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Abstract: Drought severity still remains a serious concern across Sub-Saharan Africa (SSA) due
to its destructive impact on multiple sectors of society. In this study, the interannual variability
and trends in the changes of the self-calibrating Palmer Drought Severity Index (scPDSI) based on
the Penman–Monteith (scPDSIPM) and Thornthwaite (scPDSITH) methods for measuring potential
evapotranspiration (PET), precipitation (P), normalized difference vegetation index (NDVI), and
sea surface temperature (SST) anomalies were investigated through statistical analysis of modeled
and remote sensing data. It was shown that scPDSIPM and scPDSITH differed in the representation
of drought characteristics over SSA. The regional trend magnitudes of scPDSI in SSA were 0.69
(scPDSIPM) and 0.2 mm/decade (scPDSITH), with a difference in values attributed to the choice of
PET measuring method used. The scPDSI and remotely sensed-based anomalies of P and NDVI
showed wetting and drying trends over the period 1980–2012 with coefficients of trend magnitudes
of 0.12 mm/decade (0.002 mm/decade). The trend analysis showed increased drought events in
the semi-arid and arid regions of SSA over the same period. A correlation analysis revealed a
strong relationship between the choice of PET measuring method and both P and NDVI anomalies
for monsoon and pre-monsoon seasons. The correlation analysis of the choice of PET measuring
method with SST anomalies indicated significant positive and negative relationships. This study has
demonstrated the applicability of multiple data sources for drought assessment and provides useful
information for regional drought predictability and mitigation strategies.

Keywords: droughts; NDVI; CHIRPS; precipitation anomalies; potential evapotranspiration (PET);
self-calibrating Palmer Drought Severity Index; sub-Saharan Africa

1. Introduction

According to the fifth assessment report (AR5) of the Intergovernmental Panel on
Climate Change (IPCC), global warming has significantly contributed to the evolution of
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extreme weather events (such as droughts, floods, and heat waves) [1]. The increase in the
severity of these weather events has been documented due to their devastating impact on
our ecosystem and different sectors of society [2]. The projected increase in potential future
drought events as a result of current global warming has been of keen interest to scholars,
researchers, and the general public [1].

Generally, to depict and monitor drought events, specialized drought indices are
used. However, one key question of concern has been about the proxies used to measure
these droughts. For instance, some studies have questioned the use of precipitation (P)
deficits as a primary method of depicting historical droughts in a warming climate [3–6],
particularly when there is ample evidence of enhanced atmospheric demand under recent
global warming. A decrease in P is generally associated with increased temperature (T)
(and reduced atmospheric humidity), which enhances potential evapotranspiration (PET)
and later intensifies dry spells [4–6]. Therefore, using or including atmospheric water
demand (or PET) in the depiction of drought events is worthwhile. A review by Mishra
and Singh [7] outlined a lengthy catalog consisting of multiple specialized drought indices,
highlighting both the concept of atmospheric “supply” and “demand” and how they
account for the surface warming effect on wet and dry spells.

Although there is a lack of general consensus on global drought assessments [8–12],
drought indices designed on the basis of the concept of atmospheric supply and demand
have shaped our understanding of drought [3,7,13–15]. Thus, within this context, the self-
calibrating Palmer Drought Severity Index (scPDSI), a typical example of such a drought
index [12], has been widely used for drought climatology studies at global scales [8,9]
and for regional specific studies [15–19], among others [6]. The scPDSI, by design, is a
physical-based drought index that incorporates antecedent P, moisture supply, and demand
(i.e., potential evaporation (PET)) to account for surface warming effects on wet and dry
spells [12].

Several studies have reported intense drying and increased frequency of droughts
in many regions around the world [7]. However, controversy remains in the order of
magnitude of dry spells and changes (or trends) in drought severity, although there are
several reasons for this lack of agreement. The choice of PET used remains the most
prominent issue. PET computation (a proxy for atmospheric demand) is sensitive to the
choice of PET method used [12,20,21]. The different methods of PET estimation are outlined
in Mishra and Singh [7]. Here, we focus on only the Thornthwaite and Penman–Monteith
methods. In most studies, the Thornthwaite method has been shown to overestimate drying
trends more than the Penman–Monteith method and vice-versa [12,20,21]. Nonetheless,
the accuracy and rationality of the two PET methods and their application are still under
study [6,7,12].

In this study, we attempt to understand the impact of the two PET methods on drought
characteristics and trends in the large-scale convective region of Sub-Saharan Africa (SSA)
(i.e., a region explored in few studies) [22,23]. In addition, our study uses remotely sensed
precipitation (P) and vegetation datasets to investigate how these climate variables respond
to drought trends in SSA. Furthermore, we explore the interactive effects of sea surface
temperature (i.e., El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD))
on drought trends, a study initiative that is lacking and has been recommended [22].

Agriculture is the backbone of the overall economic growth of SSA countries. Agri-
culture not only contributes to nearly 24–31% of the gross domestic product (GDP) of SSA
countries, but is also essential for poverty reduction and food security, as it employs more
than 65% of the workforce [24]. Apart from other constraints to agricultural development
in Africa, the SSA agricultural system is vulnerable to patterns and mechanisms of climate
change [24]. The spatio-temporal variability of P, coupled with high population growth,
amplifies the region’s vulnerability to droughts due to increasing water demand [23]. Agri-
culture plays a role in reducing poverty in the region, hence the launch of the Malabo Goals
2025 and the 2030 Agenda for Sustainable Development and Sustainable Development
Goal 2 (SDG2) [24].
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To the best of our knowledge, few attempts have been made in SSA to compare
long-term drought characteristics and trends using energy-driven drought indices [22,23].
Thus, in a warming climate, a better understanding of drought characteristics, trends,
and mechanisms influencing SSA is useful within the context of regional predictability
and mitigation strategies. This study highlights a number of controlling factors that may
potentially impact drought characteristics in diverse climate regions of SSA. Moreover, the
high growth in population and environmental degradation, especially in arid and semi-arid
regions, has caused many major rivers and their tributaries to dry up. For example, the
upstream of river basins such as the Volta, Nile, Niger, and Zambezi has experienced a
high intensity of water resource utilization over the last three decades [1,2,24]. Thus, in this
paper, we seek to contribute to the existing literature on droughts in the region by using
state-of-the-art modeled data and satellite products in a region where data availability
and quality concerns remain a challenge. Our main objective is to analyze drought charac-
teristics and the interannual drought patterns and to determine the relationship between
drought and control factors such as P, vegetation, and teleconnection indices. First, we used
long-term modeled scPDSI based on two PET methods to determine significant spatial
patterns of annual drought characteristics (in terms of their frequency, spatial extent, and in-
tensity). Second, we used the Mann–Kendall and Sen’s slope methods to analyze temporal
variability of times corresponding to the significant patterns for modeled data and satellite
products. Next, we investigated the relationships between the time variability of significant
patterns and (1) hydroclimate factors (e.g., P), (2) vegetation, and (3) teleconnection indices
across SSA.

