
remote sensing

Article

MultEYE: Monitoring System for Real-Time Vehicle Detection,
Tracking and Speed Estimation from UAV Imagery on
Edge-Computing Platforms

Navaneeth Balamuralidhar 1,2,*,†, Sofia Tilon 1,† and Francesco Nex 1

����������
�������

Citation: Balamuralidhar, N.; Tilon, S.;

Nex, F. MultEYE: Monitoring System

for Real-Time Vehicle Detection,

Tracking and Speed Estimation from

UAV Imagery on Edge-Computing

Platforms. Remote Sens. 2021, 13, 573.

https://doi.org/10.3390/rs13040573

Academic Editor: Hyungtae Lee

Received: 31 December 2020

Accepted: 2 February 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7514 AE Enschede,
The Netherlands; s.m.tilon@utwente.nl (S.T.); f.nex@utwente.nl (F.N.)

2 XO Sight B.V, 2614 AC Delft, The Netherlands
* Correspondence: navaneeth@xosight.com
† These authors contributed equally to this work.

Abstract: We present MultEYE, a traffic monitoring system that can detect, track, and estimate the
velocity of vehicles in a sequence of aerial images. The presented solution has been optimized
to execute these tasks in real-time on an embedded computer installed on an Unmanned Aerial
Vehicle (UAV). In order to overcome the limitation of existing object detection architectures related
to accuracy and computational overhead, a multi-task learning methodology was employed by
adding a segmentation head to an object detector backbone resulting in the MultEYE object detection
architecture. On a custom dataset, it achieved 4.8% higher mean Average Precision (mAP) score,
while being 91.4% faster than the state-of-the-art model and while being able to generalize to different
real-world traffic scenes. Dedicated object tracking and speed estimation algorithms have been
then optimized to track reliably objects from an UAV with limited computational effort. Different
strategies to combine object detection, tracking, and speed estimation are discussed, too. From our
experiments, the optimized detector runs at an average frame-rate of up to 29 frames per second (FPS)
on frame resolution 512 × 320 on a Nvidia Xavier NX board, while the optimally combined detector,
tracker and speed estimator pipeline achieves speeds of up to 33 FPS on an image of resolution
3072 × 1728. To our knowledge, the MultEYE system is one of the first traffic monitoring systems
that was specifically designed and optimized for an UAV platform under real-world constraints.

Keywords: multi-task learning; traffic monitoring; vehicle detection; vehicle tracking; Unmanned
Aerial Vehicles; object detection; segmentation; edge computing

1. Introduction

Due to increasing traffic numbers, traffic loads, and aging infrastructures, traffic
monitoring has become a central point of focus in infrastructure management to ensure
driver-safety and efficient management. Traffic monitoring is characterized by multi-level
interactions between vehicles and the local road infrastructure where real-time situational
awareness plays a fundamental role. Traditionally, traffic surveillance relied solely on
the presence of patrol police personnel. Since the past decade, an increased number of
automated solutions for traffic monitoring have been adopted. In-situ technology, such as
embedded magnetometers, inductive detector loops, or closed-circuit television (CCTV),
are used to monitor traffic load and traffic flow [1]. Vision-based systems in combination
with image and video processing technologies are becoming increasingly popular, partly
thanks to the surge of deep learning frameworks. The advantage of these automated
solutions is that they can operate day and night without human intervention, operate at
large scales, require minimal maintenance once installed, and are less prone to human bias.
Despite the advantages of vision-based solutions and their proven effectiveness for traffic
monitoring and law enforcement, large-scale use of such systems is often unattainable due
to the high costs and the limited view of each camera [2].

Remote Sens. 2021, 13, 573. https://doi.org/10.3390/rs13040573 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6944-3374
https://orcid.org/0000-0002-5712-6902
https://doi.org/10.3390/rs13040573
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13040573
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/4/573?type=check_update&version=2

Remote Sens. 2021, 13, 573 2 of 24

Unmanned Aerial Vehicles (UAVs) exhibit advantages that give them the potential to
monitor traffic in a scalable manner. They are low cost, easily deployed and transported,
can fly at various altitudes, have a uniform scale, and can observe objects from various
angles. UAVs are used in various low altitude remote sensing-based applications, such
as crop-health monitoring, forest cover estimation, tree crown extraction, and disaster
management [3–8]. Most interesting, different typologies of UAVs have different advan-
tages that are beneficial to the traffic-monitoring domain. Fixed-wing UAVs are able to fly
along linear distances for an extended period, thus allowing for efficient traffic monitoring
in peak hours. The ability to hover and approach objects closely has made quadcopter
UAVs fit to inspect the structural health of static objects, such as pavement surfaces or
bridges [9–11]. Building on these developments, swarm technologies are also becoming
increasingly promising. For example, Elloumi [12] investigated and compared how to mon-
itor effectively traffic using a swarm of UAVs or a single UAV. Despite these advances, local
legislation often does not allow practical implementation of these researches by prohibiting
UAVs to fly over roads that are in use to protect drivers’ safety [13]. Therefore, practical
implementation has to be guided by a strong collaboration between local legislative bodies
and enforcers. An example of such a collaboration was seen in 2015, when the Dutch min-
istry for infrastructure development successfully demonstrated the use of drones for traffic
monitoring [14]. Using three drones, 30 square km were monitored for traffic approaching
and leaving a festival area. This demonstration proved that an aerial system could cover a
larger area at a fraction of the price of ground-based camera systems.

Similar to the aforementioned experiment in the Netherlands, UAV obtained traffic
data is generally interpreted by humans who watch the video feed in real-time. Considering
how this can introduce biases, it is time-inefficient and requires a number of trained
personnel, UAV-based traffic monitoring could benefit from automated approaches. In this
regard, many pieces of research towards automated traffic monitoring using convolutional
neural nets (CNN) and UAV data can be already found [15–17]. These methods involve
vehicle detection to identify the location of each instance of vehicles seen by the camera
on board the UAV. The detection is then used as initialization for a tracker algorithm that
tracks the detected vehicles through a sequence of image or video frames in order to extract
the motion information out of each of the vehicles tracked. This motion information can be
used to further estimate speed, traffic density, or detect anomalous events on the road.

Most proposed solutions for UAV-based monitoring rely on reliable data communi-
cations by streaming data to the ground station for processing. Such implementations
can fail when large amount of data has to be relayed over long distances. Analyzing data
on-board the UAV is, therefore, favorable. Moreover, most of the proposed solutions are
designed to perform their best on curated benchmark datasets and erroneously assume
that the developed algorithms are ready to use on aerial platforms. However, the archi-
tecture computational load and size are limiting factors. On-board units have constrained
processing load, processing power, and memory, thus preventing most architectures from
being applied to real-world scenarios on aerial platforms [18]. For these reasons, as of yet,
no robust traffic monitoring system from UAV has been deployed. Thus, there is a need
to design such a system that performs reliably in real-world scenarios while maintaining
real-time processing speed on an aerial platform.

Deep learning-based object detection—in this case, vehicle detection—is the most
important module for traffic monitoring applications. Traditionally, object detectors, such
as Faster Region-based CNN and RetinaNet, are two-stage detectors, i.e., first regions are
proposed using a region-proposal network and afterwards regions are selected [19,20].
They have seen much success in remote sensing applications; however, they cannot run
on on-board units due to their high performance requirements. One-stage detectors, such
as the well-known “You Only Look Once (YOLO)”, are much better suited for this kind
of applications because they execute both steps at once [21]. In Kwan [22], as an example,
YOLO has been applied to detect and track vehicles under low illumination conditions
using low-quality videos. For traffic monitoring applications, however, high quality data is

Remote Sens. 2021, 13, 573 3 of 24

preferable because they can offer more solutions besides only detecting and tracking, such
as classification. Nonetheless, the detection accuracy of one-stage detectors suffers when
the objects of interest are of smaller scale [23].

A multi-task learning methodology can offer a solution for the low accuracies obtained
by one-stage detectors while still offering a downsized architecture, fit to be applied on
on-board devices [24]. This learning methodology improves performance by training one
or more related tasks [24]. By sharing feature layers during training between both tasks,
related and complementary information is passed on between the two branches, leading
to higher performance for a single or both tasks. Multi-task learning has been applied in
natural language processing or speech recognition [25,26]. In computer vision, multi-task
learning has often been applied to boost the performance of object detection and semantic
segmentation tasks [27].

Considering the need for a scalable traffic-monitoring framework that can be de-
ployed on on-board units, we designed a lightweight vehicle detection, tracking and speed
estimation system that can run real-time on an aerial surveillance platform. The main
contributions of this research are threefold. First, we present a novel multi-task learning
architecture to boost the performance of a computationally light vehicle detector that is
robust to scale and view changes in aerial images. The designed algorithm is a multi-tasked
implementation of YOLO and ENet; therefore, it is named Multi-task Entwined YOLO
and ENet or MultEYE [28,29]: this architecture gives the name to the whole monitoring
system presented in this paper. Second, we present a novel vehicle tracking and speed
estimation methodology for a moving camera when extrinsic camera parameters are not
available. Finally, we present an implementation methodology that enables fast execution
on an embedded platform.

This work takes a significant step towards the development of an operational UAV
monitoring system by designing the system under realistic conditions. Moreover, al-
though the system was initially conceived for traffic monitoring, the flexible multi-task
architecture and training scheme could be adapted to other fields of monitoring, such as
wildlife, crowd, or fire monitoring.

Related work can be found in Section 2; the MultEYE system is described in Section 3;
the results and the discussion, including those from the validation tests, are presented in
Section 4; the conclusion can be found in Section 5.

