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Abstract: Plant phenology, especially the timing of the start and the end of the vegetation growing
season (SOS and EOS), plays a major role in grassland ecosystem carbon cycles. As the second-largest
grassland country in the world, China’s grasslands are mainly distributed in the northern cold
temperate climate zone. The accuracies and relations of plant phenology estimations from multialgo-
rithms and data resources are poorly understood. Here, we investigated vegetation phenology in two
typical cold temperate grasslands, Haibei (HB) and Inner Mongolia (NM) grasslands, in China from
2001 to 2017. Compared to ground vegetation phenology observations, we analyzed the performance
of the moderate resolution imaging spectroradiometer MODIS phenology products (MCD12Q2) and
two remote sensing-based vegetation phenology algorithms from the normalized difference vegeta-
tion index (NDVI) and enhanced vegetation index (EVI) time series (five satellite-based phenology
algorithms). The optimal algorithm was used to compare with eddy covariance (EC)-based carbon
phenology, and to calculate the thresholds of carbon phenology periods (SOSt and EOSt) in each
site. Results showed that satellite-based phenology estimations (all five algorithms in this study)
were strongly coupled with the temporal variation of the observed phenological period but signifi-
cantly overestimated the SOS, predicting it to be over 21 days later than the field data. The carbon
phenology thresholds of HB grassland (HB_SOSt and HB_EOSt) had a significant upward trend,
with the multiyear average values being 0.14 and 0.29, respectively. In contrast, the thresholds of NM
grasslands (NM_SOSt and NM_EOSt) also showed a certain upward trend, but it was not significant
(p > 0.05), with the multiyear average values being 0.17 and 0.2, respectively. Our study suggested
the thresholds of carbon phenology periods (SOSt and EOSt, %) could be simply and effectively
estimated based on their significant relationship with the EC-based maximum of gross primary
productivity observations (GPPmax) at a specific site and time. Therefore, this study suggested the
thresholds of carbon phenology were not fixed even in a specific ecosystem, which also provided
simple bridges between satellite-based vegetation phenology and EC-based carbon phenology in
similar grasslands.

Keywords: temperate grasslands; satellite-based; phenology; threshold; algorithms; eddy covari-
ance (EC)

1. Introduction

The phenological phase of plant growth, especially the timing of the start and the end
of the vegetation growing season (SOS and EOS), plays a key role in terrestrial ecosystem
carbon and nutrient cycles [1–5]. Previous studies across broad disciplines have observed
phenology shifting both in individual plants and land surfaces [6]. Many studies have
documented close relationships between plant phenology phases and climate changes [6,7].
Specifically, in high-latitude and colder regions, the temperature acts as a greater trigger
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on plant phenology due to changes as a result of the necessary heat requirements of vege-
tation [8,9]. It is well known that warming advances leaf unfolding and delays leaf color-
ing [10], but this trend is generally spatially-heterogeneous [11–13]. Besides, the phenology
response to climate change also shows unfixed trends [14,15], which have decelerated or
even reversed in recent years [10,14,16]. In addition, plant phenology is not only affected
by temperature but is impacted by many confounding factors (i.e., water stress, sunshine,
nutrients, and snow cover, etc.) [7,17–20]. Consequently, the quantification of such com-
plex impacts from multiple drivers on plant phenology changes remains challenging [14].
Therefore, diverse observation tools and phenology detection methods from multiaccess
data resources are needed to improve the accuracy of the plant phenology studies.

Remote sensing-based vegetation phenology detection from temporal series of multi-
ple vegetation indices has supported major advances in plant phenology research [14,21].
The normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)
are the two most used vegetation indices for phenological studies [12,13,15,22]. Generally,
the approaches evaluating the land surface phenology are of two types, threshold-based
and the relative change rate algorithm [23]. Threshold-based vegetation phenology al-
gorithm monitors the phenological transition periods (SOS and EOS) through different
threshold settings (a fixed or a relative value derived from the maximum and minimum)
of the vegetation index at different spatial–temporal scales. For example, a fixed NDVI
threshold of 0.45 and ecosystem type-dependent values (from 0.11 to 0.35) were respec-
tively used to detect the landscape phenology in eastern US and China [24,25]. In contrast,
half (or another quintile) way between the minimum and maximum NDVI was defined
to track the SOS and EOS in different ecosystems across the globe [10,26–28]. The rela-
tive change rate algorithm used the temporal trends of the vegetation growth curves to
identify the SOS and EOS [23,29]. In recent years, relative change rate algorithms were
more widely applied, using logistic [26,29–31], piecewise regression [10], and polynomial
algorithms [8,12,25,32]. However, the performance and accuracy of multialgorithms is not
well known, especially not for scientific comparisons among similar ecosystems.