The paper is organized as follows. In Section 2, we provide a brief description of the
different data used. We also summarize the methods and approaches used in this section.
The results of the comparison are presented in Section 3. Section 4 is a discussion of the
most important study findings, and Section 5 concludes.

2. Materials and Methods
2.1. Study Area

Sub-Saharan Africa (SSA) is defined as the vast land mass area south of the Sahara
Desert between 15◦0′0′′N and 35◦0′0′′S and between 14◦0′0′′W and 52◦0′0′′E. SSA is bor-
dered to the southeast by the Indian Ocean and to the west by the Atlantic Ocean (Figure 1).
It has a total area of nearly 24.7 million km2 (accounting for approximately 81.2% of the
entire African land area). The region straddles the equator with a significant number of
countries located in both the Northern and Southern Hemispheres.

Generally, the topography, the vegetation conditions, the oscillation of the intertropical
convergence zone (ITCZ), and the atmospheric processes impact precipitation (P) variability
throughout the hydrological system [25,26]. The elevation of SSA ranges from −360 to
5861 m above mean sea level (msl), with the highlands located in the eastern and southern
parts of the region (Figure 1a).

The weather pattern shows two clear seasons (the wet and dry seasons) with a wide
range of climatic features [27]. The tropical wet and dry climate located along the Guinean
coast and the equatorial region have an elevation <850 m above msl. The Savanna climate
covers nearly three quarters of SSA land mass, with elevation ranging from >170 to <5861 m
above msl. The semi-arid climates are found in the Sudano-Sahelian, large parts of Southern
Africa, and the Horn of Africa, which have elevation ranges from >250 to <5000 m. Arid
climates are found in most parts of Southern Africa and the Horn of Africa, with elevation
ranges from >780 to <5861 m.

The complexity of the topographical features partly explains the high seasonal and
interannual variability in P. Figure 1c,d present the annual mean and seasonal climatology
of precipitation (P) and temperature (T) over the period 1981 to 2017.

Based on the Climate Hazard Group Infrared Precipitation with Stations (CHIRPS)
dataset, the annual mean P in SSA ranges from <30 to >300 mm. We observed in Figure 1c
that areas with high elevation (i.e., the Ethiopian highlands) or dense vegetation (i.e., the
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Guinean coast and Congo’s forested areas) receive an annual mean P > 150 mm. The
Savanna and Sudano-Sahelian belt climate regions receive <120 and <90 mm, respectively.
Arid regions receive an annual mean P as low as <30 mm.

However, based on the European Center for Medium-Range Weather Forecasts
(ECMWF) ERA-5 atmospheric reanalysis datasets, the arid climate regions in Southern
Africa have annual mean T ranges from 15 to <27 ◦C. The semi-arid climate ranges from 24
to >33 ◦C. The tropical wet and dry climate records indicate <27 ◦C (Figure 1d).

The P and T pattern in the northern part of SSA is generally bimodal (Figure 1e,f).
In this region, we observe that the P and T seasonality is not synchronous (Figure 1e,f,
blue and red), as an increase in P from June to August (JJA) and September to November
(SON) leads to a decrease in T. These seasonal characteristics coupled with other factors
(explained below) define the region’s monsoon climate.

For example, the Western Africa region receives long rains in boreal summer (i.e.,
June to August (JJA)) and short rains in boreal autumn (September to November (SON)),
with peak values in August (Figure 1e, blue). The Horn of Africa (HoA) region receives
mostly long P in boreal spring (i.e., March to May (MAM)) and short P from October to
December (OND) (Figure 1c, red). However, the southern parts of SSA have a unimodal
P and T pattern (Figure 1e,f, black), with long rains in austral summer (i.e., December–
February (DJF).

Under the recent warming climate, changes in P and T over space and time are partly
induced by local factors such as the heterogeneity of the land surface. According to the
2016 land use land cover (LULC) map from the European Space Agency Climate Change
Initiative (ESACCI) [28], grassland and cropland occupy 17% and 12%, mainly along the
Sudano-Sahelian belt–Guinea coast (SSG), Horn of Africa (HoA), the peripherals of large
open water bodies, and the Eastern Southern Africa regions (Figure 1b). Dense vegetation
accounts for nearly 21% and is distributed along the Guinean coast, the Congo basin, and
the equatorial forests regions. Shrubland (covering 11%) is located mainly in the Horn of
Africa region and the Southern Central Africa regions. Bare land occupies 32% of the land
area and is located mainly in the Sahara Desert (masked out) and parts of the Southern
Africa area. Open water bodies (covering 7.2%) are interspersed and distributed mainly in
the equatorial regions and south of the equator. The remaining cover types (covering 1.4%)
such as sparse vegetation, vegetated wetland, and buildup areas are interspersed across
SSA (Table 1).

Table 1. Land use land cover (LULC) types and their respective areal coverage expressed as percent-
ages.