2. Related Work
2.1. State-of-the-Art Semantic Segmentation

Segmentation plays an important role in many applications seen today, including
medical imaging analysis (tissue volume measurement, tumor identification), autonomous
vehicles (ego-lane extraction, pedestrian detection), video surveillance, and augmented
reality [30–34]. In recent years, with widespread availability and accessibility of higher
computational power, deep learning algorithms enabled the development of segmentation
algorithms that significantly outperformed its handcrafted-feature-based predecessors.
Fully Convolutional Networks (FCNs) were popularized in the field of semantic segmenta-
tion with the introduction of skip-connections [35]. These were used to merge final feature
layers of a network with a similarly sized initial feature layer in order to preserve features
that may had been lost in the encoding process. This resulted in a healthy mixture of fine
and coarse details in the segmentation map and boosted performance. FCNs propelled to
the top of standard benchmark challenges, like PASCAL Visual Object Classes (VOC) and
NYUDv2 [36,37].

However, despite its popularity and effectiveness, traditional FCNs had major draw-
backs [35]: (1) they were not light enough to be implemented on an embedded platform,
(2) they could not perform real-time segmentation, and (3) they did not process the global
context information efficiently. There were many efforts to overcome these limitations
of standard FCNs. A few of these methods include encoder-decoder, image-pyramid,
spatial pyramid pooling, and atrous convolutions. The encoder-decoder type of network

Remote Sens. 2021, 13, 573 4 of 24

architecture uses an encoder and convolution layers to reduce the spatial dimensionality of
features into the latent space. The decoder recovers the features encoded in the latent space
by using deconvolution layers. Popular examples of such architecture include SegNet,
UNet, and RefineNet [38–40]. More recently, atrous convolutions in the decoder are being
used to recover spatial features while using less parameters and minimum computations,
making their deployment interesting on computationally constrained devices [41]. Atrous
convolutions have gained in popularity in many papers in the field of real-time segmenta-
tion, such as in the DeepLab family of networks, Multi-scale context aggregation, Hybrid
dilated convolution, densely connected Atrous Spatial Pyramid Pooling (DenseASPP),
and the ENet [29,42–45].

2.2. State-of-the-Art Object Detection

Object detection in the context of remote sensing mostly relied on two-stage object
detectors and other computationally heavy methods that focused on a high degree of
accuracy. These methods generally carried out three major steps: (1) candidate region
proposals, (2) feature extraction, and (3) object classification. Famous object detection
algorithms that use this approach include Region-based CNN (R-CNN), Faster R-CNN,
and EfficientDet [46–48].

Several studies towards the usage of two-stage detectors for vehicle detection in
aerial images were carried out and showed to be capable in detecting vehicles at low
scales [49–51]. However, the usage of the two-stage detectors entailed that the processing
cannot be done in real-time on an edge-computing device. One-stage detectors, like Single
Shot Multi-box Detector (SSD) [52] and You Only Look Once (YOLO) [21], have been
applied to low-latency object detection applications on edge devices. However, their use in
vehicle detection on aerial images was not fruitful due to the bad localization performance
when the target objects have small sizes. This problem was partly solved in the latest
edition of these one-stage detectors.

The latest version of YOLO, YOLOv4, is considered the state-of-the-art real-time object
detector [28]. The combined usage of various features categorized into methods that either
improved the accuracy of detections or improved the inference speed, both resulting in
better and faster performances than previous networks.

2.3. Multi-Task Learning

Multi-task learning is a method employed to improve learning efficiency and predic-
tion accuracy by learning multiple objectives from a shared representation [24]. Recent
research showed that combining two related tasks together could boost the accuracy of
both tasks simultaneously by the use of multi-task loss functions. As stated earlier, multi-
task learning could be used to improve object detection performance with the help of
semantic segmentation.

Semantic segmentation aids object detection because it improves category recognition,
location accuracy and context embedding. Human visual cognition is dependent on edges
and boundaries [53,54]. In the setting of scene understanding, objects (e.g., car, pedestrian,
tree, etc.) and background artifacts (e.g., sky, grass, water, etc.) differ in the fact that
the former has well defined boundaries within an image frame while the latter does not.
Moreover, a clear and well-established visual boundary is what defines an instance of an
object. However, objects with special characteristics may result in incorrect or low location
accuracy. Semantic segmentation clearly distinguishes edges, boundaries, and instances
and, therefore, improves category recognition or localization accuracy. Finally, most objects
in a scene have standard surrounding backgrounds. For example, cars are mostly found on
a road and never in the sky. The contextual understanding of an object improves object
confidence accuracy.

Two multi-task training methodologies could be used to improve detections by simul-
taneously learning segmentation. The first methodology makes use of segmentation to
extract fixed features that are integrated into the detection branch [55–57]. Though this

Remote Sens. 2021, 13, 573 5 of 24

method is easy to implement, a major drawback is the heavy computation cost during
inference. Although only the detection is of interest during inference, the segmentation
branch still needs to be executed.

The second training methodology overcomes this drawback by introducing a segmen-
tation head on top of the detection framework that can be decoupled during inference,
as long as there are no regularization connections between the segmentation and detection
heads. Therefore, the detection speed of the detector will not be affected as the compu-
tations required for calculating the segmentation map is no longer needed. Because the
network is trained with a multi-task loss function, the input to the network produces
two or more outputs each with its own loss function [56,58]. During back-propagation,
the optimizer tries to strike a balance between minimizing all the loss functions. This
results in a sort of competition between the parameters in the multi-task backbone that are
shared between the tasks. The similarities between the tasks can reduce the search space of
the parameters in the backbone, which is especially beneficial when the tasks are related.

2.4. Multi-Object Tracking

Object tracking in a sequence of visual data is commonly known as Visual Object
Tracking (VOT). Object tracking has been a focal point and has inspired many pieces of
research in the past years due to the challenges faced by large variations in viewpoint,
illuminations and occlusion [59]. VOT tracking is broadly classified into two categories
based on the number of objects tracked in the sequence: Single-Object Tracker (SOT) and
Multi-Object Tracker (MOT). Kalmann and Particle filtering methods have been employed
widely for SOT tasks. Accurate object tracking could be achieved by considering the object
speed and position of motion [60,61]. Bolchinski [62] proposed a simple Intersection over
Union (IoU) based object matching extracting positional information from overlapping
frames. This resulted in very fast tracking; however, the accuracy of this method suffered
when used for complex objects or in difficult scenes. A similar position based tracking
method, the Simple Online and Real-time Tracking (SORT) algorithm, gained popularity
as an online tracker that allowed the tracker to learn simultaneously the features of the
object while performing the tracking task [63]. The accuracy and precision of SORT
outperformed the traditional IoU based methods but had the tendency to produce more
false positives. DeepSORT partially solved this issue by introducing dependency on the
detection results and the bounding box coordinates [64]. Another method, recurrent Neural
Networks (RNNs), used a combination of features, motion and affinity information which
showed promising tracking performance [65]. Here, deep learning methods are used for
MOT for both object detection by using appearance information for re-identifying the
detected object in the subsequent frames. Other deep learning based trackers relying on
Correlation Filters (CF) showed greater performance accuracy when compared to peers
using keypoint matching [66]. Multi-Domain Network (MDN) made use of the multi-task
learning methodology to improve its tracking performances in different domains [67].
While the shared layers were trained in an offline fashion, the domain-specific layers were
trained online. This resulted in a highly accurate, albeit, slow, tracking system. Generic
Object Tracking Using Regression Networks (GOTURN) was an algorithm designed to
improve the tracking speed while preserving the accuracy of tracking [68]. The CNN layers
of GOTURN were pre-trained on sequences images and video frames with bounding box
annotations. These weights were frozen and used during inference without online training.
Finally, the Minimum Output Sum of Squared Error (MOSSE) tracker was an algorithm that
used estimated correlation filters to approximate the maximum likelihood of the object’s
location. It was observed to run multi-object tracking at high frame rates [69]. The use of
correlation filters enabled the algorithm to efficiently deal with problems of rotation, scale,
morphing and occlusions relative to the traditional methods. Further details on the MOSSE
based tracking can be found in Section 4.3.

Remote Sens. 2021, 13, 573 6 of 24

2.5. Vehicle Speed Estimation

Generally, visual speed estimation is carried out by tracking the objects through
sequential frames. The displacement of the objects in pixels per second is subsequently
converted to an inertial frame of reference using the camera’s estimated pose. Speed
estimation of tracked objects is often considered a sub-task when compared to object
detection and tracking as it involves only the conversion of the speed of the bounding
boxes across the frames to inertial frame. Therefore, it has been a neglected field in most
traffic monitoring research pieces. The rise of vehicle speed estimation can be traced back
to the beginning of the rise of computer vision applications for traffic monitoring. Most of
the early methods involve using cameras mounted on road infrastructures that monitor
and track vehicles [70,71]. The drawback of these methods is that they do not need to
consider dynamic environments because the camera is fixed, which is not true for UAV
platforms. Dynamic environments were addressed by Li [72], where they estimated the
vehicle velocities from UAV video using motion compensations and priors. However,
the method was tailor made for nadir view video frames and ran at a low frame rate on a
graphical processing unit (GPU) accelerated main-frame; therefore, it cannot be directly
applied to our task of vehicle speed estimation from UAV platforms where the view is in
oblique and where system needs to operate in real-time several frames per second.

3. Methodology

In this section, we describe the system design choices that were made, the data that
was used, and the experiments that were carried out.

3.1. System Design

The pipeline of the proposed system consists of a multi-task neural network to detect
vehicles in aerial images, an object tracker to preserve object identity through the frame
sequences and a vehicle speed estimation algorithm that predicts the speed of the tracked
objects. The multi-task vehicle detection architecture was designed in a modular fashion,
separating the backbone, detection head, and segmentation head. The object tracking
algorithm was designed by adapting an existing tracking algorithm [69]. The vehicle
speed algorithm was designed using a parametric approach that makes use of on-board
navigation information and adds few constraints considered realistic for road monitoring
applications. These three elements are concatenated: vehicles are initially depicted by the
detection algorithms and tracked by the second algorithm. Once the vehicle is tracked,
the speed can be computed by using the estimation algorithm. As shown in Section 4,
different strategies can be adopted to combine these elements and make the complete
pipeline more efficient.