Ground observed phenology from specific species is a direct and important way to val-
idate remote sensing-based vegetation phenology detection [33,34]. Eddy covariance (EC)
technique, the most efficient auto-micrometeorological method to observe instantaneous
and seasonal net CO2 exchange (NEE) between the biosphere and the atmosphere [35,36],
is increasingly used for ecosystem model calibration and validation [37–40]. EC-based
carbon observations provide another data source for tracking canopy phenology whose
growing season is considered as the number of days when the ecosystem is a net car-
bon sink (NEE < 0) (namely “carbon uptake phenology”) [2,41,42]. However, it is diffi-
cult to accurately quantify vegetation SOS and EOS using carbon phenology (NEE < 0,
i.e., carbon uptake period) because of the mismatch between vegetation growth curves
(i.e., leaf development, flowering, and fruiting) and seasonal NEE. Thus, many studies
used threshold-based or inflexion-based approaches to track the EOS and SOS in seasonal
series of gross primary productivity (GPP) derived from EC-based observations [26,43].
However, the threshold of GPP-based phenology estimation was variable across diverse
ecosystems and at different spatiotemporal scales, which directly influenced the accuracy
of phenology estimation.

The grassland ecosystem in China is approximately 400 million hectares, accounting for
more than 40% of the land area, making China the second-largest grassland country across
the globe [44,45]. China’s grassland ecosystems are mainly distributed in the northern
temperate continental arid climate zone and the western Qinghai–Tibet Plateau [44,46].
Therefore, in this study, we investigated vegetation phenology in two cold temperate grass-
lands in China. One was a typical grassland in the northern temperate continental arid
climate zone (Inner Mongolia), and the other was in the Qinghai–Tibet Plateau (Haibei).
Using two remote sensing-based algorithms and ground-based observations, the main ob-
jectives of our study were: (1) to evaluate the accuracy of remote sensing-based phenology



Remote Sens. 2021, 13, 574 3 of 16

estimation in temporal patterns and absolute amounts, and (2) to identify the threshold of
GPP-based phenology estimation in these two cold temperate grasslands in China.

2. Materials and Methods
2.1. Site Description

The experimental sites were two typical grassland ecosystems in China: Haibei (HB)
and Inner Mongolia (NM), which were near the local grassland ecosystem monitoring
stations. The HB Grassland Station is in Xihai county (36◦57′N, 100◦51′E, elevation 3140 m),
Qinghai Autonomous Region (Figure 1). The local area is categorized as plateau mon-
soon climate with characteristics of strong radiation, low air temperature, and short cool
summers. Climatic records from the past five decades show that the average annual air
temperature is −0.1 ◦C, with a coldest monthly mean of −14.1 ◦C in January and highs of
11.5 ◦C in July. Average annual precipitation is 391.9 mm, over 80% of which is concentrated
between May and September. The dominant species of this alpine meadow grassland are
Stipa krylovii, Kobresia humilis, Cleistogenes squarrosa, and Artemisia frigida, and the canopy
heights are 20–30 cm. The soil is chestnut soil.

1 
 

 
Figure 1. The geographical locations and vegetation types of the two sites, Haibei (HB) and Inner
Mongolia (NM), in this study.