LULC Type Areal Coverage (%)

Tree cover 20.70
Shrubland 10.80
Grassland 16.60
Cropland 11.80

Vegetated wetlands 0.14
Sparse vegetation 1.050

Bare lands 31.60
Built up 0.20

Open water 7.21
Total 100

Source: ESACCI [25]. Note that these values include Continental Africa.

Precipitation (P) variability is partly impacted by the interaction with global climate
forcing systems, such as the El Niño–Southern Oscillation (ENSO) and the Indian Ocean
Dipole (IOD). These teleconnections in space and time are widely reported to explain the
annual and seasonal P variability in SSA [29,30].

To examine specific drought characteristics and trends in detail, three regions were
selected (see Figure 1a). The boxes in Figure 1a indicate the three sub-regions used for the



Remote Sens. 2021, 13, 533 5 of 25

spatial averaged analysis: the Sudano-Sahelian–Guinean Coast (SSG) (5◦N–15◦N, 5◦W–
20◦E), the Horn of Africa (HoA) (5◦S–15◦N, 30◦–52◦E), and the Southern Africa region
(SAR) (32◦S–15◦S, 8◦–32◦E).
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Figure 1. (a–d) The administrative boundary of Continental Africa: (a) topography at 30 m resolution acquired from a Shuttle
Radar Topography Mission (SRTM) digital elevation model (DEM) of the National Aeronautics and Space Administration
(NASA) [33]; (b) 2016 land use land cover (LULC) map at a 20 m resolution acquired from the European Space Agency
Climate Change Initiative (ESACCI) (see Table 1 for details) [28]; (c,d) spatial distribution of annual average Climate Hazard
Group Infrared Precipitation with Stations (CHIRPS) P and ERA-5 T over the period 1981–2017. (e,f) Multi-year (1981–2017)
(e) precipitation (P) and (f) temperature (T) averaged monthly.

The SSG region used in this paper includes the Sahelian belt, the Sudanian belt, and
parts of the Guinean coast stretching from the Atlantic Ocean to the central region at
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longitudes of 20◦E. The HoA used here extends from the interior of the Ethiopian and
Kenyan highlands to the coast of the Indian Ocean. The SAR includes areas that lie below
15◦S. The justification for selecting the limits of the boxes was based on their interannual P
variations, the mean climate, and the associations with teleconnections [29–32].

2.2. Data Description

Here we briefly describe the specific data sets used in this study.

2.2.1. Drought Index Data

We used a self-calibrated Palmer Drought Severity Index (scPDSI) [34] to characterize
drought events in SSA. The scPDSI has been recommended as a good proxy for surface
soil moisture conditions and for drought monitoring [7]. In the design of the PDSI, several
climatic variables were incorporated to reflect the drying and wetting conditions of an
area. Thus, to characterize drought events, we used PDSI datasets downloaded from the
Princeton website [35].

The PDSI dataset has a global coverage at a 1◦ × 1◦ spatial resolution and a monthly
temporal resolution (over the period 1948–2008) [9,36]. Sheffield et al. [36] developed two
kinds of PDSI based on the Thornthwaite and the Penman–Monteith algorithms. The
climate forcing datasets (i.e., covering 1979–2008) used to produce this scPDSI reflected and
captured all forms of anthropogenic activities in the region. Particularly, within the context
of global warming, SSA has experienced several years of land use land cover (LULC). The
dataset is publicly available, and readers may refer to the developers [9,36] for detailed
information on accuracy, the rationality of the input forcing data, the choice of baseline
period, and calculation schemes.

2.2.2. Satellite-Based Normalized Difference Vegetation Index (NDVI)

To study the spatio-temporal patterns of vegetation greenness and their responses
to drying and wetting conditions, we used the Normalized Difference Vegetation Index
(NDVI) from the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g
dataset product with a temporal resolution of 15-day intervals and a 1/12-degree spatial
resolution, processed and archived by the GIMMS group at NASA [37]. The NDVI used in
this study spans from 1982 to the present. To ensure the robustness of long-term trends and
variability, the GIMMS group corrected and calibrated the dataset to minimize sensor effects
by using high quality NDVI data from state-of-the-art sensors and retrieval algorithms (i.e.,
Bayesian methods). The algorithm for calculating NDVI is presented in Equation (1).

NDVI =
NIR−VIS
NIR + VIS

(1)

where NIR and VIS denote near-infrared and red (visible) top-of-atmosphere reflectance,
respectively.

Generally, NDVI ranges from +1 to −1. However, for this study, only vegetated areas
were considered from the range of 0.2–0.8 pixels, while pixel values <0.12 were masked out
to ensure that only NDVI values related to vegetation greenness were captured, following
Martiny et al. [38]. This means that bare soils and desert areas that corresponded to mean
pixel values <0.12 and negative values were excluded. For more details on GIMMS NDVI3g
dataset products, readers are referred to the following [37].

2.2.3. Climate Hazard Group Infrared Precipitation with Stations (CHIRPS)

We selected CHIRPS products that produce gridded monthly P products from com-
bined in-situ and satellite inputs for monitoring extreme events such as floods, droughts,
or heat waves [37]. CHIRPS is a semi-global precipitation product and is publicly available
at the Climate Hazards Group [39] and the International Research Institute climate data
library [40] at several temporal resolutions and at a 0.05◦ spatial resolution.
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However, we chose the second version of CHIRPS (1981–present) with a spatial
resolution of 0.05◦ ranging from 50◦S to 50◦N (and all longitudes) at a monthly temporal
resolution [39,41]. The production of CHIRPS was explained by Funk et al. [39]. CHIRPS is
widely used for various applications [42,43].

2.2.4. Sea Surface Temperature (SST) Indices

In order to study and explain the effect of teleconnections on drought evolution,
we downloaded the Indian Ocean Dipole (IOD) and the Ni-no-3.4 (N3.4) sea surface
temperature (SST) indices from their respective websites [44,45]. Our study chose a monthly
time step for the period from January 1979 to December 2012 to provide a general picture
of the relationship between both IOD and El Niño–Southern Oscillation (ENSO) and
drought trends over the region. Ni-no-3.4 (N3.4) originates from the Climate Prediction
Center (CPC) over the 5◦N–5◦S, 170◦–120◦W regions. Smith et al. [46] have provided
comprehensive documentation and computation for these datasets.