3.1.1. Vehicle Detection Architecture

MulEYE’s multi-task vehicle detection architecture is composed of a backbone (where
parameters are shared between the object detection and semantic segmentation tasks),
the segmentation head, and the detection head. The complete architecture is shown in
Figure 1. The design process started with finding a segmentation head that balanced
computational speed and accuracy. Afterwards, an object detection task head was designed
to provide maximum accuracy while still managing real-time performance. Finally, a back-
bone was chosen that as its main attribute improved vehicle detections, considering how
this task was most important for the system goal.

Backbone

The CPSDarkNet53 was presented as one of the most important contributions of the
YOLOv4 paper [28] due to the efficiency and processing boosted by Cross-stage partial
connections (CSPs) inspired by CSPNet [73]. CSPs respected the variability of the gradients
by integrating feature maps from the beginning and the end of a network stage, reducing
computations by 20% without any detrimental effect on the accuracy.

Remote Sens. 2021, 13, 573 7 of 24

Figure 1. Schematic visualization of MultEYE’s vehicle detection architecture. During training, all
modules were utilized. During inference, only the modules in blue were retained, while the others
were removed, to optimize model deployment on an edge-computing device.

However, the throughput of the original Darknet implementation of YOLOv4 on edge
computational devices was low compared to the throughput on a GPU enabled desktop.
Therefore, we modified the CPSDarkNet53 backbone architecture to make it shallower. In
the proposed implementation, the number of CSP Bottleneck and Convolutional blocks was
reduced and placed in an alternating way to optimize speed and accuracy of the standard
and bottleneck layers [74]. This resulted in a lighter backbone version that was roughly
1/4th the size of the original: CSPDarkNet53 (Lite). More details on these blocks can be
found in Bochkovskiy [28].

The reduced number of bottleneck layers increased the size of the latent space. This
could affect the detection process, limiting the efficency in the encoding of features. This
issue was ameliorated by adding a Space-to-Depth layer [74] to transform the input image
to a lower spatial dimension while increasing the depth, to be fed into the light backbone.
This module was inspired by the input procedure described in Ridnik [74] where this
transformation efficiently reduced the input dimensions at the initial layers and improved
the GPU inference throughput. The Space-to-depth layer transformed data from the form
[b, h, w, c] to [b, h/2, w/2, 4c], where b is the batch size, h is the height of the images, w
is width, and c is the number of channels of the image. This was followed by a simple
1× 1 convolutional layer to match the channel depth of the network. In Ridnik [74], this
transformation resulted in a 0.1% increase in accuracy and 4.2% increase in computational
speed.

Figure 2 shows the schematic architecture of the CSPDarknet53(Lite) backbone, while
details on the architecture can be found in Table 1.

Table 1. The architecture of the CSPDarknet53(Lite) backbone with an added space-to-depth layer.
CSP = cross-stage partial connection (CSP).

Name Times Repeated Filter Size

Input 1 -
Space-to-Depth 1 64

Conv 1 128
BottleneckCSP 1 128
Conv 1 256
BottleneckCSP 3 256
Conv 1 512
BottleneckCSP 3 512
Conv 1 1024

Remote Sens. 2021, 13, 573 8 of 24

Figure 2. Visualization of CSPDarknet53(Lite). Conv modules consist of a convolutional layer, batch
normalization and a Regularization layer (ReLu) activation. CSPD modules are regular “You Only
Look Once (YOLO)”v3 residual bottlenecks wrapped into a cross-stage partial network format [73].

Semantic Segmentation Head

ENet [29] was chosen for the segmentation head because of its lightweight decoder.
The original ENet was modified to adapt the expanded latent space due to the atrous
convolutions used by the original ENet backbone. The decoder required additional layers
in order to efficiently scale up the features. Skip-connections from the backbone were used
to capture smaller scale features from the initial layers. These modifications resulted in a
modified ENet, as summarized in Table 2. The main modifications made to the original
ENet decoder architecture were:

• Two additional up-sampling bottleneck modules were implemented in the decoder
(Table 2, bottlenecks 4.1 and 4.2) to compensate for the increase in the latent space
dimensionality due to the lack of dilated convolutions in the CPSDarknet53 (Lite)
backbone.

• Three skip-connections were implemented to link the backbone to the outputs of
bottlenecks 4.0, 4.2, and 5.0, respectively, and to ease the learning of smaller scale
features, similar as to the ones used in UNet [39].

Table 2. The architecture of the modified ENet for semantic segmentation. Two additional bottleneck
modules were introduced in stage 4 of the decoder, along with 3 skip-connections from the encoder.
The additional modules are highlighted in blue.

Name Type Output Size
CSPDarkNet53 (Lite) Backbone/Encoder 16× 16× 576
bottleneck4.0 upsampling 32× 32× 256

Concatenate skip-connection from
backbone 32× 32× 544

bottleneck4.1 upsampling 64× 64× 128
bottleneck4.2 upsampling 128× 128× 64

Concatenate skip-connection from
backbone 128× 128× 136

bottleneck4.3 128× 128× 64
bottleneck4.4 128× 128× 64
bottleneck5.0 upsampling 256× 256× 16

Concatenate skip-connection from
backbone 256× 256× 32

bottleneck5.1 256× 256× 16

Transposed Convolution 512× 512× C

Vehicle Detection Head

The vehicle detection head of the multi-task network was retained from the neck and
head of the YOLOv4 [28] architecture without any modifications. The complete detection
head consists of two parts: the YOLOv4 neck and the YOLOv3 head. The neck consists of
the Path-Aggregation Network (PANet) [75] and the Spatial Pyramid Pooling (SPP) [76]
modules. The function of the neck is to combine features of various scales that are generated

Remote Sens. 2021, 13, 573 9 of 24

in the different levels of the backbone. This is done by attaching an SPP module to the
backbone in order to increase the receptive field and to choose the most important features
from the backbone. These features are then aggregated by a PANet module.

The YOLO head, similar as to the one used by YOLOv3 [21], generated detections from
the multi-level aggregated features generated by PANet. The PANet generated features of
size 13 × 13, 26 × 26, and 52 × 52. The head divided these features into a grid of 9 cells
each. Anchor boxes were then assigned to each grid cell in each level. Nine different anchor
boxes were defined, each with its own aspect ratio with each feature level being assigned
three anchor boxes. The anchor boxes that were closest to the ground truth were retained
and the rest were discarded during inference by a process called non-maximum suppression.

Vehicle Detection Loss

MultEYE’s vehicle detection architecture was trained by combining the losses of each
individual task. Unlike the loss calculation of single-task networks, the loss was calculated
as additional layers: the segmentation loss and the detection loss layers. The losses
of each task were combined and the architecture’ output was a combined loss, which
was minimized during the training. The architecture accepted the training image as the
input while the detection ground truth and the corresponding segmentation ground truth
were passed to the network to calculate the corresponding losses. The strength of this
architecture lies in the fact that the ground truth and loss layers were stripped from the
architecture during inference (Figure 1). In this way, the size of the vehicle detection
architecture was reduced significantly and, therefore, optimized for deployment on an
edge-computing device.

3.1.2. Vehicle Tracking—Minimum Output Sum of Squared Error (MOSSE)

The detections from the MultEYE vehicle detection network are used to initialize
the object tracking algorithm. The Minimum Output Sum of Squared Error (MOSSE)
algorithm was used for object tracking because of its ability to estimate the location of the
tracked object at high computational speeds and accuracies using correlation filters [69].
MOSSE used the first two frames to initialize. The area enclosed by the bounding box of a
detection was cropped from the first frame of the sequence and subsequently used as the
template for initialization. This template was first transformed using a natural logarithmic
transformation to reduce lighting effects and for contrast enhancement. Next, the template
was expressed in its frequency domain by finding its Discrete Fourier Transform (DFT).
Once the DFT was generated, a synthetic target was generated to be used in the initialization
of the tracker and for updating the filter during tracking. This synthetic target contained
a Gaussian peak centered at the object in the template (see Figure 3). With the Fourier
transform and the synthetic target extracted, the MOSSE filter was initialized using the
following formula [69]:

H∗ =
∑i Gi � F∗i

∑i Fi � F∗i + ε
, (1)

where H∗ is the complex conjugate of the filter; Fi and Gi are the fourier transform and
the synthetically generated target of the template in the ith frame, respectively; and F∗i
is the complex conjugate of Fi. The symbol � denotes an element-wise multiplication.
Once the filter was initialized, the tracking filters could be estimated using the following
formula [69]:

Ni = η
(
Gi � F∗i

)
+ (1− η)Ni−1

Di = η
(

Fi � F∗i + ε
)
+ (1− η)Di−1

H∗i = Ni
Di

. (2)

The term η represents the learning rate, which ranges from 0 to 1. Once H∗i (the
MOSSE filter of ith frame) was determined, the position of the new object was determined

Remote Sens. 2021, 13, 573 10 of 24

by element-wise multiplication of the MOSSE filter with the cropped and transformed
tracking window (Equation (3)).

G = H∗ � F. (3)

Figure 3. The Minimum Output Sum of Squared Error (MOSSE) filter (middle) of the tracked car
(left) and its predicted position (right).