The NM grassland station in Xilinhot, a representative site of the temperate steppe
area, is in the Xilin Gol League in the middle of the Inner Mongolia Autonomous Region
(43◦57′N, 116◦07′E, elevation 1003 m) (Figure 1). The climate is semiarid temperate conti-
nental climate. The coldest monthly mean of temperature is −18.1 ◦C in January, and the
warmest is 22.5 ◦C in July. The average annual air temperature is higher than Haibei
(2.5 ◦C), whose ≥0 ◦C biological accumulated temperature can reach 2350~3400 days per
year, but average annual precipitation is lower (273.7 mm). The dominant species of this
temperate steppe are Stipa krylovii and Kobresia pygmaea, and the associated species are
Leymus chinensis, Cleistogenes squarrosa, Agropyron cristatum, and Artemisia frigida. The soils
are sandy loams.

2.2. EC and Meteorological Measurements

EC flux measurements were conducted at the height of 2.0 m in a central fetch of at
least 200 m in all directions by open-path EC method [35]. EC flux observations in HB
were from 2003 to 2011, and that in NM were from 2004 to 2011, respectively. To avoid
potential influences from instrument malfunction, rainfall, dew or cobwebs, human dis-
turbance, and near-static atmospheric conditions, raw measurements were processed and
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filled according to ChinaFLUX data processing [47,48], which included despiking, coor-
dinate rotation, air density corrections, outlier rejection, and friction velocity threshold
(u*) corrections [49]. Based on flux measurements and the exponential relationship be-
tween ecosystem respiration (Re) and soil temperature, daytime NEE was partitioned
into EC-based GPP as carbon assimilation and Re as carbon emission during daytime
(NEE = GPP + Re) [50,51].

Standard meteorological and soil parameters were measured using an array of sensors,
including photosynthetically active radiation (PAR), air temperature at the height of 2
m (Ta), precipitation (PPT), air relative humidity (RHa), vapor pressure deficit (VPD),
soil temperature at depths of 5 cm (Ts), and soil water content (SWC). All measurements
were averaged and recorded in a datalogger once per 30 min. The data were retrieved by a
laptop computer every three weeks.

2.3. Phenology Measurements

The phenological monitoring of the dominant vegetation was conducted at the two
sites, and the average value of the phenological period (SOS and EOS) of the dominant
species in each site was taken as the phenological period of the grassland ecosystem.
A 100 m × 100 m vegetation phenological observation field was selected and fenced ac-
cording to the local grassland types in HB and NM, respectively. The observation field
was usually divided into 4 observation areas (50 m × 50 m) as 4 repetitions. Four samples
(1 m × 1 m) were randomly selected from each observation area. We selected 10 plants of
each dominant species that were growing well and had a complete life history for 3 consec-
utive years as phenological observation objects. We considered the day of the year (DOY)
that over 50% of each species (>5 plants) reached the SOS to the EOS as the phenology
periods for the species. The phenological observation was conducted every 2 days for
individual plants from SOS to EOS. The phenological observation periods of HB (HB_SOS
and HB_EOS) and NM (NM_SOS and NM_EOS) were from 2001 to 2007 and from 2011 to
2017, respectively.

2.4. Remote Data Products

The moderate resolution imaging spectroradiometer (MODIS) Collection 6.0 land
products are available from the Land Processes Distributed Active Archive Center (http:
//daac.ornl.gov/MODIS (accessed on 15 December 2020)). In this study, using two site
positions as the center pixel, surface vegetation index products (MOD13Q1), including
NDVI and EVI, with a temporal resolution of 16 days and a spatial resolution of 250 m
in the last 17 years from January 2001 to December 2017, were extracted. In addition,
the surface phenology simulation products (MCD12Q2) from 2001 to 2017 were extracted.

2.5. Phenology Estimation
2.5.1. Threshold Algorithm

In this study, based on the temporal dynamics of NDVI and EVI data in two research
sites from 2001 to 2017, we used three methods, including asymmetric Gaussian function
(GS), double logistic curve (LG), and Savitzky–Golay (SG) filtering, to fit and reconstruct
the smoothing continuous time series of the two stations in TIMESAT software package [52].
According to the smoothed NDVI and EVI time series, the threshold method of TIMESAT
software was used to extract the start time (SOS) and end time (EOS) of the growing period
in the two stations, respectively. The threshold method is commonly used to simulate
vegetation growth and can be expressed as Equation (1):

g(t; a1, a2 . . . a5) = exp[−( t−a1
a2

)
a3 ], t > a1

g(t; a1, a2 . . . a5) = exp[−( a1−t
a4

)
a5 ], t < a1

(1)