2.2.5. Other Auxiliary Datasets

To represent the temperature (T) climatology of the region, we acquired gridded
monthly ERA-5 T data aggregated at 0.25 × 0.25◦ resolution. The ERA-5 T dataset is a
global atmospheric reanalysis product produced by ECMWF [47]. In addition, we used
a 20 m resolution LULC map acquired from the ESACCI [28] and a 30 m Shuttle Radar
Topography Mission (SRTM) digital elevation map (DEM) downloaded from the NASA
(SRTM) website [33] to visualize the LULC and elevation of the region.

2.3. Methods
2.3.1. Data Preprocessing

Our first step was to pre-process the drought dataset used in this study. For simplicity
of presentation, we used scPDSIPM and scPDSITH to represent the PDSI index based on the
Penman–Monteith and Thornthwaite methods, respectively.

From the global PDSI dataset, the first preprocessing task was to constrain the scPDSI
values to a range from −10 to 10 (based on Dai et al. [12]), prior to masking the study
area. In order to measure a drought event, we needed to define a drought threshold.
Based on the literature on the scPDSI range (see Table 2), we defined drought events [8,16].
Table 2 provides a classical Palmer [46] classification for wet and dry conditions. Thus,
using scPDSI time series per grid, we identified for each grid scPDSI values below some
user-defined thresholds. We used a threshold of −2.0 to denote moderate drought events
and −4.0 for more extreme droughts.

In addition, we aggregated the biweekly NDVI data into monthly values and then
aggregated those into annual and seasonal values over the period 1982–2012 by simple
spatial and temporal averages. Moreover, CHIRPS P grid points covering SSA were
extracted and aggregated from monthly to annual and seasonal averages for each year.
Lastly, we re-gridded all the satellite (i.e., CHIRPS P and NDVI) datasets to match the
scPDSI dataset resolution using nearest neighbor [48,49].

Table 2. Classifications of self-calibrating Palmer Drought Severity Index (scPDSI)-based land wetting
and drying.

Categories scPDSI

Extremely dry ≤−4.0
Severely dry −3.99 to −3.0

Moderately dry −2.99 to −2.0
Near normal −1.99 to 1.99

Moderately wet 2.0–2.99
Severely wet 3.0–3.99

Extremely wet ≥4.0
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2.3.2. Statistical Analysis

Analyses in this study were based on annual and seasonal changes. Different statistical
methods were used to compare and analyze the differences among the datasets. For
seasonal analysis, we adopted pre-monsoon and monsoon seasons. Thus, we calculated
the seasonal mean of the monthly time series (for each pixel) for pre-monsoon (November–
March (NDJFMA)) and monsoon (May–September (MJJASO)) seasons to capture the boreal
and austral P regimes in both areas in the northern and southern part of SSA, NH and SH,
respectively.

Moreover, in the annual time step, we calculated the spatial mean for each year for
each pixel. For interannual analysis, the main statistical parameters used in the temporal
analysis were means over the period. Next, drought trends and temporal changes per grid
over the period were performed using the Mann–Kendall non-parametric statistical test
(M-K) [50,51] and Sen’s slope estimator [52] at a 0.05 significance level based on the World
Meteorological Organization (WMO) recommendations, widely followed to assess trends
in climatological and hydrological time series [53,54].

To apply the statistical tests, we defined two (i.e., the null and alternative) hypotheses
for the scPDSI, CHIRPS, and NDVI datasets as follows:

1. H0 = null hypothesis of trend absence in time series;
2. H1 = alternative hypothesis of trend in time series.

The detailed theory and estimation procedure for both the M–K and Sen’s slope
estimator are presented in [53].

In addition, in analyzing the interannual variability, the P and NDVI anomalies were
calculated based on the spatially averaged annual and seasonal values of each pixel. Nega-
tive P and NDVI values denote drying and vegetative stress, and positive values denote
wetting trends and vegetation greening. We also conducted two kinds of correlation analy-
sis to precisely examine and understand the effects of climatic factors (i.e., P), vegetation
conditions (i.e., NDVI), and teleconnections indices (i.e., ENSO and IOD) on wet and dry
spells. We computed spatial correlation to analyze their spatial dynamics on scPDSI, while
for temporal correlation, we conducted a pixel-wise correlation of each variable on an
annual and seasonal scales to understand the temporal dynamics. All relationships were
calculated for the period 1982–2012.

3. Results
3.1. Spatiotemporal Characteristics of Sub-Saharan Africa (SSA) Droughts

The comparison between the characteristics of the two drought datasets (scPDSIPM
and scPDSITH) was explored to determine how the two datasets represent droughts over
the SSA. Figure 2 presents the spatial pattern of the drought frequencies of two scPDSI
datasets across SSA over the period 1979–2012. Figure 2a,b show frequencies for moderate
drought, while Figure 2c,d present frequencies for extreme drought. Overall, both scPDSI
datasets differed in representing drought frequencies over space. Particularly, areas located
in the northwest tips of the SSG, patches north and south of the Congo basin, and patches
surrounding the Kalahari Desert to the southeast tip of Mozambique (on 18◦S–22◦S) showed
similar agreement in detecting moderate and extreme droughts. However, moderate
(extreme) drought occurred more (less) frequently and affected larger (smaller) areas in
scPDSITH relative to scPDSIPM (Figure 2a,d). However, disagreement was found between
the two scPDSI datasets in a few areas, characterized by complex topography, large water
bodies/wetlands, and dense vegetation.
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To analyze the drought intensity over the same across the SSA, the annual mean
intensity was computed. Figure 3 shows maps of the mean annual drought intensity
between the moderate (top panel) and extreme (bottom panel) drought events for both
scPDSI datasets. However, scPDSITH shows more intensification and a larger affected area
than scPDSIPM. Figure 3a,b present spatial intensity for moderate droughts with a similar
spatial pattern and magnitude, as in Figure 2a,b. The results show that locations with
high (low) intensities but extreme droughts are more intensified in scPDSITH relative to
scPDSIPM (Figure 2c,d).
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To understand the trends and temporal changes in drought intensities for each grid,
regional trends in drought intensity for SSA and three selected regions (see Figure 1a) were
investigated, and the results are shown in Figure 4. The interannual variations in moderate
drought for both scPDSI datasets show an increased trend in the whole SSA, the SSG, and
the Southern Africa region (SAR) (Figure 4a–c, respectively). In contrast, only the HoA
exhibited stationarity in drought intensity, but extreme drought intensified over the period
1979–2012.

