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Abstract: Reconstructing 3D point cloud models from image sequences tends to be impacted by
illumination variations and textureless cases in images, resulting in missing parts or uneven dis-
tribution of retrieved points. To improve the reconstructing completeness, this work proposes an
enhanced similarity metric which is robust to illumination variations among images during the
dense diffusions to push the seed-and-expand reconstructing scheme to a further extent. This metric
integrates the zero-mean normalized cross-correlation coefficient of illumination and that of texture
information which respectively weakens the influence of illumination variations and textureless cases.
Incorporated with disparity gradient and confidence constraints, the candidate image features are
diffused to their neighborhoods for dense 3D points recovering. We illustrate the two-phase results
of multiple datasets and evaluate the robustness of proposed algorithm to illumination variations.
Experiments show that ours recovers 10.0% more points, on average, than comparing methods in
illumination varying scenarios and achieves better completeness with comparative accuracy.

Keywords: 3D reconstruction; point cloud; dense diffusion; similarity metric; illumination variation

1. Introduction

Three-dimensional reconstruction provides effective technical and data support for
various applications through retrieving 3D information of real objects or scenes [1]. The cor-
responding innovations are evolving our life in several aspects, such as 3D movies, virtual
reality, and heritage preservation [2,3]. Image-based reconstruction recovers 3D coordinate
information from multiple visual images photographed at different viewpoints. It is a
meaningful cross-discipline subject involving image processing, stereo vision, and com-
puter graphics, which can generate realistic models and has broad application prospects
on account of its flexibility and low cost [4,5].

Image-based reconstruction retrieves sparse or dense 3D point cloud of target objects
or scenes. A sparse method extracts features matches from images and establish epipolar
constraints to estimate and optimize camera parameters, and then recovers the structures
of scenes from camera motions and feature matches. The recovered 3D point cloud is
sparse and lacks scene details. To obtain dense point cloud model with richer details,
a multi-view stereo scheme, seed-and-expand, is widely employed, which takes sparse
seed feature matches as input and propagates them to the pixel neighborhoods, then
restores the 3D points by stereo mapping using estimated camera parameters [6]. This
scheme uses sparse features or points as seeds to build dense point cloud recursively and
adaptively, such as PMVS [7] and VisualSfM [8]. However, the less distinctive pixels, such
as those in the textureless regions, are not effectively processed due to inaccurate feature
matching and imperfect constraints of diffusion, making the reconstructed results low in
completeness [9]. At the same time, those methods are easily impacted by illumination,
texture, or other photographic reasons, resulting in missing details or uneven distribution
of retrieved points.
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To address the mentioned issues to improve the completeness of retrieved point
clouds, this paper proposes an enhanced reconstructing algorithm to push the seed-and-
expand scheme to the furthest extent. The work has the following merits: (1) We propose
an enhanced similarity metric for image-based 3D reconstruction algorithm to promote
the quality of retrieved point clouds. The metric integrates the zero-mean normalized
cross-correlation coefficient of illumination and that of texture information which are
robust to illumination variations and textureless cases among images. (2) The proposed
metric is defined straightforwardly and employed in the two-phase dense feature diffusion,
combined with disparity gradient and confidence constraints, to improve the robustness of
diffusion to get point cloud models rich details and reasonable distribution. (3) We conduct
qualitative and quantitative tests and comparisons on multiple image datasets to evaluate
the advantages of proposed algorithm in point density, running time, completeness, and
accuracy, showing its robustness to illumination variations and textureless cases.

The rest of this work is organized as follows. Section 2 discusses the related work,
and Section 3 outlines the main structure of the proposed pipeline. Section 4 prepares for
followed dense diffusion. The details of proposed two-phase diffusion are presented in
Sections 5 and 6. Experimental evaluations and discussions are performed in Section 7.
Then, Section 8 concludes this work.

2. Related Work

In the last few decades, reconstructing 3D point cloud models from images has gained
sufficient research focus and achieved great improvements. A number of reconstruc-
tion methods with good robustness and accuracy have been developed, which could be
classified into four categories.

2.1. Single Image-Based Methods

Single image-based methods retrieve the three-dimensional representations of objects
or scenes by extracting the geometry information such as shape, texture, and positional
relationship, combined with prior knowledge. This category mainly includes three sub-
divisions: feature learning-, shape retrieval-, and geometric projection-based approaches.
The feature learning-based approach [10] firstly establishes the database for image scenes
and learns features for contained objects such as illumination, depth, texture, shape, etc.
Then, it constructs probability functions for features of target objects and measures the
similarities to the features in database. Lastly, it performs 3D reconstruction according to
the database and gained similarities. This approach achieves high efficiency and is suitable
for reconstruction of large-scale scenes or human bodies. However, the reconstructing
results lie on a comprehensive database, which is a challenging issue in practice. The
shape retrieval-based method [11,12] retrieves 3D shapes via analysis on captured image,
known as Shape-from-X (5fX), in which X could be shade, silhouette, texture, occlusion, etc.
In 2014, Chai et al. [13] proposed a Shape-from-Shading (S£S) based system to reconstruct
high-quality hair depth map from a single portrait photo. This kind of method has high
demands for illumination and image resolution; otherwise, the effectiveness is inferior.
As the name suggests, geometric projection-based algorithm [14] uses geometric projection
constraints (e.g., parallel lines or planes, perpendicular lines or planes, vanishing points,
etc.) to calibrate cameras, and then predicts the depth of 3D geometry in a scene. Overall,
this method only needs to preprocess the single image to obtain the 3D information of
object. It can be executed efficiently. However, the reconstruction accuracy and reliability
are unstable due to limited a priori knowledge or features.