where g(t; a1,a2 . . . a5) represents the smoothed NDVI or EVI time series, a1 is the position
(day of the year) of the minimum or maximum value of the smoothed temporal NDVI or

http://daac.ornl.gov/MODIS
http://daac.ornl.gov/MODIS
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EVI series, a2 and a3 are the width and flatness of the right half of the series, and a4 and a5
are the width and flatness of the left half of the series. Thus, the phenology estimation of
the threshold method can be calculated by the average value of phenology calculated by
three filtering method extractions (Figure 2a,c,e,g). The phenological results (SOS and EOS)
calculated in HB and NM based on different vegetation indices (NDVI and EVI) are marked
as HB_SOS_tn, HB_EOS_tn, HB_SOS_te, HB_EOS_te, and NM_SOS_tn, NM_EOS_tn,
NM_SOS_te, NM_EOS_te, respectively (Table 1).
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Figure 2. Examples of different methods for calculating vegetation phenology in Haibei (HB) and
Inner Mongolia (NM) grassland stations (2004). The phenological period of vegetation in HB (a–d)
and NM (e–h) are estimated by threshold method (left column) and relative change rate method
(right column). For the threshold method, three filters, including asymmetric Gaussian function (GS),
double logistic curve (LG), and Savitzky–Golay (SG) filtering, are used to fit and reconstruct the
smoothing continuous time series of normalized difference vegetation index (NDVI) and enhanced
vegetation index (EVI). The green and yellow lines represent the start time (SOS) and end time (EOS)
of the growing period for the year, respectively.

Table 1. Acronyms and their descriptions in this study.

Acronyms Descriptions

HB and NM Two cold temperate grassland sites in Haibei and Inner Mongolia.
NDVI and EVI Two surface vegetation index products from MOD13Q1.
SOS and EOS The timing of the start and the end of the vegetation growing season.

tn and te Threshold based phenology estimation derived from NDVI and EVI.
rn and re Relative change rate based phenology derived from NDVI and EVI.

m The surface phenology simulation products (MCD12Q2).
RMSE and RPE Root mean square error and relative prediction error.

SOS_c and
EOS_c

Calibrated satellite SOS and EOS based on the actual
phenological observations.

SOSt and EOSt The vegetation carbon phenological period thresholds (%) of SOS and EOS.
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2.5.2. Relative Change Rate Algorithm

In this study, the piecewise logistic function method was used to fit the time series of
vegetation indices at two sites [29]. Specifically, the time change of vegetation index in a
single growth or senescence cycle can be simulated using Equation (2):

y(t) =
c

1 + exp(a + bt)
+ d (2)

where y(t) is the NDVI or EVI value at the time of t, a and b are fitting parameters, c + d
is the maximum value of NDVI and EVI in the year, and d is the initial value of NDVI
and EVI (that is, the minimum value in the year). Among them, the maximum and
minimum of the relative change rate of vegetation index are the beginning and ending
points of the phenological period (Figure 2b,d,f,h). The phenological results (SOS and EOS)
calculated by HB and NM based on different vegetation indices (NDVI and EVI) are marked
as HB_SOS_rn, HB_EOS_rn, HB_SOS_re, HB_EOS_re and NM_SOS_rn, NM_EOS_rn,
NM_SOS_re, NM_EOS_re, respectively (Table 1).

2.6. Statistical Analysis

The missing values of climate data and vegetation flux observation data were linearly
or non-linearly interpolated using their seasonal dynamics. Based on the ground phenolog-
ical observations in Haibei and Inner Mongolia, the accuracy of remote sensing simulated
phenological results, including MODIS product (m), threshold algorithm derived from
NDVI and EVI time series (tn and te), and relative change rate algorithm derived from
NDVI and EVI time series (rn and re), were investigated by analysis of variance (ANOVA)
and multiple comparisons (Tukey’s HSD) (α = 0.05). Linear regression and two statistical
parameters, root mean square error (RMSE) and relative prediction error (RPE), were used
to quantify the deviation of remote sensing simulation phenology products:

RMSE =

√√√√√ n
∑

i=1
(xi − yi)

2

n
(3)

RPE = (
y− x

x
)× 100% (4)

where xi is the ground phenological observation, yi is the remote sensing simulated pheno-
logical result depending on different methods, and x and y are the averages of correspond-
ing data, respectively. The n is the number of samples. Root mean square error (RMSE) is
used to measure the bias from the simulated data compared to field measurements. The rel-
ative predictive error (RPE) provides the direct effectiveness (underestimation as negative,
or overestimation as positive) in predicted values compared to measured values [53].
All statistical and modeling procedures were performed in the R statistical computing
package (version 3.5.1).