The tracking performance was further boosted by using a higher number of training
samples or initialization frames. This was achieved by increasing the number of initial-
ization frames by applying for example other transformations to the image in addition to
the normalization and logarithmic transformation [69]. In this case, scale, translation and
rotation transformation were performed using the following equations. u

v
1

 =

 1 0 tx
0 1 ty
0 0 1

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

 1 0 −tx
0 1 −ty
0 0 1

,

 x
y
0

 (4)

 u
v
1

 =

 1 0 tx
0 1 ty
0 0 1

 s 0 0
0 s 0
0 0 1

 1 0 −tx
0 1 −ty
0 0 1

 x
y
0

, (5)

where u and v are the coordinates of the new pixel, and x and y that of the old pixel.
The symbols tx and ty represents the distance of the center of the image from the x and
y axis, respectively, while the rotation angle and the scale is represented by θ and s,
respectively.

3.1.3. Speed Estimation

Tracking was important for vehicle speed estimation because the tracker preserved the
identity of the object through two or more frames. Although the relative displacement of
the object in two consecutive frames could be estimated easily, its transformation into the
object space (i.e., world coordinate system) to estimate the object speed required additional
steps, as well as the knowledge of two parameters: the Ground Sampling Distance (GSD)
and the UAV’s velocity vector. The GSD corresponds to the size of a single pixel in the object
space. For nadir views, the GSD can be considered constant throughout the image, whereas,
for an oblique view, the GSD changes more significantly across the image. The calculation
of the GSD on-board an UAV requires intrinsic camera parameters (see Equation (6)), as
well as basic flight information (such as altitude, position, and camera angle), which could
be retrieved by the on-board processing unit from the autopilot. Figure 4 depicts a scheme
of the parameters involved in the GSD for oblique views.

In particular, the GSD for a nadir image could be estimated as follows:

GSD =
H × Sw

F
, (6)

where H is the flight altitude in meters, Sw is width of the pixel in the camera sensor, and
F is the focal length. For oblique images, the nadir GSD could be used to calculate the
corresponding oblique GSD at the certain tilt angle by multiplying this value by the GSD
Rate as described in Equation (7):

GSDRate =
1

cos(θ + φ)
, (7)

Remote Sens. 2021, 13, 573 11 of 24

where θ is the camera tilt (referred to the optical axis). φ describes the angular position of
the pixel in the image: it is zero in correspondence of the optical axis of the camera, while
it can have positive or negative values for the other pixels, as shown in Figure 4.

Figure 4. Visualization of the difference between nadir and off-nadir angle of view.

Assuming that the UAV and the tracked object are flown in a parallel trajectory, which
is usually a good approximation for road monitoring, the speed of the detected vehicle
could be formulated in the following way:

V =
|~DUAV − (~Dbox × GSD× GSDRate)|

f
, (8)

where ~Dbox defines the displacement in pixels of the tracked object, while ~DUAV (expressed
in meters) is given by the position difference of the UAV retrieved from the on-board GNSS
in a certain f interval.

3.2. Data

Given the aims of our work, available datasets should fulfil the following requirements:

• Altitude: images needed to be captured between 20 m and 150 m flight height to mimic
UAV acquisitions [77].

• Number of Classes: the higher the number of classes, the greater the contextual aware-
ness the object detector could learn. A minimum of five annotated classes was, there-
fore, needed. This eliminated datasets with only segmented road and/or buildings.

• Viewing Angle: to ensure drivers safety, UAV’s are currently not allowed to fly directly
over the road but only alongside roads [77]. This essentially rendered all orthographic-
only image datasets unusable to our application. Only images depicting the scene in a
rough isometric view would be used.

These constraints depleted an already scarce pool of candidate datasets, reducing it
to few multi-class segmentation datasets. For object detection, we used the Aeroscapes
dataset [78] and collected additional UAV data of vehicles using a fixed wing UAV for
further testing purposes. Vehicle tracking and speed estimation were assessed using
the Karlsruhe Institute for Technology Aerial Image Sequences (KIT AIS) dataset [79].
Additional UAV data of bike riders, used as a proxy for vehicles, were collected to have
ground-truth values. These datasets are further described below.

Remote Sens. 2021, 13, 573 12 of 24

3.2.1. Vehicle Detection and Segmentation Dataset

The Aeroscapes dataset is an aerial semantic segmentation benchmark dataset that
was collected using a DJI Phantom 3 fleet of drones between the altitudes of 5 and 50 m [78].
The dataset consisted of 3269 720p non-sequential images and their respective 11 class
annotations. The dataset was split in the ratio of 70:20:10 as training, validation and testing
datasets resulting in 2288 training samples, 654 validation samples and 327 test samples,
respectively. No dataset including both multi-class semantic segmentation and vehicle
detection annotations was available. Therefore, the Aeroscapes dataset was annotated
for instances of vehicle class to train the object detector using the existing multi-class
segmentation pixel-wise annotations.

MultEYE was designed to be implemented on an UAV flying at a higher altitude range
compared to the ones used to collect the Aeroscapes dataset. Moreover, the Aeroscapes
scenes were often not representative for large-scale traffic monitoring tasks as it contained
scenes of static (parked) cars or cars moving in a small infrastructure network. Therefore,
an additional set of images was captured by a fixed-wing UAV equipped with a Sensefly
SODA camera. These images were used to increase the size of the test dataset and to
evaluate the efficacy of the model. This SODA dataset contained 52 images taken at 30,
60, and 120 m altitudes at 5472 × 3648 resolution to investigate the performance using
different GSD. The images were manually annotated.

Both datasets were prepared for training by resizing, normalizing and encoding
them. The Aeroscapes images were resized from the original size of 1280 × 720 pixels
to 512 × 512 pixels to reduce computational effort during training. On the opposite end,
the SODA dataset was processed using a sliding window to splice large images to smaller
chunks, preserving the GSD. Finally, all the images were normalized and one-hot-encoded
by applying a color mask to each of the colors corresponding to their respective class and
extracting a binary image for each of the classes.

3.2.2. Vehicle Tracking and Speed Estimation Dataset

The multi-object tracking was trained on a custom dataset with 100 image sequences
derived from the KIT AIS Dataset [79]. The image sequences were captured 0.33 s apart
with an average of 14 targets to track throughout the 100 images. There was no movement
of the camera frame and none of the targets in the image was occluded from the point of
their appearance in the sequence and their eventual exit from the frame of observation.
The vehicle initialization was manually annotated so that the potential errors caused by an
object detector did not influence the performance evaluation of the tracker.

For the speed estimation task, it was decided to detect and track bicycles instead of
cars to ease the data collection step. Cars would have required a larger area to cover by
the UAV and to cordon-off roads, making this experiment unpractical. Bicycles provided
an easy alternative to cars to prove the speed methodology without any change to the
model architecture and hence throughput speed. The captured dataset comprises six
videos gathered at two locations using a DJI Phantom 4 UAV. The videos show cyclists
cycling their bikes at different speeds. To acquire these videos, 10 participants were asked
to ride their bicycles on a pre-defined stretch of road at a constant speed of their choice
while using an app-based speed tracker to help themselves maintain this chosen speed
and to use this information as ground truth in the testing phase. While the participants
performed the circuit, the UAV was flown parallel to the predefined route at different
altitudes. The essential flight data, such as GPS location, altitude, and camera angle, were
logged for each frame of the captured video. Each video was then sampled at five frames
per second to generate six corresponding image sequences.

3.3. Experiments
3.3.1. Vehicle Detection

The training strategy used for the multi-task training was similar to the one employed
for the standard object detection problems by first coarsely, and afterwards fine-tuning

Remote Sens. 2021, 13, 573 13 of 24

the backbone and the different segmentation heads. To train the architecture coarsely,
the backbone was initialized with pre-trained ImageNet weights [80]. While freezing
the initialized backbone, only the detection head and the segmentation decoder were
trained for 20 epochs. This ensured that the gradients did not explode or output high
losses. Afterwards the backbone was unfrozen and the complete network was fine-tuned
using a batch size of 4 for 250 epochs. The Tversky Loss for segmentation, the Generalized
Intersection over Union (gIoU), for vehicle location and the Focal loss for vehicle confidence
were used in combination with an ADAM optimizer [20,81,82]. Training was done on a
workstation with an Intel Xeon Processor and a 12 GB NVIDIA Titan Xp GPU.

The trained vehicle detection network was evaluated against the test set of Aeroscapes
and the SODA dataset by calculating the mean Average Precision (mAP) at a threshold
level of 50%, meaning that the predicted bounding box and the ground truth overlap
at least for 50%. The network was compared with different state of the art models that
claimed real-time, >20 frames per second (FPS), performance. As explained in Section 3.1.1,
before the evaluation, the network was stripped off the segmentation layers in order to
retain the speed of the object detector.

3.3.2. Vehicle Tracking and Speed Estimation

The MOSSE tracker was evaluated using the KIT AIS Dataset. In practice, the output
bounding boxes generated by the object detector were used to initialize the multi-object
tracker on the input image. However, the annotated dataset was used in the evaluation to
ensure that the errors in detection did not affect the tracking results. Therefore, the dataset
with the images and their bounding boxes were fed to a mixture of classical and state-of-
the-art tracking algorithms. The generated object positions were then compared with the
ground truth obtained from the dataset. The evaluation metrics used for the trackers are
Multi-object Tracking Accuracy (MOTA), Multi-object Tracking Precision (MOTP) and the
Average Framerate [83]. MOTA is calculated using the following formula:

MOTA = 1− ∑t(mt + f pt + mmet)

∑t gt
, (9)

where mt, f pt, and mmet are the number of initialization misses, false positives, and mis-
matches, respectively, of time t, while gt is the number of ground truth instances at time t.
The MOTP is given by:

MOTP =
∑i,t di,t

∑t ct
. (10)

This formula essentially describes the ratio of the cumulative sum of position errors
to the total number of detections. The Average Framerate is calculated as the sum of
processing rate in frames/second for 100 frames divided by 100.