2.2. Two Images-Based Methods

Two images-based methods recover the 3D information of scenes or objects by the
parallax of spatial points in two views. The common way of reconstructing from two
images is to build epipolar geometry constraints and then estimate the depth map by
triangle measuring [15]. This could be implemented through the following steps: image
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capturing, camera calibration [16], feature extracting & matching [17], and 3D recovering.
The recovering of 3D information can be done either by 3D mapping [18] or template-based
machine learning. The reconstruction process of this category usually takes all pixels as
features in the matching phase to obtain dense reconstruction, which is complicated and
time-consuming, but still, reconstructing upon two images gains limited accuracy and
integrity comparing to image sequence-based methods.

2.3. Image Sequence-Based Methods

Reconstruction based on the image sequence recovers the 3D structures of the real
world from a series of images photographed around the target sequentially. This approach
gains better detail and accuracy than other methods since more features and constraints of
multi-view images are considered. Basically, this category could also be divided into three
subdivisions [19].

2.3.1. Reconstruction Based on Depth Mapping

This approach merges the depth images derived from depth mapping to retrieve
the complete 3D point cloud models of objects [20]. Bradley et al. [21] propose a method
that matches the sub-pixels to get a depth map to ensure the precision of reconstruction.
The team of Liu et al. [22] present a continuous depth estimation strategy for multi-view
stereo. Similar depth map fusion using coordinate decent algorithm is developed by
Li et al. [23]. The Bayesian reflection method [24,25] employs energy minimization con-
straints on multi-view depth images to get a complete depth surface. It needs an initial
value to achieve the global optimization. Lasang et al. [26] propose a novel method that
combines high resolution color and depth images for dense 3D reconstruction which can
produce much denser and more all-over 3D results.

2.3.2. Reconstruction Based on Feature Propagation

This kind of algorithm extracts sparse point feature matches from input images and
then tries to increase the number of correspondences in certain diffusion principles to
generate a dense point cloud model. This is usually done by measuring the similarity of
local regions in image pairs. “Optimal match firstly propagated [27]” spreads the matched
features to their neighborhoods with respect to the spatial consistency in a greedy growing
style. Later, a new approach [28] is presented to reconstruct the shape of an object or a scene
from a set of calibrated images, which approximates the shape with a set of surfels and
iteratively expands the recovered region by growing further surfels in the tangent direction.
This technique does not rely on a prior shape or silhouette information for initialization.
A propagation method based on Bayesian inference is proposed by Zhang and Shan [29].
It uses multiple matching points in an iterative propagation process, hence generating
very dense 3D points with noise. Cech and Sara’s strategy [30] allows one-to-many pixel
matches in the diffusion process. In 2014, Yang et al. [6] developed a Belief Propagation
stereo matching algorithm which firstly utilizes the local stereo method to obtain an initial
disparity map and then selects ground control points for global matching. A feature
propagation approach can effectively increase the number of recovered points, but requires
more processing time. Meanwhile, the accuracy relies on the accuracy of feature extracting
and rationality of propagating constraints.

2.3.3. Patch-Based Reconstruction

Patch-based reconstruction firstly initializes 3D patches from retrieved points, and then
reconstructs the surface of object or scene by patch propagation, where a patch means the
quadrangle corresponds to a retrieved 3D point. Goesele et al. [31] proposed the first MVS
method applied to Internet photo collections, which handles variation in image appearance.
The stereo matching technique takes sparse 3D points reconstructed from structure-from-
motion (SfM) as input and iteratively grows surfaces from these points. The Microsoft Live
Lab and Snavely et al. jointly developed a photo tourism system [4,32] which is suitable
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for large-scale scenes, but weak on textureless regions. The team of Furukawa proposed a
patch-based MVS method, known as PMVS [5,7]. Though the architecture of PMVS looks
quite different from [31], the underlying ideas of them are strikingly similar. It initializes
patches from retrieved sparse model points, and then recursively propagates seed patches
to their neighborhoods to recover dense, accurate, and complete 3D point cloud models.
PMVS maintains reconstruction information by 3D patches and the expanding and filtering
operations are done globally by matching across all the available views. This causes severe
scalability issues, which are later addressed in [33], known as CMVS, by clustering images
into small collections. To improve the speed of reconstruction, Wu et al. [9] implemented
the seed-and-expand method on GPU and accelerated a lot. An interactive reconstruc-
tion pipeline [34] is developed for monocular mobile devices with real-time feedback,
which uses available on-device inertial sensors to make resilient tracking and mapping
for rapid motions and estimates the metric scale of captured scenes. Lasang [26] utilizes
3D patches from high resolution color images for high texture regions and depth map for
low texture regions. It achieves good results, but the computation cost is high. Based on
this research, several open-source software programs are developed, such as Bundler [35]
and VisualSfM [8]. VisualSfM incorporates StM and CMVS algorithms to implement 3D
reconstruction, which is a highly optimized and integrated tool.

PMVS is considered as one of the best 3D reconstruction methods available, which
does not need any prior knowledge but generates better results. Combined with SfM,
the reconstruction for unordered image collections or large outdoor scenes can be easily
realized. Despite these, there still are shortcomings in practical application. For objects with
complex structures, smooth surfaces or textureless regions, there exists a loss of details or
local holes in reconstructed models. For large scale scenes, the input images with varying
illuminations will cause scattered point clouds.