3. Results
3.1. Vegetation Dynamic

The seasonal variation of GPP and vegetation index (NDVI and EVI) in HB and
NM grassland ecosystems showed a single-peak curve change pattern (Figures 3a and 4).
The maximum generally appeared at the end of July and early August (DOY200–220),
and the productivity and vegetation indexes of HB were significantly higher than those
of NM (Figures 3a and 4). The interannual dynamics of productivity in HB and NM both
showed a significant upward trend during the study period (HB: R2 = 0.79, NM: R2 = 0.57,
p < 0.05) (Figure 3b). In comparison, the annual maximum GPP of HB station appeared
in 2010 (1071.99 g C m−2) while the minimum appeared in 2005 and was less than half of
2010 (500.04 g C m−2) (Figure 3b). The maximum value of annual cumulative GPP at the
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NM station appeared in 2011 (651.77 g C m−2), while the minimum value of approximately
half of that in 2011 was in 2009 (325.53 g C m−2) (Figure 3b).

The vegetation productivity in HB improved significantly in the recent 17 years from
2001 to 2017, with a significant increase in annual integrated NDVI and EVI (NDVI: R2 = 0.46,
EVI: R2 = 0.68, p < 0.05) (Figure 4). However, the NM station originally showed a significant
trend of grassland degradation, and the vegetation growth went through the worst three
years from 2009 to 2011, and then it improved again and finally reached close to the initial
level in 2001 (Figure 4).
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Seasonal variation of vegetation index matched the seasonal dynamics of vegetation
(Figures 3a and 4), but the remote sensing estimation of interannual vegetation dynamics
was relatively rough (Figures 3b and 4). Specifically, from 2003 to 2011 in HB, the an-
nual integrated vegetation index did not show a significant increase (NDVI: R2 < 0.1,
EVI: R2 = 0.16, p > 0.05) despite a significant increase of GPP (Figure 3b). In addition,
the divergence in interannual dynamics between vegetation index and GPP was more
significant in NM. For example, the vegetation index showed a significant downward trend
(NDVI: R2 = 0.9, EVI: R2 = 0.86, p < 0.05) but GPP gradually increased from 2004 to 2011
(Figure 4).

3.2. Vegetation Phenology Dynamic

In this study, a total of six sets of phenological data in HB and NM were obtained using
different data and methods (Table 2), which were the phenology measurements on the
ground, MODIS products (m), phenological products derived from NDVI and EVI using
the threshold method (tn and te) (Figure 2a,c,e,g), and phenological products calculated
from NDVI and EVI using the relative rate of change method (rn and re) (Figure 2b,d,f,h,
and Table 1).

Table 2. Comparison of the estimation of interannual mean of the vegetation phenology period with
different methods.

Site Method *
Mean (1 Standard Deviation) ** RMSE RPE (%) ***

SOS EOS SOS EOS SOS EOS

HB

Field 108 (4)a 272 (7)a 0 0 0 0
m 129 (6)b 296 (4)c 20.98 23.97 −19.3 −8.7
tn 164 (10)d 291 (8)c 56.88 19.86 −52.6 −6.9
te 164 (9)d 283 (9)ac 56.32 12.28 −51.9 − 3.9
rn 142 (23)bc 289 (10)bc 39.11 17.08 −31.8 −6.1
re 150 (17)cd 275 (13)ab 44.46 6.84 −39.4 −1.1