The speed estimation methodology was investigated using the bicycle dataset. The
bicycle detector was trained using the same steps described in Section 3.3.1, except now
the annotations were done on bicycle pixels instead of cars. This resulted in an object
detection model for bicycle detection. Afterwards, for each sequence of images, the speed
of the visible cyclists was computed. Ideally, two tracked image frames were enough to
make an estimation of the vehicle speed; however, the average of eight tracked frames
was used to filter the errors induced by outliers, while assuming constant speed. Longer
sub-sequences would not make sense from an application point of view as vehicles tend to
have variable speeds through the sequence and new vehicles entering the frame could not
be initialized by the detector. The speed estimations were evaluated against the ground
truth by calculating the average error over the complete sequence.

3.3.3. Inference on Jetson Xavier NX

To gain insight into the practicality of the designed system, we benchmarked the
whole inference pipeline on an edge-computing device. Specifically, we investigated (1)

Remote Sens. 2021, 13, 573 14 of 24

the detection inference speed at different power usage settings and image sizes, (2) the
combined vehicle detection, tracking and speed estimation at different power usages and
images sizes, and (3) the optimization of image streaming. The datasets used for these
experiments consisted of the bicycle dataset as it had information for detection, tracking
and speed estimation, all of which need to be benchmarked on the Jetson Xavier NX board.

We used NVIDIA’s Jetson Xavier NX to benchmark the performance of MultEYE. The
Jetson Xavier NX has six central processing units (CPUs) cores and a GPU with 384 CUDA
cores. The board runs in two power modes, 10- or 15-Watt mode, which affect the inference
speed, too. The difference in power modes correspond to the difference in number of
processes parallelized by the GPU. Maximum throughput is achieved using 15 W mode.
Apart from the GPU, the board also has 6 CPU cores which can be used to parallelize
other processes.

The vehicle detection architecture was designed to work on two CPU cores and all
CUDA cores in order to perform at its best. First, we investigated how the inference speed
of the vehicle detection architecture was affected when run at a 10- and 15-Watt mode using
different image resolutions. The input image resolutions were set at 512× 230, 1024 × 1152
and 3072 × 1728.

Algorithms that run on CPU rarely show any significant difference in performance
speed across devices. However, it is very insightful to monitor the performances of CPU
based algorithms for vehicle tracking and speed estimation combined with object detection
algorithms (running on GPU) on the embedded platform. The inference time needed for
these three tasks, together using different image resolutions, was investigated to identify
potential bottlenecks.

An additional test on data streaming was then performed to optimize the frame-rate
of processed images. The performances reported in the other tests were achieved under
the assumption that each image must go through the complete pipeline. However, this
is not strictly necessary when multiple images of the same sequence are streamed in real-
time (Figure 5). In this case, only the first image of the stack can be processed by the
MultEYE detector, which initializes the MOSSE tracker for each of the vehicles, while the
other images in the sequence can be directly fed sequentially into the tracker algorithm to
estimate the speed. In this test, it was assessed how this strategy affected the processed
frame-rate using sequences of 10 images with 3072 × 1728 pixels resolution.

Figure 5. The flow of information through the pipeline when streaming from a camera in real-time.

4. Results & Discussion
4.1. Vehicle Detection

From the performed tests, MultEYE’s object detector achieved higher mAP then other
state-of-the-art methods, showing that an auxiliary task (segmentation) improved the
performance of the main task (detection). In particular, the implemented network yielded
higher mAP values, despite having a relatively low number of parameters at one of the
best frame-rates. These findings are reflected in Table 3.

Remote Sens. 2021, 13, 573 15 of 24

Table 3. Comparison of the MultEYE’s object detection network with other state-of-the-art mod-
els evaluated on a combination of 10% set of Aeroscapes and SODA Dataset images resized at
512 × 512 (except the SSD network that was trained with 300 × 300 resolution). The evaluation was
benchmarked on a single NVIDIA Titan Xp GPU.

Model Backbone mAP@0.5% No. of Parameters (M) FPS

MultEYE CSPDarkNet53(Lite) 0.834 12.4 43.5

YOLOv4 [28]

CSPDarkNet53 (Lite) 0.8073 12.4 43.88
CSPDarkNet53 [28] 0.8172 37.3 31.19
EfficientNet(B1) [84] 0.824 58.6 22.72

MobileNetV3 [85] 0.746 19.13 41.5
MobileNetV3Small [85] 0.694 11.6 57.13

TinyYOLOv4
(Custom)

EfficientNet (B1) [84] 0.7082 27.42 37.2
MobileNetV3 Small [85] 0.6733 5.41 110.11

YOLOv3 [86] Xception [87] 0.7625 42.53 20.8

SSD [52]
(300 × 300)

VGG16 [88] 0.7739 24.0 39
MobileNetV3 [85] 0.7156 9.6 59.3

Faster RCNN [19] VGG 16 [88] 0.7910 71.93 6.62

The influence of segmentation to learn features of the object of interest was further
analyzed. Figure 6 depicts the activation in the first channel of one of the final convolutional
layer output of the backbone. It could be observed that the single task backbone activation
(Figure 6b) was noisier than the same learned with a multi-task methodology (Figure 6c),
while multi-task seemed to be able to detect the presence of vehicles in a sharper way.
This could be explained by the implicit data augmentation capability of the multi-task
process that learned how to ignore the noise of the single tasks and generalized this learnt
information in a robust and efficient manner.

Remote Sens. 2021, 13, 573 15 of 24

Table 3. Comparison of the MultEYE’s object detection network with other state-of-the-art mod-
els evaluated on a combination of 10% set of Aeroscapes and SODA Dataset images resized at
512 × 512 (except the SSD network that was trained with 300 × 300 resolution). The evaluation was
benchmarked on a single NVIDIA Titan Xp GPU.

Model Backbone mAP@0.5% No. of Parameters (M) FPS

MultEYE CSPDarkNet53(Lite) 0.834 12.4 43.5

YOLOv4 [28]

CSPDarkNet53 (Lite) 0.8073 12.4 43.88
CSPDarkNet53 [28] 0.8172 37.3 31.19
EfficientNet(B1) [84] 0.824 58.6 22.72

MobileNetV3 [85] 0.746 19.13 41.5
MobileNetV3Small [85] 0.694 11.6 57.13

TinyYOLOv4
(Custom)

EfficientNet (B1) [84] 0.7082 27.42 37.2
MobileNetV3 Small [85] 0.6733 5.41 110.11

YOLOv3 [86] Xception [87] 0.7625 42.53 20.8

SSD [52]
(300 × 300)

VGG16 [88] 0.7739 24.0 39
MobileNetV3 [85] 0.7156 9.6 59.3

Faster RCNN [19] VGG 16 [88] 0.7910 71.93 6.62

The influence of segmentation to learn features of the object of interest was further
analyzed. Figure 6 depicts the activation in the first channel of one of the final convolutional
layer output of the backbone. It could be observed that the single task backbone activation
(Figure 6b) was noisier than the same learned with a multi-task methodology (Figure 6c),
while multi-task seemed to be able to detect the presence of vehicles in a sharper way.
This could be explained by the implicit data augmentation capability of the multi-task
process that learned how to ignore the noise of the single tasks and generalized this learnt
information in a robust and efficient manner.

(a) (b) (c)
Figure 6. Comparison of feature activations from same layers of the backbone without and with
multi-task learning strategy. (a) The original 512 × 512 letterbox resized image fed to the networks;
(b) feature activation map from the 3rd Conv module of the backbone of the single task network; (c)
feature activation map from the 3rd Conv module of the backbone of the multi task network.

This was especially evident in the results achieved with the SODA dataset, which
was characterized by a larger variability in the image resolution due to different flight
heights. The object detector was able to detect cars correctly at very low resolution. While
YOLOv4 yielded a low IoU score of 0.132 (Figure 7a), MultEYE’s object detector yielded a
much higher score (0.844) (Figure 7b). This difference could be attributed to the limited
training dataset that caused the YOLOv4 to overfit on Aeroscapes. On the opposite end,
overfitting was prevented in MultEYE’s object detector due to the introduction of inductive
bias, which in turn helped its regularization.

Figure 6. Comparison of feature activations from same layers of the backbone without and with
multi-task learning strategy. (a) The original 512 × 512 letterbox resized image fed to the networks;
(b) feature activation map from the 3rd Conv module of the backbone of the single task network;
(c) feature activation map from the 3rd Conv module of the backbone of the multi task network.

This was especially evident in the results achieved with the SODA dataset, which
was characterized by a larger variability in the image resolution due to different flight
heights. The object detector was able to detect cars correctly at very low resolution. While
YOLOv4 yielded a low IoU score of 0.132 (Figure 7a), MultEYE’s object detector yielded a
much higher score (0.844) (Figure 7b). This difference could be attributed to the limited
training dataset that caused the YOLOv4 to overfit on Aeroscapes. On the opposite end,
overfitting was prevented in MultEYE’s object detector due to the introduction of inductive
bias, which in turn helped its regularization.

Remote Sens. 2021, 13, 573 16 of 24

(a) (b)
Figure 7. Evidence of high generalizing ability of the MultEYE network tested on SODA image
taken at 120m altitude. The region of interest is zoomed in and displayed at the bottom right corner.
(a) YOLOv4 detection (Intersection over Union (IoU) = 0.132); (b) MultEYE detection (IoU = 0.844).

4.2. Vehicle Tracking

Table 4 shows the comparison of MOSSE with other commonly used trackers when
applied to the customized KIT AIS dataset. It can be seen that old algorithms, like
BOOSTING [89], Multiple Instance Learning (MIL) [90], and Tracking Learning Detec-
tion (TLD) [91], performed poorly, with higher processing times. This was most likely
due to difficulty of these algorithms to maintain tracker identity when implemented as a
Multi-Object Tracker considering how these were designed to be a single object tracker.
Only GOTURN [68], DeepSORT [64] and MOSSE [69] achieved a faster tracking speed than
the ones showed by object detection algorithms.