2.4. Deep-Learning-Based Reconstruction

Since 2015, many deep-learning-based 3D reconstruction methods are presented,
among which the point-based technique is simple but efficient in terms of memory re-
quirements [36]. Similar to volumetric [37,38] and surface-based representations [39,40],
point-based techniques follow the encoder—decoder model. In general, grid representations
use up-convolutional networks to decode the latent variable [41,42]. Point set representa-
tions use fully connected layers [43-45] since point clouds are unordered. Fan et al. [46]
proposed a generative deep network that combines both the point set representation and
the grid representation. The network is composed of a cascade of encoder-decoder blocks.
Tatarchenki et al. [47] and Lin et al. [48] followed the same idea, but their decoder regresses
N grids. Point set representations require fixing in advance the number of points N, while,
in methods that use grid representations, the number of points can vary based on the
nature of the object, but it is always bounded by the grid resolution.

The success of deep learning techniques depends on the availability of training data;
unfortunately, the size of the publicly available datasets that include both images and their
3D annotations is small compared to the training datasets used in tasks such as classification
and recognition. In addition, deep-learning methods are primarily dedicated to the 3D
reconstruction of generic objects in isolation, and current state-of-the-art techniques are
only able to recover the coarse 3D structure of shapes. Prior knowledge of the shape
class are required to improve the quality of reconstruction. These limitations make deep-
learning-based methods not suitable for complex targets or cluttered outdoor scenes.

3. Framework of 3D Reconstruction

As discussed in Section 2, the factors of illumination, texture, and shooting condition
bring challenges to the image-based 3D reconstruction. The seed-and-expand scheme takes
sparse seed feature matches as input and diffuses them to the pixel neighborhoods to
build dense point cloud, recursively. The pruning criteria and diffusion strategy for seed
features are crucial to this scheme. A qualified metric should be robust to the differences
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in illumination or photographic noise, and be able to take into account the smooth or
textureless cases.

In this paper, an enhanced two-phase dense diffusing method is proposed to recon-

struct the point cloud models of real scenes or objects from captured image sequences. Dif-
ferent from the existing algorithms, the proposed method considers both the illumination
and texture factors to define the diffusion criteria. It integrates the zero mean normalized
cross-correlation coefficient of illumination and the normalized cross-correlation coefficient
of texture as matching metric in both feature diffusion and patch diffusion to generate
dense point cloud models. As Figure 1 illustrates, the scheme consists of three main stages.

1.

Preprocessing. The seed-and-expand dense reconstruction scheme takes sparse seed
feature matches as input and propagates them to the neighborhoods, and then re-
stores the 3D points by stereo mapping using calibrated camera parameters. This
step calibrates the input images to yield camera parameters and extract features
for subsequent feature matching and diffusion. It is the preparation stage of the
whole algorithm.

Feature diffusion. Initializes seed matches from extracted features employing image
pruning and epipolar constraints. Then, it propagates them to the neighborhoods
by the similarity metric of each potential match, combining the constraints of dis-
parity gradient and confidence measure as filtering criteria. Afterwards, it elects the
eligible ones and retrieves 3D points by triangulation principle. This stage generates
comparative dense points for the following patch diffusion in 3D space.

Patch based dense diffusion. 3D patch is firstly defined at each retrieved point. As similar
in the feature diffusion stage, seed patches are pruned by the appearance consistency
(the proposed similarity metric) and geometry consistency, and then expanded within
the grid neighborhoods to gain dense patches. At last, the expanded patches are
filtered. This stage is recursively proceeded in multiple rounds, and the final 3D point
cloud is obtained from retained patches.

The details of each stage are described separately in the following three sections.

p Feature based Patch based
HgplEsii diffusion diffusion

point cloud model

Input images
.------------------- --- ,------ --------------------.
R [/ )
: [ ’
] ’
Camera Feature ¥ Image features, 3D omts . Baich it Filtering '
calibration extraction » camera params p Initilization expanion
' :
‘------------------------O’ -----------------------------
R e e e e e e e e e L PP PP LN
1
1
Image features, 1 Correspondence Calculation of Correspondence 3D points
camera params initilization similarity diffusion mapping
1
1
: Secondary propagation
.
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Figure 1. Flow chart of proposed dense reconstruction scheme for image sequence. It takes sequenced images as input and

output 3D points via three stages: preprocessing, feature diffusion, and patch diffusion. The dashed boxes unfold the main

steps of each stage. Refer to Section 3 for a detailed description.
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4. Preprocessing
4.1. Camera Parameter Estimation

The goal of image-based 3D reconstruction can be described as “given a set of pho-
tographs of an object or a scene, estimate the most likely 3D shape that explains those
photographs [7]”, which is also known as multi-view stereo. It takes a set of images and the
corresponding camera parameters (intrinsic and extrinsic parameters) as input to retrieve
the potential 3D information. Owing to the success of the SfM algorithm, the camera
parameters could be reasonably estimated. Since MVS algorithms are sensitive to the
accuracy of the estimated camera parameters, the bundle adjustment [49] that minimizes
the following root-mean-squared-error (Equation (1)) is a necessity to optimize the initial
camera parameters. Here, C(j) is the list of camera indices where the 3D point M/ € M is
visible, P;(M/) denotes the projected 2D image coordinate of point M/ in the ith camera by

the camera parameters P; € P, and m/ indicates the actually observed image coordinate of
point M/.