NM

Field 110 (6)a 271 (6)a 0 0 0 0
m 137 (13)b 288 (11)a 34.00 11.19 −30.1 −3.5
tn 159 (14)b 287 (9)a 43.85 15.04 −38.2 −4.8
te 159 (12)b 281 (9)a 43.31 12.05 −38.1 −3.6
rn 141 (18)b 282 (13)a 29.90 11.74 −25.8 −2.1
re 147 (17)b 273 (11)a 35.02 6.92 −29.1 −0.6

* Field, m, tn, te, rn, and re represent phenology measurements on the ground, MODIS phenology product (m),
phenological products derived from NDVI and EVI using the threshold method (tn and te), and the relative rate
of change method (rn and re), respectively. ** Different letters in the same column indicate significant differences
in phenological estimation by different methods (p < 0.05) in HB and NM, respectively. *** The negative value of
RPE means that the remote sensing phenological estimation method overestimates the measured values.

Different phenological algorithms based on remote sensing indexes significantly
overestimated the SOS of HB and NM (p < 0.05) (Table 2), indicating that the phenological
simulation based on the remote sensing index of these two sites was not sensitive to SOS.
The SOS estimations based on the threshold algorithm had the greatest magnitude of
overestimation, especially in HB, where the overestimation reached more than half of the
actual value (RPE > 50%, RMSE > 50). Although the phenology estimation calculated from
the relative change rate algorithm was relatively improved, there was still a nonnegligible
overestimation (RPE < 40%, RMSE < 50). For EOS estimates, the two sites showed different
characteristics. For example, the EOS estimations of HB were all overestimated, but the
overestimation was obviously smaller than the estimation deviation of SOS (RPE < 10%,
RMSE < 20). On the contrary, the EOS simulation based on remote sensing index could
provide an unbiased estimate of EOS in NM grassland (p > 0.05, RPE < 5%), especially using
the relative change rate algorithm based on EVI data (NM_EOS_re), which could basically
accurately estimate the phenological period of NM grassland. (RPE = 0.6%, RMSE = 6.92)
(Table 2).
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The interannual variation of the actual observed phenological periods (SOS and EOS)
in HB and NM could be well simulated by the five different phenological algorithms based
on the remote sensing index introduced in this study (b > 0, Figure 4). However, the accu-
racy of the trend estimation was different. Specifically, in HB grassland, based on NDVI
data, the use of threshold and relative rate of change algorithms to simulate the trend of
SOS (HB_SOS_tn and HB_SOS_rn) was more accurate (R2 > 0.5, p < 0.05), while other SOS
simulation methods were not significant (p > 0.05) (Figure 5a). In contrast, HB_EOS_tn
could not effectively assess the interannual variability of EOS in HB grassland (R2 = 0.33,
p > 0.1) (Figure 5b). In Inner Mongolia grassland, five different phenological algorithms
based on remote sensing index could effectively simulate the interannual variation trend
of SOS (R2 > 0.6, p < 0.05) (Figure 5c), but in comparison, only the EOS estimation using
the relative change algorithm based on EVI data (NM_EOS_re) could effectively assess the
interannual variability of EOS in NM (R2 = 0.7, p = 0.01) (Figure 5d).
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Figure 5. Verification of the accuracy of five different methods for calculating vegetation phenological
period in Haibei (HB) and Inner Mongolia (NM) grasslands based on field phenology observations.
b values in (a–d) are the linear slope between field phenology observations and satellite-based
phenology estimations, respectively. All solid lines are significant trends (p < 0.01) and the dash
lines are nonsignificant trends (p > 0.05). Colors in (a–d) are one-to-one corresponding with five
satellite-based phenology estimations (Table 2).