The relationships between drought and frequency, areal extent, and intensity over SSA
from 1979–2012 were analyzed (Figure 5). Figure 5a,b show the interannual variation in
frequency and areas affected (shown in bar graphs) for moderate (Figure 5a) and extreme
(Figure 5b) droughts. In all, the frequency and area affected (in km) varied considerably,
where more (less) frequent droughts affected larger (smaller) land area (Figure 5a,b).



Remote Sens. 2021, 13, 533 11 of 25

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 26 

SSG, and the Southern Africa region (SAR) (Figure 4a–c, respectively). In contrast, only 
the HoA exhibited stationarity in drought intensity, but extreme drought intensified over 
the period 1979–2012. 

Figure 4. Interannual variation of drought intensity for drought category in SSA over the period 1979–2012 for (a) scPDSIPM 
< −2, (b) scPDSITH < −2, (c) scPDSIPM < −4, and (d) scPDSITH < −4. SSA (black lines), the Sudano-Sahelian–Guinean coast
(SSG) (brown lines), the HoA (gold lines), and Southern Africa region (SAR) (red lines).

The relationships between drought and frequency, areal extent, and intensity over 
SSA from 1979–2012 were analyzed (Figure 5). Figure 5a,b show the interannual variation 
in frequency and areas affected (shown in bar graphs) for moderate (Figure 5a) and ex-
treme (Figure 5b) droughts. In all, the frequency and area affected (in km) varied consid-
erably, where more (less) frequent droughts affected larger (smaller) land area (Figure 
5a,b). 

Figure 4. Interannual variation of drought intensity for drought category in SSA over the period 1979–2012 for (a) scPDSIPM

< −2, (b) scPDSITH < −2, (c) scPDSIPM < −4, and (d) scPDSITH < −4. SSA (black lines), the Sudano-Sahelian–Guinean coast
(SSG) (brown lines), the HoA (gold lines), and Southern Africa region (SAR) (red lines).

Comparatively, in the mid-1980s, 1990s, and 2000s, more areas were significantly
affected by moderate droughts than by extreme droughts. However, the drought-affected
area in scPDSIPM decreased after 1995, while that in scPDSITH increased.

Next, the relationships between drought intensity and frequency were compared
(Figure 5a,d). The temporal changes in drought intensity show opposite trends relative
to frequency in both datasets (Figure 5a,d). Moderate drought shows more intensifica-
tion than extreme droughts from 1995 onwards (Figure 5c,d). However, similar to the
interannual variations in frequency, there is considerable disagreement in the interannual
variations between the scPDSI datasets, especially after 1995. Similarly, more (less) frequent
droughts have low (high) intensity. Thus, our results are consistent with previous regional
studies, where the Thornthwaite method is reported to exaggerate drought frequency and
intensity [8,55].
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3.2. Spatial–Temporal Trends of Wetting and Drying
3.2.1. Spatial Variations in Wetting and Drying Trends

A comparison between the characteristics of the two drought datasets (scPDSIPM and
scPDSITH) was made to understand how they represent trends in the wetting and drying
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conditions across SSA. Figure 6 shows the spatial distribution of linear trends for scPDSIPM
and scPDSITH on a per-pixel basis over the period 1979–2012, estimated based on the M–K
and Sen’s slope estimator. Figure 6a,b show trends of wet–dry variation from the M–K test,
and Figure 6c,d show the direction of the trend based on Theil–Sen’s slope estimator.
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In Figure 6a, scPDSIPM shows a spatially distinct wetting trend in SSG and parts of
the SAR (in the southwest and central areas) at a rate of >0.8/10 years. The HoA shows a
slightly increasing wetting trend (<0.4/10 years), mostly in the interior of the Ethiopian
highlands. Similarly, in Figure 6b, scPDSITH shows slight wetting trends along the SSG
and parts of the central and southwest SAR (i.e., 0.4/10 years).
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Generally, we observe agreement between wetting trends in the other parts of SSA
in the two datasets. The wetting trends in the SSG and SAR are mainly attributed to
greening and increasing P. However, a drying trend dominates the southern part of HoA
(i.e., 30◦E–52◦E, 0◦–20◦S) and the northern part of the SAR in both scPDSI datasets. Distinct
drying trends are observed (decreasing) in both scPDSI datasets (Figure 6b) for many areas
south of the HoA (at >1.2/10 years). In contrast, the equatorial regions and small parts
of the Congo Basin and Guinea coast show drying (wetting) trends. The remaining areas
present no trends in scPDSI. Both datasets show some discrepancies in wetting (drying)
trends in a few areas, and we attribute these to the choice of PET measuring method used.

3.2.2. Temporal Variations in Wetting and Drying Trends

We also examined the temporal variations of regional wetting and drying conditions.
We produced linear trends using the Theil–Sen slope method, and the results are presented
in Figure 7. Interestingly, the interannual variations in wet and dry trends show discrep-
ancies between the two datasets after the mid-1990s, consistent with Figure 5c,d, where
similar results were observed.
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region (SAR) over the period 1979–2012. A positive value indicates a wetting trend, and a negative
value indicates a drying trend with solid blue and red dashed lines.
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In addition, we observed a widening gap between scPDSITH and scPDSIPM after the
mid-1990s in the SSG and HoA, even in cases where both data sets show an increasing
trend, except for the SAR, where the gap narrowed. The decline in the number of weather
stations, time span, and quality of historical climate data over the SSG and HoA, as reported
in [32], may explain this gap, as drought characteristics are sensitive to data time span and
resolution [56], contrary to the more reliable SAR climate data (Figure 7d).