N i
EP,M)= 1Y Y [P(M)—m]]? 1)

j=1iec))

4.2. Feature Extraction

In the MVS, solving for the 3D information of a scene by known camera parameters
is equivalent to matching pixel correspondences across the input images, which is done
by feature extraction. In this work, Harris [17] and DoG (Difference of Gaussian [50])
are applied on the input images to extract local features with various properties. Note
that the following correspondence matching must be operated within the same features,
the cross-matching between different features is unallowable.

5. Feature Diffusion

Feature points are the sparse representation of input images. If only the matched
feature correspondences are used to reconstruct 3D scene, the reconstructed result is sparse
and low in completeness. This section introduces the feature diffusion process to increase
the number of correspondences for dense reconstruction.

5.1. Correspondence Initialization

Since that only the images captured in nearby viewpoints share the similar features,
the input images require pruning to reduce the unnecessary attempts in feature diffusion.
For each reference image, we investigate the intersection angles between its optical axis
(obtained by SfM) and that of other images, only the ones with intersection angle smaller
than 6 are taken as candidate images. In practice, it is divided into three cases [5] according
to the number # of input images (Equation (2)):

No pruning, n <15
6 =60°, 15 <n <60 (2)
0 =10 x 360°/n, n > 60

The image pruning prompts the matching efficiency by avoiding numerous mean-
ingless attempts, meanwhile, reserves enough potential matches. After that, feature cor-
respondences are initialized. For each feature point x; in the reference image, find the
corresponding feature point x; in the candidate image by the epipolar geometry con-
straint and match them as initial correspondence (x1, x3) which are then collected as seeds
for diffusion.

5.2. Calculation of Similarity

Theoretically speaking, the geometric constraint unifies the appearance consistency,
which implies that the two parts of a correspondence should share the same or similar
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appearance since they are the projections of the same 3D point. Otherwise, it cannot be
selected as diffusing seed due to the low confidence. Therefore, it is crucial to define a
rational metric to appraise the appearance consistency of the feature correspondence.

In this work, we propose an enhanced metric to weigh the appearance similarity of the
potential correspondences for diffusion. This metric integrates the zero-mean normalized
cross-correlation coefficient (ZNCC [27]) of illumination and that of texture information.
The former weakens the influence of illumination variation, and the later deals with the
textureless case. The combination of these two terms assures the robustness of this metric
to different shooting conditions. The appearance similarity 1, of a feature correspondence
(x, x") is defined by Equation (3). In addition, the value range of appearance similarity is
[—1, 1], where the large value corresponds to high similarity:

Pz = A, + (1 — A)yy 3)

In Equation (3), ¥, represents the ZNCC of illumination of correspondence (x, x")
defined by Equation (4), where L(i) denotes the illumination (the L component in Lab
color space) of pixel i in the window W, centered at x, and L(x) is the average illumination
of pixels in this window. Different from NCC (normalized cross-correlation coefficient),
ZNCC performs zero-centered operation on the pixel illumination before normalization.
This operation assures that the similarity metric is determined by the relative disparity
of pixel illumination to that of the center pixel in the neighbouring window. Hence, it is
adaptive to strong illumination variations among images and can enhance the robustness
of diffusion to shooting conditions. The range of 1, is [—1, 1], and the higher ZNCC value
means that the two feature points in images are more relevant.

L (L) = L(x))(L(j) = L(x))

() = i _ @)
L (L) = L(x))* ¥ (L(j) — L(x))?
ieWy JEW

y; indicates the ZNCC of texture between two image windows respectively centered
at x and «’. It is derived from the gray value of the rgb pixel (Equation (6)) to deal with
the textureless case, and the range is [—1, 1]. The window regions with similar visual
appearance corresponds to the large value of ;, and this principle is beneficial to the
diffusion in smooth region. In proposed metric, ¢; is determined by Equation (5) in which
I(i) and I(x) respectively labels the gray value of pixel i and the average gray value in a
window centered at x:

(1() = I(x)) (1(j) = 1(x"))

1’0 (x x,) i€EWy,jEW,, (5)
t\As = — —
L (I() - 1(x)? ¥ (I() — I(x))?
i€Wy JEW
I(x) = 0.299r + 0.587g + 0.114b 6)

5.3. Correspondence Diffusion

After determining the similarity of feature matches, a rigorous screening process is
performed to select the reliable seeds for subsequent dense diffusion. The feature matches
are divided into three groups according to the value of ¥t,. In the diffusions, we introduce
five parameters <y, yp, 43, H4, 5> to divide the matches to different groups in which they
will be treated accordingly. These thresholds influence the accuracy of diffusion. Loose or
restrict setting leads to dense or sparse point clouds:

- Matches with ¢, > u are not only selected as candidates for restoring 3D points,
but also pushed into the seed queue for diffusion.

- Matches with yy < ¢, < yq are only reserved as candidates for 3D points restoring.

- Matches with ¢, < uy are treated as false correspondences and deleted from the set.
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5.3.1. Diffusing
Propagate seed matches with ¢y, > y; to their local neighborhoods. For each seed,

build multi-to-multi matchings in the 3 x 3 pixel windows of its host images, as depicted
in Figure 2. Take correspondence (p11, 422), for instance, the propagation occurs in win-
dows W; and W, where potential matches are generated between the pixels in these two

neighboring windows.

Poo | Poo | Poz | Pos Qoo | qo1 | qoz | Qo3
W, | P [Pii| Pz | D13 Qo | qu1 | qiz | q13
Pzo | Pz1 | P2z | P23 Qz0 | qz1 | G2z | Gz3 | Y,
Dso | Ps1 | Psz | P33 Qso | 431 | g3z | Q33
left image right image

Figure 2. Feature match is diffused to its neighborhood pixels. For feature correspondence (p11,422),
build multi-to-multi matchings within the local windows W; and W, in its host images, then employ
disparity gradient constraint and confidence measure to prune false matchings.

