer, chl-a values over 1 mg m−3

around the cloud patches were not classified into the speckles. Figure 9c,d show another
arbitrary example of the removal procedure applied to complicated clouds with small-
scale elongated structures. The background chl-a field is relatively spatially homogeneous,
mostly distributed around 0.2 mg m−3, while highly speckled chl-a values were detected
around the cloud edges (Figure 9c). After the deep learning method was applied, abnormal
speckle pixels were excluded with a high performance as shown in Figure 9d.

The spatially dominant pattern is a dual structure with a pair of high and low chl-a
values on either side of an elongated cloud patch (Figure 9e). On one side of the cloud
patch, the distribution of chl-a concentrations appears at approximately 3 mg m−3 while on
the other side this occurs at almost 0.1 mg m−3. The low chl-a values, indicated in purple,
seem to not have originated from a natural chl-a distribution in the highly turbid Yellow
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Sea. Figure 9f shows the result of applying the deep learning algorithm to remove abnormal
pixel with both significantly high and low values. As shown in Figure 9e,f, both types
of pixel were properly removed although some pixels with lower values still remained
near the edge of clouds. This region corresponded to the cloud shadow region parallel
to the pixels with abnormally high values. One potential cause of this is that the spectral
shape of the low-value pixels had a relatively high similarity to those of ordinary pixels,
as indicated in Figure 8. However, the differences in the chl-a values for the low-value
pixels and the neighboring normal pixels are negligible at less than order of 10−1. Images
of chl-a concentration on a logarithmic scale tend to visually exaggerate any differences,
particularly for values lower than 0.1 mg m−3. Given this, the present method is believed
to remove both erroneous values appropriately.

Figure 9. Examples of removal results of erroneous chlorophyll-a concentration pixels (a), (c), (e)
before and (b), (d), and (f) after speckle removal procedure of each GOCI image from 3 June 2015.

The frequency distribution of the erroneous pixels estimated from the speckle-removal
process was obtained as a percentage of the total chl-a observations in 2015 (Figure 10).
The frequency of high-value speckles was up to 15% of the total chl-a observation in
the entire research area; speckles were frequently observed in the following order: the
Yellow Sea (~3%), East Sea (5–10%), and Northwest Pacific (>10%). High-value speckles
were observed more often in the eastern region than in the western area of the East Sea.
The low-value speckle frequency was up to 40%, which was greater than that of high-value
speckles in the entire area. Low-value speckles appeared much more frequently in the
Northwest Pacific than in the Yellow Sea and East Sea. One of the interesting features is
that the low-value speckles tended to appear more often toward the right side of the slot
and lower latitudes, which is evident in the Northwest Pacific. The presence of both high-
and low-value speckles at a high frequency in the Northwest Pacific could be attributed
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to the characteristics of the clouds passing over the Northwest Pacific and atmospheric
conditions such as aerosol distribution being different from those of other seas in the study
area.

Figure 10. Spatial distribution of appearances frequency of (a) high- and (b) low-value erroneous
pixels in 2015.

3.6. Effect of De-Speckled Chlorophyll-a Concentration Data on Composite Field

To show the effect of the erroneous speckles in the chl-a concentration of monthly
composite, the monthly mean chl-a concentration before reprocessing was compared with
the data after the removal algorithm in the study area from 2012 to 2017 (Figure 11). In the
month-year plot of chl-a concentrations without applying the speckle removal procedure,
the highest chl-a concentrations during the spring bloom of phytoplankton are only weakly
apparent in April and May (Figure 11a). In particular, the monthly mean values of chl-a
concentrations are abnormally higher in January and March 2015 than in other months.
In the period of every December from 2015 to 2017 corresponding to a fall bloom, the
chl-a concentration values are much more prominent than those of the spring bloom. In
summer, the mean concentration values are significantly lower than in other seasons.
The overall mean value of chl-a concentration before reprocessing ranges from 0.28 to 0.89
mg m−3. On the other hand, after the algorithm was applied, the year-month plot shows a
remarkable change in the chl-a concentration variability. It exhibits obvious seasonality,
as shown in Figure 9b. Seasonal variations in the chl-a concentration indicate a typical
pattern with dominant spring blooms from March to May and a relatively weak fall bloom
as disclosed by previous studies on the seasonal variability of chl-a in the seas around the
Korean Peninsula [27,40]. The variations of the mean concentrations are reduced to a small
range from 0.22 to 0.45 mg m−3, which is a narrower range as compared with the range
before correction. The decreasing rate amounted to 67% in January 2015.