Despite their performance, GOTURN and DeepSORT are deep learning based algo-
rithms that credit their accuracy and speed to GPU based computing. They could interfere
with other algorithms that use graphical units, such as MultEYE’s object detector. There-
fore, their usage was not preferable. By contrast, MOSSE’s execution speed was higher,
despite running on CPU, and still reached comparable MOTA and MOTP values with
its competitors.

Finally, since large numbers of tracking target usually enter and leave the frame in
a short amount of time during a surveillance mission, it was essential that the trackers
were initialized frequently to purge the objects that have already left the frame and to
introduce trackers of objects that have newly entered the frame. This update frequency
was empirically determined to be once every 10 frames. This tracker update rate, however,
showed that Person Of Interest (POI), DeepSORT, and MOSSE performed almost identically
with respect to the tracking accuracy, further confirming that MOSSE was the best choice
for our developed system.

4.3. Speed Estimation

The average errors between the ground truth and estimated speed in all frames
were estimated for all the six bicycle sequences. Table 5 shows the average error for all
recorded sequences of the bicycle dataset. In the first sequence (Sequence 1), both the
camera and the target (bicycles) were stationary (Figure 8a). This sequence was used
to benchmark the errors propagated to the speed measurements due to the inaccurate
measurements delivered by the navigation unit of the used UAV and the approximations
of the developed algorithm.

In all the other sequences, both UAV and targets were moving, resembling a realistic
traffic scene (Figure 8b). For instance, in Sequence 5 the target was moving at 15 km/h
while the UAV flew at 27 km/h in the opposite direction. The algorithm predicted an
average target speed of 16.25 km/h with an error lower than 1.5 km/h.

Remote Sens. 2021, 13, 573 17 of 24

Table 4. Comparison of commonly used trackers with established state-of-the-art deep learning based
trackers on the customized KIT AIS dataset. The ∗ denotes that the tracker algorithm is deep-learning
based and the speed was evaluated on a GPU (NVIDIA Titan Xp).

MOTA MOTP Avg.Framerate (FPS)

BOOSTING [89] 35.92 44.32 <1
Multiple Instance
Learning [90] 60.4 64.0 <1

Kernalized Correlation
Filters [92] 80.2 87.8 8.3

Tracking Learning and
Detection [91] 78.34 82.3 <1

MEDIANFLOW [93] 94.73 63.14 6.6
GOTURN ∗ [68] 67.5 75.2 20.0
CSRT [94] 95.0 94.3 1.3
MOSSE [69] 90.91 92.11 227.5
POI * [95] 96.83 97.71 11.2
DeepSORT ∗ [64] 94.85 93.29 40.4

Although the speed range in our experiments was relatively small (maximum speed
30 km/h), the speed estimates had minimal variance with a negligible but constant offset
from the ground truth. This could be attributed to errors in the on-board instrumentation
or approximations adopted in the algorithm. Despite the offset, across all the 6 sequences,
the mean baseline compensated average error was 1.13 km/h, which is lower than the
average error found for common traffic speed cameras (3.2 km/h) [96].

Table 5. Average errors in the speed estimation on the collected image sequences.

Avg. Error (km/h)
Sequence 1 0.85
Sequence 2 1.03
Sequence 3 1.43
Sequence 4 0.71
Sequence 5 1.25
Sequence 6 1.52

Mean
Avg. Error (km/h)

1.13

(a) (b)

Figure 8. Examples of detections when the flight velocity is zero and non-zero. (a) Flight velocity ≈ 0
(static targets); (b) Flight velocity 6= 0.

4.4. Inference on Jetson Xavier NX

The main difference between different computing platforms is their compute capability.
Therefore, the evaluation of the system pipeline on the edge computing device was based
on the computational speed of the pipeline at different image input sizes, quantified by the
frames processed per second (FPS).

Remote Sens. 2021, 13, 573 18 of 24

4.4.1. Vehicle Detection Inference

Figure 9 shows the inference speed achieved by MultEYE’s object detection model
for different input image resolutions ran at 10 and 15 W modes, respectively. It could be
observed that the model achieved a real-time performance of 29.41 FPS for input resolution
512× 320 running in 15 W power mode. When the image resolution was increased, the FPS
decreases, as expected. However, the difference of FPS between the two power modes
decreases, making less inconvenient to use 10 W for processing images of 2048× 1152 pixel
size and above.

Figure 9. MultEYE’s object detection inference speeds for different input resolutions for 10 W and
15 W power modes.

4.4.2. Complete Pipeline Inference

Table 6 shows the contribution of the different elements composing the proposed
system in terms of processing time. These results considered that each algorithm (i.e.,
detection, tracking and speed estimation) is ran for every image frame to estimate the total
run-time of the pipeline on the Xavier NX board.

The processing speed ranged from 26 FPS with low resolutions to almost 4 FPS with
higher resolutions. The speed estimation had negligible processing times compared to
the other algorithms as it ran in less than 10−5 s. This could be explained by its simple
implementation, involving only algebraic and trigonometric calculations, which are highly
optimized in all the programming languages.

The detection algorithm contributed the most to the total run-time because neural
networks are more computationally intensive than simpler tracking algorithms, even when
ran on GPU. This was further exacerbated when using higher image resolutions: in this
case, the detection took up a higher percentage of the total run-time, while the tracking
algorithm faced only small changes because its speed only depended on the size of the
object tracked. These findings entail that, though detection dictates major part of the frame-
rate, a near-constant processing time for the tracking enables us to use higher number of
tracking frames to improve the overall speed of the system.

Table 6. Percentage contribution of each algorithm in the pipeline towards the total runtime for four
different resolutions.

Resolution % Contribution
of Detection

% Contribution
of Tracking

% Contribution
of Speed Estimation

Total Runtime
(seconds) FPS

512 × 320 88.54 11.45 ∼0 0.0384 26.04
1024 × 576 93.74 6.25 ∼0 0.0704 14.2

2048 × 1152 96.8 3.2 ∼0 0.1364 7.33
3072 × 1728 98.36 1.64 ∼0 0.2674 3.74

Remote Sens. 2021, 13, 573 19 of 24

4.4.3. Streaming Optimization

Complementing the results presented in the previous section, we now turn to stream-
ing optimization. A buffer of 10 images was streamed into the pipeline, while running the
detection algorithm only on the first frame and the tracking algorithm sequentially on all
10 images. As shown in Table 7, different image resolutions were considered. It was noticed
that the FPS values were much higher than in Section 4.4.2, showing a significant boost
when the pipeline was processed in this way. For instance, analyzing the contribution of
each algorithm for the highest image resolution, the detector took 0.263 s to process the first
frame while the rest of the 9 frames were processed by the tracking and speed estimation
algorithms at a rate of 0.0044 (seconds/frame). As a result, the complete algorithm took

0.263 + (0.0044× 9) = 0.3026 (seconds)

to process the entire buffer, which put the average run-time per image at 0.03026 seconds
per image or 33.04 FPS.

Table 7. Average frame rates for the pipeline for a sample stream buffer size of 10 images for four
different resolutions.

Resolution Average FPS
512 × 320 142.85
1024 × 576 98.03

2048 × 1152 59.52
3072 × 1728 33.04

It must be noticed that the images were streamed from a video file stored on the
disk at 30 FPS, taking care to simulate perfectly an aerial camera platform streaming
images, velocity and altitude parameters to the Xavier NX. However, possible delays due
to asynchronous data stream of flight parameters and the images were not considered in
this experiment.

5. Conclusions

This paper presented MultEYE, a traffic monitoring system that can detect, track,
and estimate the velocity of vehicles in a sequence of aerial images. The system has been
optimized such that it can be executed in real-time on an embedded computer mounted on
an UAV. Although it is still in its developing phase, the system is to the best of authors’
knowledge, one of the first traffic monitoring systems specifically designed and optimized
for an UAV platform.

In order to overcome the limitation of existing architectures related to accuracy and
computational overhead, a multi-task learning methodology was employed by adding a
segmentation head to the object detector backbone. The backbone and the segmentation
head were optimized for vehicle detection. Learning the contextual features along with
the detections showed to help the backbone of the network to better encode the features,
especially the lower scale features. The number of bottlenecks in the backbone was reduced
in order to generate a latent-space representation with fewer parameters, while additional
bottlenecks and skip-connections were introduced in the segmentation head to be able to
resolve the decoding of smaller-scale features in the images. Finally, the detection speed
was preserved by detaching the segmentation head after training. The resulting vehicle
detection model performed 4.8% better than the state-of-the-art algorithms for vehicle
detection in aerial images, in terms of accuracy (mAP) while preserving the processing
speed. Moreover, the vehicle detection network showed it is able to generalize to real
world data, such as the used state-of-the-art dataset.

Besides vehicle detection, vehicle tracking and speed estimation were successfully
executed on the edge-computing device at high inference speeds too. Vehicle tracking and
speed estimation was achieved sequentially, after vehicles were detected by the neural

Remote Sens. 2021, 13, 573 20 of 24

network architecture. These algorithms were run on CPU in order to exploit all the
computational resources of the on-board unit in an optimal way. The achieved results
showed that the developed system can run in real-time using high-resolution images, too.
Different strategies to increase the processed frame-rates were shown in the experiments.