Then, filter the propagated matches and retain the reliable ones. Since many false
or one-to-multi matches are generated in the propagation process, further constraints are
required to prune the ineligible ones. In this work, the constraints of disparity gradient
and the confidence measure are employed.

Disparity gradient constraint implies that the disparity of two neighboring matches is
small, which can be used to eliminate the ambiguous one-to-multi matches. As Equation (7)
defines, for two neighboring feature matches (1, 1) and (x, x’) from the same reference and
candidate images, the discrete 2D disparity gradient should be no more than a threshold e:

[ =u') = (x = 2)[|eo <& @)

Confidence measure based on image gray value is given in Equation (8). This con-
straint reveals that a pixel point is unqualified for further matching or growing if the
difference of gray value between this pixel and its 4-neighbors hits a threshold p:

s(x) = max{|I(x +Ax) —I(x)|} <p (8)

5.3.2. Secondary Diffusing

To further densify the reconstruction, a secondary propagation process is performed
on diffused matches that meet the mentioned constraints. Calculate the similarity metric
for the new matches, then push the matches with ¢y, > 3 to seed the queue for next round
of propagation and choose the matches with 1, > u4 (3 > p4) for 3D candidates only,
as previous operations. Since the propagated matches are diffused from the original feature
matches, so in practice, the thresholds 3/ 4 should be slightly larger than 1 /5 to obtain
reliable propagation.

5.4. 3D Points Restoring

After getting dense candidate feature matches, the spatial 3D points are recovered
from the diffused matches by the triangulation principle.

6. Patch-Based Dense Diffusion

This section further densifies the point cloud models by the patch-based diffusion
which takes the recovered 3D points as input and diffuses them in 3D space to produce
denser points. The patch densification includes the following steps.
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6.1. Patch Initialization

The patch p is defined as a rectangle of normal n(p) centered at the 3D point ¢(p),
as Figure 3 shows. n(p) denotes the unit vector from point ¢(p) to the optical center O(R)
of the reference image. Here, the reference image R(p) is chosen so that its retinal plane is
parallel to p as much as possible. In turn, R(p) determines the orientation and extent of
the rectangle p so that the projection of one of its edges into R(p) is parallel to the image
rows and that the smallest axis-aligned square covers the a x a (x = 7) pixel® area [33].
Two constraints are employed to select reliable seed patches: geometry consistency and
appearance consistency.

Define V*(p) the candidate visible images of patch p. Geometry consistency refers
to that the intersection angle between n(p) and the vector from c(p) to the optical center
of visible image I; is less than a threshold, as given in Equation (9) and illustrated in
the upper-right part of Figure 3. Appearance consistency denotes that the similarity
between the projection of p on the reference image and that on each visible image follows
the criteria in Equation (10). V(p) represents the set of visible images that satisfy the
appearance consistency:

Vi) = {1l e T, n(p) - Ga= b > cos ] o
V(p) = {Llli € V*(p), 1= > ps =07} (10)

Construct patch p = {c(p),n(p), R(p), V(p)} for each retrieved 3D point and consider
the number of its visible images. If |V(p)| > 3, then put p into the set P of seed patches,
meaning that the patch is more likely to be seen in images. Otherwise, patch p is not
eligible for diffusion.

10(1;)

)
3D patch

O Image projection
of a patch

‘i’]z

/\O
\4

CMle)

b
Figure 3. Illustration of patch expansion. Case (b) depicts that the seed patch is propagated to
its neighboring cell since no similar patch occupies it. Case (a) and (c) are the non-propagation
scenarios where the patch in the neighboring cell is close to or shares a high similarity value with the
seed patch.

6.2. Patch Expansion

Patch expansion densifies the seed patches so that the model surface could be covered
as much as possible. To achieve this goal, each image is associated with a regular grid of
B x B (B = 2) pixel? cells, then the patches are diffused to its neighboring cells under the
following constraints to assure uniform patch coverage. The seed patch is diffused when
no similar patches can be observed in its neighboring cells, as case (b) in Figure 3 shows.
Otherwise, if the patch in neighboring cell is close to or share high similarity value with
the seed patch, then no patch propagation, as case (a) and case (c) reveal.
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Pop one seed patch p from the queue P, and then locate its host cell in visible image
I; and determine the neighboring cells G(p). Proceed the following procedures for each
eligible cell in G(p):

- Generate a new patch p’ by copying p, then optimize its center ¢(p’) and normal n(p’)
by maximizing the similarity score;
- Gather the visible images V(p'). If |V (p')| > 3, then push p’ to P.
Execute the above steps for each element in P until the queue is empty. Through this
way, the patches are propagated to its neighbors.

6.3. Patch Filtering

Likewise, there are outlier patches generated in patch expansion, hence patch filtering
is necessary. Here, we employ the visibility and geometry constraints similar to [33] to
remove outliers. Firstly, consider a patch p and the set ¢/ it occludes. Remove p as an outlier
if V(p)¥1.(p) < Lp,eu ¥ (pi). Intuitively, when p is an outlier, both V(p) and ¢, (p) are
expected to be small, and p is likely to be pruned. Secondly, for each patch p, collect the
patches lying in its host and adjacent cells in all images of V(p). A quadric surface is then
fitted by each patch and its neighbors. The ones with obvious fitting residuals are filtered.