3.2.3. Temporal Variability of Remotely Sensed Precipitation and Vegetation Changes

The variability of P and NDVI were assessed to track dry spells and vegetation stress
and to understand the characteristics of scPSCI variations in response to P and NDVI.
Figure 8 shows the interannual variation in P and NDVI anomalies in SSA and three
regions during 1982–2012 based on the regional averages of P and NDVI anomalies at each
grid. Figure 8 shows that SSA P increased at a rate of 0.12 mm yr−1, whereas the SSG (at
0.036 mm yr−1) and SAR (0.012 mm yr−1) showed slight increases in P. We observed that
periods with increases in P showed increasing NDVI values, which means that vegetation is
usually restored to a normal status after a drought ends (except in the Figure 8e,f for HoA).
This finding is consistent with wetting conditions observed in previous studies [57–62]. In
these previous studies, it was concluded that, in drought conditions in arid and semi-arid
regions, water availability is one of the main drivers of variations in vegetation greenness.
However, the NDVI trend in the SAR showed a declining trend, while P increased over
the period from 1982 to 2012. A similar result indicating a decrease in NDVI during a wet
spell has been reported in [63] over the SAR and is consistent with [64], which showed that
NDVI in tropical regions of Southeast Asia decreased under similar conditions.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26 

periods with increases in P showed increasing NDVI values, which means that vegetation 
is usually restored to a normal status after a drought ends (except in the Figure 8e,f for 
HoA). This finding is consistent with wetting conditions observed in previous studies [57–
62]. In these previous studies, it was concluded that, in drought conditions in arid and 
semi-arid regions, water availability is one of the main drivers of variations in vegetation 
greenness. However, the NDVI trend in the SAR showed a declining trend, while P in-
creased over the period from 1982 to 2012. A similar result indicating a decrease in NDVI 
during a wet spell has been reported in [63] over the SAR and is consistent with [64], 
which showed that NDVI in tropical regions of Southeast Asia decreased under similar 
conditions. 

Figure 8. Interannual variation of P (mm yr−1) and NDVI anomalies in SSA and three regions from 1982–2012. The solid 
lines indicate linear fits from 1982–2012. (a,b) Sub-Saharan Africa (SSA), (c,d) the Sudano-Sahelian-Guinean coast (SSG), 
(e,f) the Horn of Africa (HoA), and (g,h) the Southern Africa region (SAR). 

3.3. Correlation Analysis of Dry–Wet Spells and Influencing Factors 
3.3.1. Influences of Land Surface and Vegetation Variables 

Changes in climate and LULC concerns are observed as challenges for land and water 
resource management. In this study, we characterized the relationship of hydroclimate 
and vegetation variables in dry and wet conditions in SSA, with a focus on P and NDVI 
to understand their controlling roles. We analyzed the relationships between drought and 
both P and NDVI. Figure 9 presents scPDSI spatial correlation results in relation to P and 

Figure 8. Cont.



Remote Sens. 2021, 13, 533 16 of 25

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26 

periods with increases in P showed increasing NDVI values, which means that vegetation 
is usually restored to a normal status after a drought ends (except in the Figure 8e,f for 
HoA). This finding is consistent with wetting conditions observed in previous studies [57–
62]. In these previous studies, it was concluded that, in drought conditions in arid and 
semi-arid regions, water availability is one of the main drivers of variations in vegetation 
greenness. However, the NDVI trend in the SAR showed a declining trend, while P in-
creased over the period from 1982 to 2012. A similar result indicating a decrease in NDVI 
during a wet spell has been reported in [63] over the SAR and is consistent with [64], 
which showed that NDVI in tropical regions of Southeast Asia decreased under similar 
conditions. 

Figure 8. Interannual variation of P (mm yr−1) and NDVI anomalies in SSA and three regions from 1982–2012. The solid 
lines indicate linear fits from 1982–2012. (a,b) Sub-Saharan Africa (SSA), (c,d) the Sudano-Sahelian-Guinean coast (SSG), 
(e,f) the Horn of Africa (HoA), and (g,h) the Southern Africa region (SAR). 

3.3. Correlation Analysis of Dry–Wet Spells and Influencing Factors 
3.3.1. Influences of Land Surface and Vegetation Variables 

Changes in climate and LULC concerns are observed as challenges for land and water 
resource management. In this study, we characterized the relationship of hydroclimate 
and vegetation variables in dry and wet conditions in SSA, with a focus on P and NDVI 
to understand their controlling roles. We analyzed the relationships between drought and 
both P and NDVI. Figure 9 presents scPDSI spatial correlation results in relation to P and 

Figure 8. Interannual variation of P (mm yr−1) and NDVI anomalies in SSA and three regions from 1982–2012. The solid
lines indicate linear fits from 1982–2012. (a,b) Sub-Saharan Africa (SSA), (c,d) the Sudano-Sahelian-Guinean coast (SSG),
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3.3. Correlation Analysis of Dry–Wet Spells and Influencing Factors
3.3.1. Influences of Land Surface and Vegetation Variables

Changes in climate and LULC concerns are observed as challenges for land and water
resource management. In this study, we characterized the relationship of hydroclimate
and vegetation variables in dry and wet conditions in SSA, with a focus on P and NDVI to
understand their controlling roles. We analyzed the relationships between drought and
both P and NDVI. Figure 9 presents scPDSI spatial correlation results in relation to P and
NDVI anomalies in SSA for the period 1982–2012 on an annual scale. The correlation results
show the spatial patterns of pixels, where shaded areas denote areas where the statistical
tests were significant at the 5% level (Figure 9).