MultEYE was developed under the most realistic conditions by testing the feasibility
and pipeline of the system on an on-board computing device. Although the Aeroscapes
dataset was adapted for the purpose of this work, only ∼20% of the images depicted
vehicles. The additional datasets collected are still relatively limited to validate fully
the proposed system in operational conditions. From this perspective, the acquisition
of more realistic datasets over traffic scenes, capturing cars moving at high speed and
in varying lighting conditions, could give a more complete insight on the performances
of this system. Different flight heights could allow to furthering assessing the detection
algorithm in different conditions. Then, the effectiveness of this solution could be verified
with additional tests by running the developed system on an on-board unit flying on real
traffic scenes.

Despite the existing limitations given by legislative restrictions and the still relatively
limited battery endurance, the use of UAV for this or similar applications are expected to
increase rapidly in the coming years. In this regard, the presented work represents a first
meaningful step towards the development of efficient solutions for operational UAV traffic
monitoring systems.

Author Contributions: Conceptualization, N.B., S.T., and F.N.; methodology, N.B., S.T., and F.N.;
formal analysis, N.B.; investigation, N.B. and S.T.; resources, N.B. and S.T.; data curation, N.B.;
writing—original draft preparation, N.B. and S.T.; writing—review and editing, N.B., S.T., and F.N.
All authors have read and agreed to the published version of the manuscript.

Funding: Financial support has been provided by the Innovation and Networks Executive Agency
(INEA) under the powers delegated by the European Commission through the Horizon 2020 program
“PANOPTIS– Development of a decision support system for increasing the resilience of transportation
infrastructure based on combined use of terrestrial and airborne sensors and advanced modeling
tools”, Grant Agreement number 769129.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gardner, M.P. Highway Traffic Monitoring; Technical Report; A2B08; Committee on Highway Traffic Monitoring Chairman; South

Dakota Department of Transportation: Pierre, SD, USA, 2000.
2. Frank, H. Expanded Traffic-cam system in Monroe County Will Cost PennDOT 4.3M. Available online: http://www.poconorecord.

com/apps/pbcs.dll/articlAID=/20130401/NEWS/1010402/-1/NEWS (accessed on 27 July 2020).
3. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion

and Machine Learning. Remote Sens. 2020, 12, 1357. [CrossRef]
4. Raeva, P.L.; Šedina, J.; Dlesk, A. Monitoring of crop fields using multispectral and thermal imagery from UAV. Eur. J. Remote Sens.

2019, 52, 192–201. [CrossRef]
5. Feng, X.; Li, P. A Tree Species Mapping Method from UAV Images over Urban Area Using Similarity in Tree-Crown Object

Histograms. Remote Sens. 2019, 11, 1982. [CrossRef]
6. Wu, X.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Assessment of individual tree detection and canopy cover estimation using unmanned

aerial vehicle based light detection and ranging (UAV-LiDAR) data in planted forests. Remote Sens. 2019, 11, 908. [CrossRef]
7. Noor, N.M.; Abdullah, A.; Hashim, M. Remote sensing UAV/drones and its applications for urban areas: A review. IOP Conf.

Ser. Earth Environ. Sci. 2018, 169, 012003. [CrossRef]
8. Nex, F.; Duarte, D.; Tonolo, F.G.; Kerle, N. Structural Building Damage Detection with Deep Learning : Assessment of a

State-of-the-Art CNN in Operational Conditions. Remote Sens. 2019, 11, 2765. [CrossRef]
9. Zhang, C.; Elaksher, A. An Unmanned Aerial Vehicle-Based Imaging System for 3D Measurement of Unpaved Road Surface

Distresses. Comput. Aided Civ. Infrastruct. Eng. 2012, 27, 118–129. [CrossRef]
10. Tan, Y.; Li, Y. UAV Photogrammetry-Based 3D Road Distress Detection. ISPRS Int. J. GeoInf. 2019, 8, 409. [CrossRef]
11. Chen, S.; Laefer, D.F.; Mangina, E.; Zolanvari, S.M.I.; Byrne, J. UAV Bridge Inspection through Evaluated 3D Reconstructions. J.

Bridge Eng. 2019, 24, 05019001. [CrossRef]

http://www.poconorecord.com/apps/pbcs.dll/articlAID=/20130401/NEWS/1010402/-1/NEWS
http://www.poconorecord.com/apps/pbcs.dll/articlAID=/20130401/NEWS/1010402/-1/NEWS
http://doi.org/10.3390/rs12091357
http://dx.doi.org/10.1080/22797254.2018.1527661
http://dx.doi.org/10.3390/rs11171982
http://dx.doi.org/10.3390/rs11080908
http://dx.doi.org/10.1088/1755-1315/169/1/012003
http://dx.doi.org/10.3390/rs11232765
http://dx.doi.org/10.1111/j.1467-8667.2011.00727.x
http://dx.doi.org/10.3390/ijgi8090409
http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0001343

Remote Sens. 2021, 13, 573 21 of 24

12. Elloumi, M.; Dhaou, R.; Escrig, B.; Idoudi, H.; Saidane, L.A.; Fer, A. Traffic Monitoring on City Roads Using UAVs. In Proceedings
of the 18th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW, Luxembourg, 1–3 October 2019; Springer
International Publishing: Basel, Switzerland, 2019; pp. 588–600.

13. Stöcker, C.; Bennett, R.; Nex, F.; Gerke, M.; Zevenbergen, J. Review of the Current State of UAV Regulations. Remote Sens. 2017,
9, 459. [CrossRef]

14. Press. Dutch Government Successfully Uses Aerialtronics Drones to Control Traffic. Available online: https://www.suasnews.
com/2015/07/dutch-government-successfully-uses-aerialtronics-drones-to-control-traffic/ (accessed on 27 July 2020).

15. Elloumi, M.; Dhaou, R.; Escrig, B.; Idoudi, H.; Saidane, L.A. Monitoring road traffic with a UAV-based system. In Proceedings of
the IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 1–6.

16. Khan, M.A.; Ectors, W.; Bellemans, T.; Janssens, D.; Wets, G. UAV-based traffic analysis: A universal guiding framework based on
literature survey. Transp. Res. Procedia 2017, 22, 541–550. [CrossRef]

17. Niu, H.; Gonzalez-Prelcic, N.; Heath, R.W. A UAV-based traffic monitoring system—Invited paper. In Proceedings of the IEEE
87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5.

18. Kriegel, H.P.; Schubert, E.; Zimek, A. The (black) art of runtime evaluation: Are we comparing algorithms or implementations?
Knowl. Inf. Syst. 2017, 52, 341–378. [CrossRef]

19. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

20. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2999–3007.

21. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and PATTERN Recognition, Venice, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA,
2016; pp. 779–788.

22. Kwan, C.; Chou, B.; Yang, J.; Rangamani, A.; Tran, T.; Zhang, J.; Etienne-Cummings, R. Deep Learning-Based Target Tracking and
Classification for Low Quality Videos Using Coded Aperture Camera. Sensors 2019, 19, 3702. [CrossRef] [PubMed]

23. Li, J.; Dai, Y.; Li, C.; Shu, J.; Li, D.; Yang, T.; Lu, Z. Visual Detail Augmented Mapping for Small Aerial Target Detection. Remote
Sens. 2018, 11, 14. [CrossRef]

24. Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
25. Hashimoto, K.; Xiong, C.; Tsuruoka, Y.; Socher, R. A joint many-task model: Growing a neural network for multiple nlp tasks.

arXiv 2016, arXiv:1611.01587.
26. McCann, B.; Keskar, N.S.; Xiong, C.; Socher, R. The natural language decathlon: Multitask learning as question answering. arXiv

2018, arXiv:1806.08730.
27. Teichmann, M.; Weber, M.; Zöllner, M.; Cipolla, R.; Urtasun, R. MultiNet: Real-time Joint Semantic Reasoning for Autonomous

Driving. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 1013–1020.

28. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

29. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

30. Forsyth, D.A.; Ponce, J. Computer Vision: A Modern Approach; Prentice Hall: Upper Sadle River, NJ, USA, 2003; pp. 1–693.
31. Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation.

In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 565–571.

32. Kim, J.; Park, C. End-to-end ego lane estimation based on sequential transfer learning for self-driving cars. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 1194–1202.

33. Ullah, M.; Mohammed, A.; Alaya Cheikh, F. Pednet: A spatio-temporal deep convolutional neural network for pedestrian
segmentation. J. Imaging 2018, 4, 107. [CrossRef]

34. Ammar, S.; Bouwmans, T.; Zaghden, N.; Neji, M. Moving objects segmentation based on deepsphere in video surveillance.
In Proceedings of the 14th International Symposium on Visual Computing, ISVC 2019, Lake Tahoe, NV, USA, 7–9 October 2019;
Springer: Basel, Switzerland, 2019; Part II, pp. 307–319.

35. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA,
2015; pp. 3431–3440.

36. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

37. Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor segmentation and support inference from rgbd images. In Proceedings of
the 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany,
2012; Part V, pp. 746–760.

http://dx.doi.org/10.3390/rs9050459
https://www.suasnews.com/2015/07/dutch-government-successfully-uses-aerialtronics-drones-to-control-traffic/
https://www.suasnews.com/2015/07/dutch-government-successfully-uses-aerialtronics-drones-to-control-traffic/
http://dx.doi.org/10.1016/j.trpro.2017.03.043
http://dx.doi.org/10.1007/s10115-016-1004-2
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.3390/s19173702
http://www.ncbi.nlm.nih.gov/pubmed/31454950
http://dx.doi.org/10.3390/rs11010014
http://dx.doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.3390/jimaging4090107
http://dx.doi.org/10.1007/s11263-009-0275-4

Remote Sens. 2021, 13, 573 22 of 24

38. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

39. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Basel, Switzerland, 2015; Part III, pp. 234–241.

40. Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 5168–5177.

41. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

42. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

43. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
44. Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding convolution for semantic segmentation.

In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1451–1460.

45. Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. Denseaspp for semantic segmentation in street scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway,
NJ, USA, 2018; pp. 3684–3692.

46. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
IEEE: Piscataway, NJ, USA, 2014; pp. 580–587.

47. Girshick, R. Fast r-cnn. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1440–1448.

48. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020;
pp. 10778–10787.

49. Yang, M.Y.; Liao, W.; Li, X.; Cao, Y.; Rosenhahn, B. Vehicle detection in aerial images. Photogramm. Eng. Remote Sens. 2019,
85, 297–304. [CrossRef]

50. Sommer, L.W.; Schuchert, T.; Beyerer, J. Fast deep vehicle detection in aerial images. In Proceedings of the IEEE Winter
Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 311–319.

51. Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Zou, H. Toward fast and accurate vehicle detection in aerial images using coupled
region-based convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3652–3664. [CrossRef]

52. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of
the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; Part I, pp.
21–37.

53. Olshausen, B.A.; Field, D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images.
Nature 1996, 381, 607–609. [CrossRef] [PubMed]

54. Bell, A.J.; Sejnowski, T.J. The “independent components” of natural scenes are edge filters. Vis. Res. 1997, 37, 3327–3338.
[CrossRef]

55. Gidaris, S.; Komodakis, N. Object detection via a multi-region and semantic segmentation-aware cnn model. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1134–1142.

56. Brahmbhatt, S.; Christensen, H.I.; Hays, J. StuffNet: Using ‘Stuff’to improve object detection. In Proceedings of the IEEE Winter
Conference on Applications of Computer Vision (WACV), Los Alamitos, CA, USA, 24–31 March 2017; IEEE Computer Society:
Piscataway, NJ, USA, 2017; pp. 934–943.

57. Shrivastava, A.; Gupta, A. Contextual priming and feedback for faster r-cnn. In Proceedings of the 14th European Conference,
Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; Part I, pp. 330–348.

58. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

59. Lu, H.; Li, P.; Wang, D. Visual object tracking: A survey. Pattern Recognit. Artif. Intell. 2018, 31, 61–76.
60. Cuevas, E.; Zaldivar, D.; Rojas, R. Kalman Filter for Vision Tracking; Technical Report August; Freie Universitat Berlin: Berlin,

Germany 2005.
61. Okuma, K.; Taleghani, A.; De Freitas, N.; Little, J.J.; Lowe, D.G. A boosted particle filter: Multitarget detection and tracking.

In Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004; ; Springer:
Berlin/Heidelberg, Germany, 2004; Part I, pp. 28–39.

62. Bochinski, E.; Eiselein, V.; Sikora, T. High-speed tracking-by-detection without using image information. In Proceedings of
the 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1
September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://dx.doi.org/10.14358/PERS.85.4.297
http://dx.doi.org/10.1109/JSTARS.2017.2694890
http://dx.doi.org/10.1038/381607a0
http://www.ncbi.nlm.nih.gov/pubmed/8637596
http://dx.doi.org/10.1016/S0042-6989(97)00121-1

Remote Sens. 2021, 13, 573 23 of 24

63. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the IEEE Interna-
tional Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 3464–3468.

64. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 3645–3649.

65. Sadeghian, A.; Alahi, A.; Savarese, S. Tracking the untrackable: Learning to track multiple cues with long-term dependencies.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 300–311.

66. Kart, U.; Lukezic, A.; Kristan, M.; Kamarainen, J.K.; Matas, J. Object tracking by reconstruction with view-specific discriminative
correlation filters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long
Beach, CA, USA, 15–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1339–1348.

67. Nam, H.; Han, B. Learning Multi-Domain Convolutional Neural Networks for Visual Tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ,
USA, 2016; pp. 4293–4302.

68. Held, D.; Thrun, S.; Savarese, S. Learning to track at 100 fps with deep regression networks. In Proceedings of the 14th
European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland
2016; pp. 749–765.

69. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and PATTERN Recognition, San Francisco, CA, USA, 13–18 June 2010;
IEEE: Piscataway, NJ, USA, 2010; pp. 2544–2550.

70. Schoepflin, T.N.; Dailey, D.J. Dynamic camera calibration of roadside traffic management cameras for vehicle speed estimation.
IEEE Trans. Intell. Transp. Syst. 2003, 4, 90–98. [CrossRef]

71. Zhiwei, H.; Yuanyuan, L.; Xueyi, Y. Models of vehicle speeds measurement with a single camera. In Proceedings of the
International Conference on Computational Intelligence and Security Workshops (CISW 2007), Harbin, China, 15–19 December
2007; IEEE: Piscataway, NJ, USA, 2007; pp. 283–286.

72. Li, J.; Chen, S.; Zhang, F.; Li, E.; Yang, T.; Lu, Z. An adaptive framework for multi-vehicle ground speed estimation in airborne
videos. Remote Sens. 2019, 11, 1241. [CrossRef]

73. Wang, C.Y.; Mark Liao, H.Y.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning
capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Seattle, WA, USA, 14–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1571–1580.

74. Ridnik, T.; Lawen, H.; Noy, A.; Friedman, I. TResNet: High Performance GPU-Dedicated Architecture. arXiv 2020,
arXiv:2003.13630.

75. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 8759–8768.

76. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

77. Schultz van Haegen, M. Model Flying Scheme. Available online:https://wetten.overheid.nl/BWBR0019147/2019-04-01 (accessed
on 22 July 2020).

78. Nigam, I.; Huang, C.; Ramanan, D. Ensemble knowledge transfer for semantic segmentation. In Proceedings of the IEEE Winter
Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 1499–1508.

79. Schmidt, F. Data Set for Tracking Vehicles in Aerial Image Sequences. Available online: http://www.ipf.kit.edu/downloads_
data_set_AIS_vehicle_tracking.php (accessed on 22 July 2020).

80. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the
Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105.

81. Salehi, S.S.M.; Erdogmus, D.; Gholipour, A. Tversky loss function for image segmentation using 3D fully convolutional deep
networks. In Proceedings of the 8th International Workshop Machine Learning in Medical Imaging, Quebec City, QC, Canada,
10 September 2017; Springer International Publishing: Cham, Switzerland, 2017; pp. 379–387.

82. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss
for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 658–666.

83. Bernardin, K.; Elbs, A.; Stiefelhagen, R. Multiple object tracking performance metrics and evaluation in a smart room environment.
In Proceedings of the The Sixth IEEE International Workshop on Visual Surveillance (in Conjunction with ECCV), Graz, Austria,
13 May 2006; Volume 90, p. 91.

84. Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946.

http://dx.doi.org/10.1109/TITS.2003.821213
http://dx.doi.org/10.3390/rs11101241
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
https://wetten.overheid.nl/BWBR0019147/2019-04-01
http://www.ipf.kit.edu/downloads_data_set_AIS_vehicle_tracking.php
http://www.ipf.kit.edu/downloads_data_set_AIS_vehicle_tracking.php

Remote Sens. 2021, 13, 573 24 of 24

85. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; Adam, H.; Le, Q.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea
(South), 27 Octomber–2 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1314–1324.

86. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
87. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1800–1807.
88. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
89. Grabner, H.; Grabner, M.; Bischof, H. Real-time tracking via on-line boosting. In Proceedings of the The British Machine Vision

Conference, Edinburgh, Scotland, 4–7 Sepember 2006; pp. 47–57.
90. Babenko, B.; Yang, M.H.; Belongie, S. Visual tracking with online multiple instance learning. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009;
pp. 983–990.

91. Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1409–1422.
[CrossRef]

92. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2014, 37, 583–596. [CrossRef]

93. Kalal, Z.; Mikolajczyk, K.; Matas, J. Forward-backward error: Automatic detection of tracking failures. In Proceedings of the
20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: Piscataway, NJ, USA, 2010;
pp. 2756–2759.

94. Lukezic, A.; Vojir, T.; Cehovin Zajc, L.; Matas, J.; Kristan, M. Discriminative correlation filter with channel and spatial reliability.
Int. J. Comput. Vis. 2018, 126, 671–688. [CrossRef]

95. Yu, F.; Li, W.; Li, Q.; Liu, Y.; Shi, X.; Yan, J. POI: Multiple object tracking with high performance detection and appearance feature.
In Proceedings of the European Conference on Computer Vision 2016 Workshops, Amsterdam, The Netherlands, 8–10 and 15–16
October 2016; Springer: Basel, Switzerland, 2016; pp. 36–42.

96. Gibbs, J. Drivers Risk fines as Speed Camera Tolerances Revealed. Available online: https://www.confused.com/on-the-road/
driving-law/speed-camera-tolerances (accessed on 27 July 2020).

http://dx.doi.org/10.1109/TPAMI.2011.239
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://dx.doi.org/10.1007/s11263-017-1061-3
https://www.confused.com/on-the-road/driving-law/speed-camera-tolerances
https://www.confused.com/on-the-road/driving-law/speed-camera-tolerances

	Introduction
	Related Work
	State-of-the-Art Semantic Segmentation
	State-of-the-Art Object Detection
	Multi-Task Learning
	Multi-Object Tracking
	Vehicle Speed Estimation

	Methodology
	System Design
	Vehicle Detection Architecture
	Vehicle Tracking—Minimum Output Sum of Squared Error (MOSSE)
	Speed Estimation

	Data
	Vehicle Detection and Segmentation Dataset
	Vehicle Tracking and Speed Estimation Dataset

	Experiments
	Vehicle Detection
	Vehicle Tracking and Speed Estimation
	Inference on Jetson Xavier NX

	Results & Discussion
	Vehicle Detection
	Vehicle Tracking
	Speed Estimation
	Inference on Jetson Xavier NX
	Vehicle Detection Inference
	Complete Pipeline Inference
	Streaming Optimization

	Conclusions
	References