Iterate above expansion and pruning steps for three rounds, and then obtain the final
dense point cloud model by gathering the center points of all reserved patches.

7. Experimental Evaluation

This section evaluates the proposed image sequence-based 3D reconstruction algo-
rithm. We illustrate the two-phase results of multiple datasets and evaluate the robustness
of the proposed algorithm to illumination variations and textureless cases by comparing
with other methods. All the experiments are carried out in C++ programming language on
the machine equipped with 2.4 GHz multi-core CPU and 8 GB memory. In our experiments,
A is empirically set to 0.5, and other thresholds are: y; = 0.8, up = 0.6, u3 = 0.85, ug = 0.65,
s =07, =1.0p0 =225

7.1. Reconstruction Results of the Proposed Method

The proposed reconstruction algorithm is experimentally evaluated on multiple
datasets. The retrieved point clouds of three datasets via two phases of diffusion are
illustrated in Figure 4. The middle columns and right column list the retrieved point
clouds after feature diffusion and patch diffusion, respectively. It is observed that the
feature diffusion phase constructs the basic structures of photographed models; however,
the points are not dense and there are missing parts in the recovered point cloud models,
such as the back and feet of “Dino16”, the stairs and pillars of “Templel6”, and the plain
walls of “Fountain25”. The reason lies in that it is hard to extract and diffuse the feature
matches in those areas. Starting from these results, patch diffusion recovers more 3D points
to fill the missing parts to generate dense point clouds with rich details, which is valid
for both smooth areas (e.g., back of “Dino16” and walls of “Fountain25”) and textured
areas (e.g., feet of “Dino16”, stairs and pillars of “Temple16”). On average, patch diffusion
increases the number of retrieved points by over 40% from feature diffusion (refer to the
figures in Table 1).
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Table 1. Two phase results of the proposed algorithm on testing datasets.

Image Sequences Retrieved Points
Name No. Resolution Feature Diffusion  Patch Diffusion
Dino16 16 640 x 480 7329 8834
Dino48 48 640 x 480 6369 9694
Dino363 363 640 x 480 21,679 33,869
Templel6 16 480 x 640 5936 8458
Temple47 26 480 x 640 15,106 20720
Mummy?24 24 1600 x 1100 36,384 48,272
Fountain25 25 3072 x 2048 355,330 463,935
Stone39 39 3024 x 4032 469,342 624,971
Sculpture58 58 2592 x 1728 600,217 997,770
Statue70 70 1920 x 1080 50,972 75,688

Figure 4. Illustration of the reconstruction result of proposed dense diffusion algorithm on three
datasets, “Dino16”, “Templel6” and “Fountain25”. From left to right: sample of image sequence,
feature diffusion results, patch diffusion results.

Generally speaking, more detailed and denser point clouds can be reconstructed from
the dataset with more images. We compared the results from multiple image sequences
of the same targets “Dino” and “Temple”. In addition, the figures in Table 1 draw the
conclusion that a larger dataset produces a denser point cloud model. In addition, we
applied the proposed algorithm on the other four datasets with different capacities or
resolutions, and the recovered point clouds are demonstrated in Figure 5. Experimental
results reveal that the proposed method is able to output dense and reasonable 3D point
cloud models for different image sequences.



Remote Sens. 2021, 13, 567

12 of 21

Figure 5. Results of proposed algorithm on other four datasets. Top: “Mummy24” and “Sclupture58”. Bottom: “Statue70”
and “Stone39”. Left: sample of image sequence. Right: retrieved point cloud.

7.2. Evaluation of the Proposed Metric

The proposed similarity metric weakens the influences of textureless scenario and
illumination difference in images, which can enhance the robustness to target properties
and shooting conditions. To achieve fair evaluation, we compared the proposed algorithm
with two other seed-and-expand schemes, PMVS [7] and VisualSfM [8]. PMVS initializes
patches from retrieved sparse model points, and then propagates each seed patch to
its neighborhoods by the mean photo-consistency of all visible pairs to recover a dense
point cloud model. VisualSfM incorporates SfM and CMYVS to implement optimized
3D reconstruction.

7.2.1. Textureless Scenarios

The comparisons are conducted on all ten datasets, and the samples of reconstructed
results are demonstrated with local details magnified into view. Column 2/3/4 in Figure 6
respectively depict the reconstruction results from PMVS, VisualSfM, and ours. For model
“Dinol6”, “Templel6”, and “Mummy24”, the point clouds retrieved by the proposed
method are more evenly distributed than that by PMVS or VisualSfM, such as the leg part
of “Dino16”, the pillar of “Templel6”, and the feet area of “Mummy?24”, outperforming
the comparing algorithms in completeness and details. Despite VisualSfM’s results being
partially better in a few small regions, such as the stairs of “Templel6” and head part of
“Mummy24”, ours still gain more reliable reconstruction results than comparing methods.
For textureless scenarios, such as the smooth back area of “Dino16”, the textureless wall
area of “Fountain25”, and the white platform of “Mummy24”, the proposed method
generates reasonable dense points in these areas, while PMVS and VisualSfM cause obvious
local holes or incomplete surface, which shows the advantage of the proposed metric in
dealing with textureless cases. These observations are also proved by the figures in Table 2,
revealing that the proposed approach produces, on average, 10.0% more 3D points than
PMVS and 6.0% than VisualSfM. In addition, our method outperforms VisualSfM in
efficiency for larger datasets with more images and higher resolutions.
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Figure 6. Comparison of three reconstruction methods on four testing datasets. From top to bottom: “Dino16”, “Templel6”,

“Fountain25”, and “Mummy24”. From left to right: sample of image sequence, the results by PMVS, VisualSfM, and ours.
The local details are highlighted and magnified into view. Ours generates reasonable dense points in textureless areas,
e.g., the smooth back area of “Dino16”, the wall area of “Fountain25”, and the white platform of “Mummy?24”.
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Table 2. Comparison of retrieved points and running time of three methods.