Figure 11. Month-year plot of chlorophyll-a concentration from (a) GOCI level-2 data and (b)
reprocessed data after the speckle-removal process for the period of 2012–2017.
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Figure 12 shows the dominant change in the yearly composite map of 2015 before and
after the erroneous pixel removal procedure. Many single dots and patches with higher chl-
a concentrations than background field appear over the entire yearly map, particularly in
the Northwest Pacific and the East Sea prior to the speckle-removal procedure (Figure 12a).
However, the reprocessed yearly composite map reveals detailed surface spatial structures
of chl-a in 2015, which had been hidden by erroneous values of scattered speckles and
patches (Figure 12b). For instance, a mesoscale eddy-like feature appears as a circular shape
with chl-a values about 0.3 mg m−3 (−0.5 on a log10 scale) at about 36◦N in the far-offshore
region of the East Sea. In addition, relatively high chl-a concentrations are comparatively
well represented along the coastlines of Russia, Korea, and Japan. High chl-a distribution
in the Yellow Sea of case 2 water were also well preserved instead of being classified as
abnormal values during the speckle-removal process. As mentioned previous, slot-related
spatially distinctive discontinuity in the GOCI image have been reported [17,18], however,
the effect of the slots is not clearly distinguished in Figure 12a due to high chl-a speckles
around the slot boundaries. In contrast, Figure 12b illustrates the slot-related differences
along the slot boundaries after the removal of abnormal values, which is more evident in
the Northwest Pacific region of case 1 water with low chl-a distribution. This study did not
cover the slot issue in further detail. These results confirm the good performance of the
speckle removal model for the level-3 composite procedure.

Figure 12. Yearly composite map of chlorophyll-a concentration from (a) GOCI level-2 data and (b)
reprocessed data after the speckle-removal process for the period of 2015.

3.7. Validation

The output layer of the MFNN model is a confidence metric, and thus the threshold
for decision boundary of each class should be considered to maintain the high performance
of the model. Over all valid pixels in a dataset, the relationship between the threshold value
and averaged MF−score of output classes was investigated (Figure 13). As the threshold was
increased from 0.1 to around 0.6, the MF−score tended to increase from 0.66 to 0.87. As a
result of checking the MF−score, the threshold is assigned to 0.6 for output class. To validate
the effectiveness of the proposed method, a confusion matrix is obtained using a given
threshold of 0.6 for each output class (Table 1). The statistical parameters are higher than
0.85 for all classes of the model output, as shown in Table 1. In particular, the accuracy for
the low chl-a value class is over 0.9, which is the highest among the three classes.
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Figure 13. Averaged F-score curves of MFNN model as a function of the threshold for the decision of
each class.

Table 1. Statistical evaluation (precision, sensitivity, and accuracy) for each class of normal, high, and
low chlorophyll-a concentration pixel.

Class Precision Sensitivity Accuracy

Normal 0.917 0.880 0.889
High 0.857 0.882 0.857
Low 0.909 0.968 0.911

4. Discussion

As indicated by the results, the characteristics of speckles included randomly scattered
or aggregated patches. The potential causes of the appearance of the noise errors can
be understood primarily in terms of the problematic Rrs values related to atmospheric
correction. Water vapor is known to contribute to the creation of the problematic spectral
shape of the Rrs values. In the atmospheric correction procedure of GOCI data, it is
somewhat difficult to consider the effect of water vapor correctly using only bands of
GOCI, as this requires additional bands at 6.72, 8.55, and 12.0 µm to discriminate high-,
medium-, and low-moisture conditions [43]. Although the GOCI atmospheric correction
algorithm considers the moisture distribution from other atmospheric model, detailed
information on water vapor is difficult to obtain under near real-time conditions. Such
an imperfect atmospheric correction is liable to produce an invalid Rrs value for each
band [19].

