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Abstract: The nascent graph representation learning has shown superiority for resolving graph
data. Compared to conventional convolutional neural networks, graph-based deep learning has
the advantages of illustrating class boundaries and modeling feature relationships. Faced with
hyperspectral image (HSI) classification, the priority problem might be how to convert hyperspec-
tral data into irregular domains from regular grids. In this regard, we present a novel method that
performs the localized graph convolutional filtering on HSIs based on spectral graph theory. First,
we conducted principal component analysis (PCA) preprocessing to create localized hyperspectral
data cubes with unsupervised feature reduction. These feature cubes combined with localized ad-
jacent matrices were fed into the popular graph convolution network in a standard supervised
learning paradigm. Finally, we succeeded in analyzing diversified land covers by considering lo-
cal graph structure with graph convolutional filtering. Experiments on real hyperspectral datasets
demonstrated that the presented method offers promising classification performance compared
with other popular competitors.

Keywords: hyperspectral image classification; graph representation learning; localized graph
convolutional filtering; graph convolutional network; deep learning

1. Introduction

The hundred contiguously narrow bands of hyperspectral images (HSIs) feature the
hyperspectral remote sensing research fields [1]. HSIs make high-resolution spectral or
spectral-spatial information extraction possible on account of their ability to carry a high
volume of information [2]. Hyperspectral information extraction often involves noise
estimation, endmember extraction, spectral unmixing, classification, and target detection
phases based on hyperspectral data processing and analysis [3—-6]. Hyperspectral remote
sensing image analysis has a great power to recognize the materials of the land surface
at a fine level compared to RGB (red, green, and blue) or multispectral image analysis
[7,8]. However, it is unable to ignore that adjacent bands in high-dimensional hyper-
spectral data might be highly correlated, resulting in the Hughes phenomenon (or called
the curse of dimensionality) [9], so desiring a large number of labeled samples [10,11].
And then, varying spectral signature and limited training samples at hand would prob-
ably raise the unanticipated dilemma that we have to solve the small sample classifica-
tion problem [12]. When it comes to HSI classification tasks, the early-staged machine
learning methods might (1) heavily rely on the handcrafted spectral-spatial features [13],
(2) fail to accurately learn class conditional densities [2], (3) not accommodate limited
training samples faced with the high dimensionality of hyperspectral data [6]. In the
above regard, Gao et al. (2014) propose a subspace-based approach to reduce the dimen-
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sionality of the input space and facilitate the exploitation of the limited training samples
[14]. Yu et al. (2016) introduced a novel supervised classifier for HSI classification com-
bining spectral and spatial information [15]. Gao et al. (2016) combined locali-
ty-preserving projection and sparse representation to balance the high dimensionality of
hyperspectral data and the limited training samples [16]. Yu et al. (2017) integrated the
locality-sensitive discriminant analysis with the group sparse representation for HSI
classification [17]. Gao et al. (2017) presented an optimized kernel minimum noise frac-
tion transformation algorithm for the efficient feature extraction of HSIs [18]. Yu et al.
(2017) presented a multiscale super pixel segmentation method to model the distribution
of classes based on spatial information [19]. Henceforward, the deep learning technique
has been increasingly favored by the scientific community attributing to its great power
of abstracting representations to classify hyperspectral cubes into certain land cover
categories [20-23]. As a consequence, Cui et al. (2019) proposed a multiscale spa-
tial-spectral convolutional neural network (CNN) to integrate multiple receptive fields
fused features and multiscale spatial features at different levels [24]. Gao et al. (2019) in-
tegrated t-distributed stochastic neighbor embedding with a CNN to capture the poten-
tial assembly features of HSIs [25]. Yu et al. (2020) proposed a novel method to exploit
local spectral similarity and nonlocal spatial similarity by considering spatial consistency
[26]. Liu et al. (2020) proposed a novel lightweight shuffled graph convolutional net-
work (GCN) to accelerate the training procedure through a limited number of training
data [27]. Making a mark on the latest, the recent novelties regarding graph representa-
tion learning have attracted more and more attention from the community.

Graph neural networks (GNNs) are a class of deep learning methods designed to
perform inference on data described by graphs [28]. Deep learning as a data-driven ma-
chine learning technique has undoubtedly brought enormous prosperity in hyperspec-
tral remote sensing intelligent information extraction depending on the high-level rep-
resentational ability [29]. CNNs, as a kind of attractive representation of deep learning
models, have also achieved promising results in analyzing HSIs [1]. Particularly, the
CNNs’ localized kernels could efficiently recognize identical features beyond their spa-
tial locations. Although CNN has been successful on the domains with underlying
grid-like structured data, the CNN-based methods suffer from several intrinsic draw-
backs summarized by the previous studies [30,31], i.e., (1) only adapting to the regular
squares regardless of the geometric changes in object regions, (2) difficulty in capturing
the valuable information of class boundaries during convolving a punch of patches as
the convolution kernels have fixed shape, size, and weights, (3) often take a longer
training time to fit huge parameters, (4) incapable of modeling topological relations
among samples whether local or nonlocal feature extraction. In this regard, the
graph-based convolutional neural networks appear relatively promising to overcome
the aforementioned defects and show excellent characteristics, i.e., (1) competently pro-
cess the irregular image regions in the non-Euclidean (or non-grid) graph data structure,
(2) multiple graph inputs can be dynamically updated and refined with multiscale
neighborhood [30]. It is worth mentioning that graph representation learning repre-
sented by GCNs has received increasing attention in quantifying nonlinear features in
irregular graphs converted from hyperspectral data.