Image Sequences Retrieved Points Time (s)
Name No. Resolution PMVS VisualSfM Ours PMVS VisualSfM Ours
Dinol6 16 640 x 480 8138 9036 8834 6 5 6
Dino48 48 640 x 480 9484 9528 9694 8 9 11
Dino363 363 640 x 480 32,030 34,462 33,869 51 63 60
Templel6 16 480 x 640 6997 7868 8458 5 7 6
Temple47 26 480 x 640 17,735 17,773 20,720 19 20 23
Mummy?24 24 1600 x 1100 40,348 45,548 48,272 26 36 31
Fountain25 25 3072 x 2048 447 552 455,511 463,935 323 418 310
Stone39 39 3024 x 4032 618,829 562,521 624,971 756 890 786
Sculpture58 58 2592 x 1728 1,018,650 924,024 997,770 780 912 810
Statue?0 70 1920 x 1080 61,311 67,825 75,688 87 101 97

7.2.2. Differences in Illumination

To verify the robustness of proposed metric to shooting conditions, we simulated
the illumination difference in images by varying the illumination of each input image via
a random ratio in [—7, 7]. The range factor 7 is increased from 10% to 60% to present
different degrees of illumination variation. Figure 7 depicts the results of the proposed
method under different degree of illumination variations. For four testing datasets, our
method achieves good reconstruction performance. The retrieved point cloud models
under different illumination variations show the similar density. Compared with PMVS
and VisualSfM, ours exhibits better robustness.

Figure 8 gives the curves of retrieved points to illumination variation by three meth-
ods. It is shown that PMVS and VisualSfM can not guarantee dense points in illumination
varying scenarios, especially when the variation is severe. While the proposed method
reveals better reliability and outperforms the comparing methods in such cases. On
average, the proposed method recovers 12.7% more points than PMVS and 10.3% than Vi-
sualSfM on four testing models. To give intuitive comparison, the results of three methods
under T = 50% are illustrated. Figure 9a depicts the input images with illumination ran-
domly altered, and Figure 9b—d demonstrate the corresponding reconstructed point cloud
models by three methods. Ours obtains more complete (“Dino16” and “Foundation25”)
or denser (“Mummy24” and “Temple47”) than other two methods under significant
illumination variation.
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(a) 10%

(b) 20% (c) 30%

(d) 40%

(e) 50% () 60%

Figure 7. The reconstructing models of proposed method under different illumination variations of input images. The con-

trolling factor T varies from 10% to 60% (from left to right) and the reconstructed point cloud models are illustrated. Top to
bottom: “Dino16”, “Mummy?24”, “Temple47”, “Foundation25”.
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Figure 8. Comparison of the recovered points by three reconstruction methods under different illumi-
nation variations (10% to 60%). Four datasets are tested and they are (a-d): “Dino16”, “Mummy?24”,

“Temple47”, and “Foundation25”.
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(a) Images

(b) PMVS (c) VisualStM (d) Ours

Figure 9. Comparison of recovered point cloud models by three reconstruction methods when the controlling factor T of

illumination change is 50%. (a) input images with illumination randomly altered; (b—d) the results from PMVS, VisualSfM,

and ours. Top to bottom: “Dino16”, “Mummy24”, “Temple47”, “Foundation25”.

7.3. Quantitative Evaluations

In this section, we present the quantitative evaluation of the proposed reconstruction
method on “Qinghuamen” and “Shengkelou” datasets with ground-truth point clouds
generated by the Robot Vision Group, National Laboratory of Pattern Recognition Institute
of Automation, and Chinese Academy of Sciences [51].

7.3.1. Completeness and Accuracy

First, we fairly compare three methods in terms of completeness and accuracy, which
are respectively defined as the percent of points that are within a threshold distance to the
ground-truth and the average distance of reconstructed points to the ground-truth point
cloud model [19].

Table 3 summarizes the results of completeness and accuracy metrics on the recovered
point cloud models of three methods. For completeness, we use an inlier threshold of 0.05 m,
i.e., a completeness of 95% means that 95% of the model is covered by the reconstructed
points that are within 0.05 m to the ground-truth. Since we use average distance to
the ground-truth as accuracy, a lower number implies higher accuracy. It is shown that
the proposed method outperforms PMVS and VisualSfM in completeness under severe
illumination variations (T = 50%) while gaining similar accuracy to the other two methods,
and completeness and accuracy decrease with fewer images on the “Shengkelou” dataset.
The reconstructed models illustrated in Figure 10 match well to the numbers in Table 3.
The proposed method achieves better completeness on both datasets, for instance, in the
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pillar area of “Qinghuamen” and the left part of the facade of “Shengkelou”, ours generates
more points than PMVS and VisualSfM, leading to more complete models in illumination
varying scenarios.

Table 3. Quantitative results of the three algorithms on different datasets when T = 50%. Bold number indicates the best

result for each metric.