Other potential causes may originate from the cloud contamination, as evident from
the appearance of many erroneous pixels at the edges of the clouds. The movement of
clouds between observations of the eight GOCI bands over each slot for 2 min causes
a spatial shift in the cloud boundary in a single image. Therefore, it is difficult for the
atmospheric correction procedure for the GOCI to produce the appropriate Rrs values
around clouds. One of the easiest ways to remedy this is to remove all pixels with weakly
negative Rrs values or values extremely close to zero in the procedure to prevent speckles.
However, those Rrs values do not necessarily provide erroneous chl-a concentrations;
they could in fact produce normal chl-a values. Another simple way to counter the error
problems is to apply all flags in the chl-a image. However, this can mask a very wide range
of conditions that make up not only the noise errors but also the actual bloom itself. Such
limitations emphasize the importance of the deep-learning approach.

To compare the general arithmetic algorithms and neural network model, in this study,
a 3 × 3 median filter, a threshold method, and our MFNN model were applied to a GOCI
chl-a image on 13 January 2015 (Figure 14a). The 3 × 3 median filter was effective in
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smoothing the spatial distribution as a whole and eliminating isolated problematic pixels;
however, it was quite limited in detecting problem pixels in the form of a patch located
in the northern area of the East Sea as shown in Figure 14b. The threshold method was
based on the ratio between the standard deviation and the mean within a 3 × 3 window
with a threshold value of 0.3, for detecting problematic pixels. The threshold method
showed better performance in terms of detecting erroneous pixels than the median filter
(Figure 14c). However, the interior of the high chl-a patch was not detected owing to
its spatial uniformity, which was even lower than the plain values of the western area.
The image-applied MFNN model proposed in this study performed well for patch-type
errors as well as cloud edges with low values. The threshold method eliminated abnormal
pixels by 31.5% of the total number of original pixels in Figure 14a (Figure 14c). In contrast,
the MFNN method exhibited high performance capability with regard to the abnormal
pixel removal by eliminating 45% of the original pixels (Figure 14d). Previous studies
have reported the high performance of the threshold-based scheme for removal speckles
in ocean color images [14,16]. The accuracy obtained from the confusion matrix of the
threshold method based on the spatial uniformity within 3 × 3 pixels was 91.7% for the
image obtained on 13 January 2015 (Figure 14). This accuracy value is quite high and
similar to the 92.0% accuracy of the MFNN method for the same image. However, despite
the high accuracy of the threshold scheme, a few speckles can remain and may affect the
composite field of chl-a images.

Figure 14. (a) Image of level-2 chlorophyll-a concentration image on 13 January 2015, and the result
of several speckle removal methods applying a (b) 3 × 3 median filter, (c) threshold method, and (d)
the MFNN model in this study applied to (a).

The effectiveness of DNNs have been proven within a wide range of neural network
applications [44,45]. Although the computational complexity of DNNs may require broader
adoption in real-time as well as power-efficient facilities to train the model, once trained
it has greater efficiency than general arithmetic algorithms (e.g., [46]). Assuming an
algorithm is used that detects a value greater than a threshold as determined based on the
ratio between the mean and the standard deviation within a particular window size, the
time taken to process the single GOCI image is 103 times higher than the time taken by
the MFNN algorithm in this study in the case of non-parallel processing. Therefore, it is
expected that the DNN method can contribute to the preliminary processing of GOCI data
by removing the erroneous pixels with respect to efficiency and accuracy.

5. Conclusions

The GOCI has observed ocean colors at unprecedented temporal and spatial resolu-
tions in the seas around the Korean Peninsula since 2010. A tremendous amount of GOCI
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data has been accumulated, enough to be utilized in studies on intra-seasonal, seasonal,
and interannual variations of diverse oceanic features as well as short-term variations at
time scales from hourly to a couple of days. To investigate at long-term time scale, highly
accurate time composites of chl-a concentration are of paramount importance. Speckles
of extremely high chl-a concentrations randomly appeared in the GOCI images. In this
study, the MFNN method was applied to eliminate such erroneous effects from GOCI chl-a
concentration images and estimate its capability. The proposed error detection method
based on the DNN algorithm was applied to each level-2 image (chl-a concentration) for six
years from 2012 to 2017. The monthly maps showed the disappearance of the speckles at a
high-performance rate. This study addressed the necessity of a deep-learning methodology
to remove erroneous pixels in order to investigate the spatial and temporal variations of
fundamental marine ecosystems.
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