3.3. Carbon Phenology Dynamics

HB_SOS_rn and HB_EOS_rn provided more ideal performance in the estimations
of actual phenological values in HB, while NM_SOS_re and NM_EOS_re could more ef-
fectively simulate the phenological period of NM (Figure 5a,b). Therefore, we used the
actual phenological values in HB and NM to linearly calibrate the value of satellite-based
phenology estimations (HB: HB_SOS_rn and HB_EOS_rn (R2 > 0.64, p < 0.05), and NM:
NM_SOS_re and NM_EOS_re (R2 = 0.75, p < 0.05), respectively (Figure 6). In addition,
the linearly calibrated satellite-based phenology estimations were considered as the cor-
rect phenological values in the years when measured phenology values were missing
in HB (HB_SOS_c and HB_EOS_c) (Figure 7a) and in NM (NM_SOS_c and NM_EOS_c)
(Figure 7b).
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Figure 7. Interannual variability of the vegetation phenology periods (a,b), and an example on the
determination of the threshold of carbon phenology periods in HB and NM (c,d) (2004). Solid points
and lines represent field actual phenological values, and the dashed points and lines are the calibrated
satellite-based phenology estimations in HB (a) and NM (b) based on field actual phenological
observations. The green and yellow lines represent the SOS and EOS of the year in HB (c) and in NM
(d) grasslands, respectively.

As GPP in both two sites in the non-growing season was close to 0, according to
the threshold method, the ratio of GPP in the time of SOS (or EOS) and the maximum
value of GPP within the year (GPP_max), namely GPP_SOS (or GPP_EOS)/GPP_max,
was the threshold of carbon phenology. Therefore, based on similar Savitzky–Golay
filtering, daily GPP measurements were smoothed at seasonal scales from 2003 to 2011 in
HB (GPP_HBs) and in NM (GPP_NMs) (Figure 7c,d). The maximum value of GPP within
the year (GPP_max) was obtained from the smoothed GPP temporal series and combined
with the phenological values determined from the actual phenological observations (or the
linearly calibrated satellite-based phenology estimations) (Figure 7a,d) to estimate the
threshold of carbon phenology in HB and NM, respectively.

The carbon phenology thresholds of grasslands both in HB and NM showed obvious
interannual variations (Figure 8). Specifically, during the observation period, the carbon
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phenology (SOS and EOS) thresholds of HB grassland (HB_SOSt and HB_EOSt) had a sig-
nificant upward trend, with the multiyear average values being 0.14 and 0.29, respectively.
HB_SOSt reached its maximum value in 2010 (0.25). HB_SOSt was relatively smaller in
the first three years at the beginning of the observation period, with an average value of
0.02. In contrast, the thresholds of Inner Mongolia grassland (NM_SOSt and NM_EOSt)
also had a certain upward trend, but it was not significant (p > 0.05), with the multiyear
average values being 0.17 and 0.2, respectively. In addition, the interannual variability of
the carbon phenology thresholds in NM was larger than that of HB grassland, with the
exception of 2009 when both NM_SOSt and NM_EOSt exceeded 0.5. For the rest of the
years, NM_SOSt and NM_EOSt were less than 0.3 (Figure 8).
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4. Discussion
4.1. Satellite-Based Vegetation Dynamics

Satellite-based vegetation indexes could match the seasonal dynamics of vegetation
growth well, but they were relatively coarse in their estimation of interannual vegetation
dynamics (Figures 2 and 3). Most studies also found that satellite-based vegetation in-
dexes and GPP models could capture the intraannual vegetation dynamics well [54–58].
However, assessing interannual vegetation dynamics using satellite-based estimations
is full of challenges because of complex interactions between biotic and environmental
conditions [56,59,60]. Plant phenology is mainly dependent on intraannual recurring
plant growth and reproductive phenomena [61]. Therefore, interannual mismatch be-
tween satellite-based vegetation indexes and field observations does not interfere with
phenological extraction from satellite-based vegetation dynamics.

4.2. Satellite-Based Vegetation Phenology Estimations

Satellite-based vegetation phenology estimations (all five of the algorithms in this
study) strongly coupled with interannual variations of the actual observed phenological
period (Figure 5) but significantly overestimated the SOS in HB and NM (>20% of RPE,
Table 2). In other words, the plants had actually entered their growing season, but the
satellite-based vegetation phenology estimations did not detect this. Many studies also
indicated consistent trends in vegetation phenology between satellite-based phenology
estimations and field or near-surface remote observations [22,24,31,32,40,62]. Confounding
interferences from the background reflectance of soil, snow, leaf litter, and shadows may
lead to these overestimations in satellite-based vegetation phenology [30]. For example,
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mounds of leaf litter and withered grass in these cold temperate grasslands in the early
growing season masked the fact that the plants were turning green [63]. This interfer-
ence from leaf litter weakened as the vegetation grew taller; thus, satellite-based EOS
estimations had a better performance at both sites than SOS estimations (Table 2). Ad-
ditionally, snow cover and snowmelt remarkably influenced the effect of satellite-based
phenology algorithms due to the similar sensitivity of remote-based vegetable indexes
to plant greening and snowmelt [19,64,65]. Therefore, field observations and the use
of near-surface remote sensing are still necessary to evaluate and refine satellite-based
phenology estimates.