Qinghuamen Shengkelou Shengkelou
(68 Images, 4368 x 2912) (102 Images, 4368 X 2912) (51 Images, 4368 X 2912)
Method Points Comp. Acc. Points Comp. Acc. Points Comp. Acc.
Ours 1,283,729 96.3% 0.001346 2,446,138 97.2% 0.004367 1,592,848 96.2% 0.004732
PMVS 1,270,131 96.1% 0.001379 2,382,383 97.0% 0.005221 1,592,127 95.6% 0.005696

VisualSfM 1,237,815

96.0% 0.001327 2,226,646 96.8% 0.004387 1,535,094 94.9% 0.004706

7.3.2. Parameters

In the last part of our experiments, we evaluate the impact of the parameters involved
in the proposed metric on reconstructing completeness and accuracy. The evaluations are
carried out on two datasets by arranging different settings of A, y1, p2, s, €, and p.

Table 4 gives the quantitative results of different parameter settings. A controls the
weight of illumination term in the proposed metric, and the numbers show that larger
setting contributes to better completeness in illumination varying scenario, which is in
line with its definition. Thresholds for correspondence diffusing, y1, y2, and us weigh
the qualification of feature matches for diffusion. The results reveal that a larger setting
promotes the reconstruction accuracy at a the cost of a bit of completeness, and vice versa.
¢ and p play similar roles in completeness and accuracy, only in an opposite direction.

It is observed that the numbers in Table 4 do not vary obviously as anticipated; this
is because the high-resolution images counteract the influences of parameter variations,
but the trend can be noticed. Overall, strict thresholds correspond to high accuracy but
low completeness.

Table 4. Evaluation results of the parameters involved in the proposed metric on different datasets when v = 50%. Bold

number indicates the best result for each metric.

Parameter Setting Qinghuamen Shengkelou Shengkelou

(68 Images) (102 Images) (51 Images)

< A, p1, M2, 45,80 >

Comp. Acc. Comp. Acc. Comp. Acc.

A=03,11 =08 u2=06,u5=07,e=1.0,p=225 96.0%  0.001419 97.1%  0.004916 96.1%  0.004759
A=05u; =08 4u2=06,u5=07,e=10,p=225 96.3%  0.001346 97.2%  0.004367 96.1%  0.004732
A=05,u1=07,14=05,u5=0.6,¢=1.0,p=225 96.4%  0.001442 96.9%  0.005034 96.2%  0.004914
A=05u1=09, =07, 4u5=08,e=10,p=225 95.4%  0.001389 96.4%  0.004947 95.3%  0.004753
A=05u1=08,4=06,1u5=0.7,¢=05,p=225 96.1%  0.001394 96.9%  0.004257 95.9%  0.004907
A=05u1 =08 42=06,u5=07,¢e=1.0,p=15 96.1%  0.001380 96.2%  0.003959 95.6%  0.004824

7.4. Discussion

Although our method achieves better model completeness and details in most cases,
there are few occasions in which VisualSfM shows partially better results, such as the head
part of “Mummy?24” (Figure 6). This is because a different similarity metric is proposed in
our work, which selects different seeds and diffuses under a new criterion, hence retrieving
different 3D points. To observe the whole models, ours achieves superior completeness and
point distribution, in both regular cases and illumination varying scenarios. We tested the
robustness under several illumination variations, more points could be recovered, and the
demonstrated point cloud models verifies the quantitative figures. For the reconstruction
accuracy on three datasets (Table 3), ours shows comparative results with VisualSfM, and
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is a little behind on “Qinghuamen” and “Shengkelou (51 images)” but the difference is
slight. However, the leading in model completeness for all three datasets is noteworthy.
With more points being recovered in the models, the accuracy is impacted accordingly,
which is a trade-off between completeness and accuracy. Comparing the corresponding
point cloud models in Figure 10b, this cost in accuracy is worth it and acceptable.

( N i iz
L = T "

8 2
NS e ey

(a) Qinghuamen (b) Shengkelou

Figure 10. Comparison of recovered point cloud models by the three reconstruction methods when 7 = 50%. (a) “Qinghua-
men” (68 images, 4368 x 2912), (b) “Shengkelou”(102 images, 4368 x 2912). Top to bottom: ground-truth, ours, PMVS,

VisualSfM. In the pillar area of “Qinghuamen” and the left part of the facade of “Shengkelou”, ours generates more points
than PMVS and VisualSfM.
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8. Conclusions

Retrieving 3D information from images is a challenging topic in the computer vision
community, which still suffers from the shortcomings in practical applications. This work
presents an enhanced similarity metric for filtering feature matches or 3D patches in two-
phase diffusions of seed-and-expand dense reconstruction. This metric combines the
zero-mean normalized cross-correlation coefficients of illumination and texture to deal
with illumination changes and textureless cases. Incorporated with other visual constraints
and geometry consistency, the proposed method recovers reasonable dense 3D point cloud
models in both structure complex and textureless regions for different image sequences.
The method is robust to illumination varying scenarios and achieves better completeness
with comparative reconstructing accuracy.

Available image-based dense reconstruction methods are capable of retrieving dense
3D surface points of a scene or an object with rich details. However, the recovered point
cloud models by these methods inevitably contain scattered background information
that are unnecessary to many applications. Manually deleting those redundant points
is tedious work which requires great patience and care. A potential way is to enforce
extra restriction on the interesting regions of images when extracting and expanding 3D
information from them. This could be realized via foreground /background segmentation
or saliency detection of images. By determining the silhouette of the target object and
utilizing it in a dense diffusion process, the insignificant background points can be avoided.
This will be our future research focus.
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