In MJJASO (see Figure A1a,b), the northern part of SAA (wet) and southern part of
SSA (dry) contrast shows a distinct north–south pattern with P and NDVI, and the wet/dry
contrast appears to shift seasonally. Similarly, in NDJFMA (Figure A1c,d), correlation
patterns changed as expected with the same significance and order of magnitude as above.
This result is consistent with past studies asserting that P favors vegetation growth and that
drought events may disturb vegetation growth [32]. The scPDSI spatial correlation with
P was expected, as P was used in the computation of scPDSI, and the contribution of P is
accounted for in the model. However, using a different P to analyze droughts’ relationships
serves as a further verification step for the drought. Through this analysis, we quantify the
sensitivity of drought to P changes for each grid point.
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Figure 9. Pixel-wise correlation coefficients between annual mean PDSI with the annual mean P and NDVI anomalies in
SSA for the period 1982–2012: (a) scPDSIPM and P anomaly, (b) PDSITH and P anomaly, (c) scPDSIPM and NDVI anomaly,
and (d) scPDSITH and NDVI anomaly. The shaded areas denote areas where the statistical tests were significant at the 5%
level, and areas that are not significant at the 5% level are masked out (white shading).

3.3.2. Influences of Teleconnections

The circulation systems are known to impact not only oceanic variability but also the
climate of areas surrounding the oceans. To quantify the relationship between drought
in SSA and the preceding teleconnection indices (i.e., ENSO and IOD), we performed
pixel-wise correlation, and the estimated correlation was tested at a 95% significance level.
Figure 10 shows pixel-wise correlation coefficients based on annual values between spatially
averaged scPDSI and circulation indices (i.e., ENSO and IOD) using simple correlational
analysis to understand the temporal dynamics. Overall, on an annual scale (Figure 10),
both ENSO and IOD show two phases (dipole). Figure 10a,b show positive anomalies in
the SSG west tips at latitudes 0◦–18◦S, the southern tip, and the southeast of SAR, and
show negative anomalies east of 5◦N–15◦S. In contrast, the IOD in Figure 10c,d shows a
similar order of magnitude in the phase opposite to that of ENSO, with widespread weak
correlation values with respect to ENSO and IOD responses.
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4. Discussion

SSA is essentially an agrarian society, where agriculture systems depend wholly on P.
Thus, any delay in P in space and time places substantial demand on water availability
for agricultural production and other sectors of society. There is enough evidence that the
severe drought events in SSA over the years have affected millions of people, their liveli-
hoods, and the economy [2]. However, our understanding of SSA drought characteristics,
their trends, and their underlying mechanisms is largely hampered by a lack of reliable,
long-term climate data from weather stations.

The recent availability of specialized global drought datasets and remote sensing
makes it possible to assess drought in any location around the globe. Here, we have
combined multiple dataset sources to assess drought characteristics, their trends, and their
underlying mechanisms to understand drought evolution in SSA. Based on scPDSI data
(based on the Penman–Monteith and Thornthwaite methods), we assessed the drought
characteristics and long-term trends using Mann–Kendall and Theil–Sen slope tests in
SSA over the period 1979–2012. In addition, to analyze the temporal patterns and trends
of land surface variables, we used remotely sensed P and NDVI anomalies based on the
M—K and Theil–Sen slope tests. Moreover, drought events linked to land surface variables,
vegetation changes, and climate circulations (i.e., ENSO and IOD) were investigated using
simple correlational analysis to understand the factors that drive these drought changes in
the region.

In our first analysis, we assessed drought characteristics in terms of the frequency,
intensity, and affected area based on annual mean scPDSIPM and scPDSITH across SSA over
the period 1979–2012. Two fixed thresholds (i.e., scPDSI < −2 and −4) were used to denote
moderate and extreme droughts, respectively. These thresholds have been widely adopted
and used in many studies [6,8,9,12].

Our results show that the two scPDSI datasets differed in their representation of
drought characteristics across SSA. The spatial analysis (Figures 3 and 4) highlight the
similarity in capturing the frequency (intensity) of moderate and extreme droughts in the
northwest tips of the SSG, patches north and south of the Congo basin, and patches 18◦S–
22◦S of the Kalahari Desert to the southeast tip of Mozambique. In contrast, disagreements
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in the datasets were observed in a few areas in SSA that are characterized by a complex
topography, large water bodies/wetlands, and dense vegetation in both scPDSI datasets.

Moderate droughts occurred more frequently than extreme droughts (see Figure 3).
However, scPDSITH occurred more frequently and affected larger areas relative to scPDSIPM
(Figure 3a–d). This finding is consistent with previous studies where scPDSITH exaggerated
drought intensification (as it responds only to changes in T) relative to scPDSIPM (which is
constrained by the inclusion of many climate variables). Similar reasons are assigned in
Figure 4, but for intensity.

We further investigated the trends in drought intensities for each grid. Here, we
focused on the regional trend in drought intensities over the whole SSA and three selected
regions (see Figure 5a,b). Results showed an increased trend in SSA, the SSG, and the
SAR, but not for the HoA, which showed stationarity in drought intensity over the period
1979–2012.

The relationship between drought frequency and areal coverage was investigated.
Figure 6a,b show the interannual variation in frequency (shown as a line graph) and affected
areas (shown as bar graphs) under moderate and extreme droughts. The frequency and
area affected by droughts varied considerably (Figure 5a,b). This result was also reflected
in Figure 6c in the temporal changes in drought intensity, but an opposite trend was
found. This relation is expected, as drought intensity is related to frequency of occurrence.
However, considerable disagreement was found after 1995, where both dataset estimates
affected areas differently. scPDSIPM followed an opposite trend relative to scPDSITH, which
is consistent with previous regional studies where the Thornthwaite method exaggerated
drought frequency and intensity and hence drought-affected areas [8,55].