4.3. Vegetation Carbon Phenology and Thresholds

Plant carbon phenology is strongly linked to but not completely equivalent to the
natural vegetation phenology period [41–43,66,67]. For example, satellite-based SOS esti-
mates from MODIS were highly correlated with the onset of photosynthesis derived from
flux measurements despite a later bias for coniferous sites [43]. However, the accuracy in
describing annual patterns of flux phenology was generally coarse using satellite-based
phenology estimates from different data resources [42]. Thus, most studies found that the
trend of vegetation carbon phenology and plant phenology was consistent, but those of
absolute dates were not well matched [3,26,42,43]. One reason was due to the uncertainty
of satellite-based vegetation phenology estimations and the data quality of EC-based obser-
vations [64]. Another possible reason was that the empiric prethreshold settings were not
fixed on the space-time scale [68]. Actually, our results showed that there was considerable
interannual variation in carbon phenology thresholds in two cold temperate grasslands in
China (Figure 8).

Statistically, the EC-based maximum GPP observations (GPPmax) of the year had a
significant correlation with the thresholds of carbon phenology periods (SOSt and EOSt) at
the HB site (Figure 9a), which provided a simple and valid way to calculate SOSt and EOSt
at a specific site and time. Further, the interannual variations of SOSt and EOSt were weakly
correlated (Figure 9b), which was largely due to the influence of spring vegetation green-up
dates on EOS [1]. The relationship between SOSt and EOSt also implied an alternative way
to analyze EOSt variations based on SOSt variations due to a limit of predictive strength
in EOS estimation in most phenology studies [1,26,33]. Therefore, this study provided
bridges between satellite-based vegetation phenology and EC-based carbon phenology.
However, many uncertainties that we did not consider in this study, i.e., agreement of
EC-based GPP products with a large footprint and local-scale ground measurements,
and the phenology match of specific species and grassland ecosystems across different
ecosystems, may have had confounding effects on vegetation carbon phenology and
thresholds estimations. Thus, spatial extrapolation to different vegetation types or regions
should be based on appropriate validation.
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5. Conclusions

This study investigated vegetation phenology in two typical cold temperate grass-
lands (HB and NM) in China from 2001 to 2017. Compared to ground vegetation phenology
observations, we analyzed the performance of MODIS phenology products and two re-
mote sensing-based vegetation phenology algorithms from NDVI and EVI time series.
The vegetation phenology estimation from the optimal algorithm was used to calculate the
thresholds of carbon phenology periods (SOSt and EOSt) from EC-based GPP observations
in each site. Results showed single-peak seasonal variations and significant upward interan-
nual trends of local vegetation growth during the study period in both sites (HB: R2 = 0.79,
NM: R2 = 0.57, p < 0.05). Satellite-based phenology estimations (all five algorithms in
this study) strongly coupled with temporal variation of the actual observed phenological
period but significantly overestimated the SOS, predicting it to be over 21 days later than
the field data. The carbon phenology thresholds of HB and NM grasslands showed obvious
interannual variations. Specifically, the carbon phenology (SOS and EOS) thresholds of HB
grassland (HB_SOSt and HB_EOSt) had a significant upward trend, with the multiyear av-
erage values being 0.14 and 0.29, respectively. In contrast, the thresholds of NM grasslands
(NM_SOSt and NM_EOSt) also have a certain upward trend but not significant (p > 0.05),
with the multiyear average values being 0.17 and 0.2, respectively. Our study suggested the
thresholds of carbon phenology periods (SOSt and EOSt) could be simply estimated based
on their significant relationship with the EC-based maximum GPP observations (GPPmax)
in a specific site and time. However, spatial extrapolation to different vegetation types or
regions should be based on appropriate validation.
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