We analyzed the trend of wet–dry variation over the period 1979–2012 for both
datasets. The findings showed varying magnitudes and trend values for the region. The
spatially distinct wetting trend in Figure 7a,b is consistent with the greening and increasing
P in parts of the SSA, consistent with previous studies [9]. However, some discrepancies
observed in both datasets in capturing the wet/dry spells may be due to the choice of PET
measurement method, consistent with past studies [9,16].

Furthermore, we investigated the trends in remotely sensed climate variables and
vegetation changes to understand scPSDI variability in response to P and NDVI. We
determined a regional average of P and NDVI anomalies for the whole SSA at each grid
point to track dry spells and vegetation stress. Here, we used satellite data for P and NDVI
products for a time span of 1982–2012 to assess the interannual variation of P and NDVI
anomalies in SSA and three selected regions (see Figure 8).

Generally, there appears to be a high degree of similarity in the trends of P and NDVI
in estimating wet and dry spells between both scPDSI datasets, with fluctuating increases in
P and NDVI anomaly time series in both datasets (Figures 7 and 8). Increased P anomalies
over SSA (at a rate of 0.12 mm yr−1), the SSG (at 0.036 mm yr−1), the SAR (0.012 mm yr−1),
and the HoA (0.012 mm yr−1) are consistent with wetting conditions in the region shown
in previous studies on P leveling [14,21].

However, an increase in P anomalies corresponded to increased interannual variability
in NDVI values, which means that vegetation is usually restored to a normal status after a
dry spell ends—one exception being the SAR, where, over the period from 1982 to 2012,
NDVI variability showed a declining trend and P an increasing trend. The annual P cycle
in this region is tied to the passage of the West African Monsoon (WAM), which accounts
for nearly 80% of the region’s annual P amount [63,64], thus exposing the region (SSG and
HoA) to adverse future climate vulnerability [17–19,63,65]. The result of NDVI decline
over the SAR is consistent with results reported in [66]. In addition, our findings further
corroborate [67] on the tropical regions of Southeast Asia, where the authors found that
NDVI was insensitive to drought, even during wetting spells.

In order to explain the SSA characteristics of dry–wet variation, we conducted cor-
relation analysis to understand the relationship between scPDSI and climatic, vegetation,
and atmospheric processes. The correlation results show a spatial pattern of pixels over



Remote Sens. 2021, 13, 533 20 of 25

the period 1982–2012 (annual scale in Figure 9 and seasonal scale in Figures A1 and A2).
Generally, a positive correlation between P (NDVI) anomalies and PDSI is widespread
across the HoA, the SAR, and patches of the SSG, especially along the Guinea Coast at
annual and seasonal scales. A seasonal shift from northern and southern part of SSA
was observed for monsoon P anomalies in response to PDSI (Figure A1). We found that
MJJASO (Figure A1a,b) sensitivities were evident largely in the SSG, while those of ND-
JFMA (Figure A1c,d) were evident in the SAR and HoA. Similarly, in Figure A2, the NDVI
anomalies in relation to PDSI are consistent with P anomalies, but at varying magnitudes
in space. This finding is consistent with both the annual and seasonal climatology of P and
NDVI and underscores these two variables as major influencing variables with respect to
extreme events in SSA. Our findings are consistent with analyses of the SPEI and NDVI
relationship in [68], wherein it was concluded that water availability is the determinant
factor for vegetation change in different climate regions of Southeast Asia.

Last but not least, previous studies have attempted to link drought episodes to climate
circulations (see [56] in the case of the USA). Regarding SSA, both Sheffield [23] and
Katchele [22] mentioned that studying the links between droughts and teleconnections is
useful but remains a key challenge. We performed pixel-wise correlation to understand the
temporal dynamics (Figure 10). The result showed that ENSO and IOD have a significant
impact on wet and dry spells and that their geographical impact is consistent with that of
P and NDVI anomalies. Despite weak correlation values, this result agrees with similar
studies linking drought episodes to ENSO and IOD in Africa [31,32]. A negative (positive)
correlation is associated with strong La Niña (El Niño) events, enhancing (reducing) P and
hence wet (dry) spells. Similarly, IOD, as a coupled ocean–atmosphere mode, indicates a
negative (positive) phase described by cool (warm) SSTs and impacts drought episodes in
places consistent with ENSO but in an opposite phase (Figure 10c,d, bottom panel).

5. Conclusions

We assessed the impact of different PET methods (i.e., scPDSIPM and scPDSITH) on
long-term drought trends and used remotely sensed P, vegetation change, and observed
climate circulation indices (i.e., ENSO and IOD) to investigate how these variables respond
to droughts across SSA. Compared to previous regional drought assessments of SSA, we
summarize noteworthy novelties:

1. The spatial analysis of scPDSITH and scPDSIPM differed in their representation of
drought characteristics (i.e., frequency, affected area, and intensity) across SSA. The
interannual variations in moderate droughts showed a decreasing trend and, after the
mid-1990s, an abrupt change toward an increasing trend. We found similar results in
the extreme drought data.

2. Both scPDSI data sets showed significant drying trends in drought intensity and an in-
creasing trend in the affected areas. However, the Thornthwaite method exaggerated
droughts relative to the Penman–Monteith method in the warming climate.

3. Generally, increased wet spells found in transition and dry climatic regions across SSA
are due to increased P. The wet and dry trends were consistent and significant in both
datasets over SSA, where a downward trend (1979–1995) indicates increased intensity,
and an upward trend (1995–2012) suggests decreased intensity. These findings suggest
that floods and droughts have become more frequent in recent times as a result of
global warming.

4. A general negative correlation between P anomalies and PDSI was found across SSA,
with the strongest relationships in locations along the SSG, HoA, and SAR. Positive
correlations of NDVI anomalies and PDSI across SSA tend to be in small patches
with modest exceptions during monsoon and post-monsoon seasons in the SSG, HoA,
and SAR. In addition, PDSI is impacted by ENSO and IOD, with a similar overlap in
geographic distributions.
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