Inspired by the previous works on spectral graph-based CNN [31], its key compo-
nents have been employed to adapt the HSI classification task (see Figure 1). The main
contributions of this study are summarized below.

(1) The usual supervised setting regarding fitting the graph-based learning models
is designed through collecting the patch-based feature cubes and localized graph adja-
cent matrices.

(2) The graph convolution layer is used to learn the spatially local graph represen-
tation and to represent the localized topological patterns of the graph nodes.

(3) The experiments demonstrate that the presented study could achieve promising
classification performance based on the localized graph convolutional filter.
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Figure 1. The overview of hyperspectral image (HSI) classification with localized graph convolutional network (GCN).

The rest of this paper is organized as follows. We first reviewed the latest works
relevant to HSI classification with the graph-based methods in Section 2. Then, we pro-
vide the preliminaries and definitions in Section 3. The technical details of our
graph-based representation learning method are presented in Section 4. Next, we ana-
lyze the experimental results and discuss the derived findings in Section 5. Finally, the
concluding remarks are given in Section 6.

2. Related Work

Graphs are a kind of universal representation of non-Euclidean structured data,
which could encode complex geometric structures [32]. The following studies regarding
the graph-based HSI classification approaches have gained significant attention in the
last few years. Therefore, we offer a glimpse of their scientific contributions. Hyperspec-
tral data usually reside on a nonlinear sub-manifold, causing the inefficiency of linear
algorithms [1]. Manifold learning-based algorithms have been applied for the explora-
tion of the nonlinear structure of HSI [33]. Graph-based semi-supervised learning usu-
ally constructs a graph from the labeled and unlabeled samples for manifold representa-
tion [2]. Ma et al. (2014) presented a study of the local manifold learning to preserve the
local geometry of each neighborhood by finding the relationships between the nonlinear
data points [34].

Sparse representation-based graph learning algorithms are good at obtaining the
adjacency relationships among the samples and weights [35]. Tan et al. (2015) con-
structed a block sparse graph by combining sparse representation and the regularized
collaborative representation for HSI classification based on discriminant analysis [36].
Luo et al. (2016) employed manifold learning based on sparse representation to illustrate
the manifold structure of HSI [37]. De Morsier et al. (2016) proposed a graph representa-
tion with the kernel low-rank and sparse subspace clustering for the classification of his,
assuming that hyperspectral data lies on the union of manifolds [38]. Based on the pre-
vious works, Shao et al. (2017) proposed a probabilistic class structure to estimate the
probability relationship between each sample point and each class of the whole data [39].
Hong et al. (2019) proposed a graph-based semi-supervised learning method for analyzing
the discriminant behavior of the labeled samples to assess the class separability [40].

As spectral information alone is not useful for discriminating different classes, the
superior classification performance could be achieved through exploiting the spatial
neighborhood information along with spectral information [41]. Camps-Valls et al. (2007)
presented a graph-based composite kernel model for learning spectral-spatial infor-
mation in a semi-supervised way [42]. Gao et al. (2014) proposed a two-layer
graph-based framework to overcome the challenges of limited data and the compound
distribution of classes [43]. Martinez-Usd et al. (2014) proposed a transductive approach
for graph-based semi-supervised learning based on the probabilistic relaxation theory



Remote Sens. 2021, 13, 526

4 of 22

[44]. Wang et al. (2014) classified newly introduced samples by constructing the spec-
tral-spatial graph while the unlabeled samples could be randomly selected relying on
the spatial information [45]. Luo et al. (2016) proposed a graph-based model considering
both spatial and spectral information [46].

The sparse representation-based graph semi-supervised learning technique com-
bined with spectral-spatial feature learning has been proven to be effective to boost the
resultant classification performance. Kruse et al. (2003) constructed a hypergraph model
to explore the high-order relationships among training samples and then performed a
semi-supervised hypergraph learning based on a locality constraint low-rank represen-
tation method [47]. Chen et al. (2017) conducted the double sparse graph discriminant
analysis based on mining the positive and negative relationships among the data points
for the dimensionality reduction in HSI in a semi-supervised manner [48]. Xue et al.
(2017) adopted the sparse graph regularization for getting a more accurate classification
map [49]. Aydemir and Bilgin (2017) used subtractive clustering to select training sam-
ples and extract the kernel sparse representation features to fit a support vector machine
(SVM) classifier [50].

In the latest literature, GCNs have been successfully applied in irregular (or
non-Euclidean) data representation learning [8]. The label information of each sample is
propagated to its neighboring samples until a global stable state is reached on the com-
plete dataset [2]. Earlier, the feature extraction and classification module has been as-
sembled separately or executed step-by-step. As such, some scholars tried the spatial fu-
sion technique to extract the spectral-spatial features, and then the fused features are fed
into a CNN framework to learn the class distribution [12,51]. Cao et al. (2016) proposed
a graph-based convolutional neural network, which used the Schroedinger Eigenmaps
algorithm by incorporating a cluster potential matrix to encode spatial proximity and
takes CNN as a spectral-spatial classifier to predict the accurate labels of pixels [12].
Shahraki and Prasad (2018) defined three spectral-spatial weighted affinities, (1) un-
supervised adjacency matrix by using the raw reflectance spectra, (2) supervised adja-
cency matrix through extracting discriminative features using CNN, and (3)
semi-supervised adjacency matrix via learning the limited amount of labeled samples
and extensive unlabeled samples, to demonstrate the data resided on manifold structure
(i.e., graph structure) [52]. Liu et al. (2020) extracted the extended morphological pro-
files and then conducted graph construction by the k -neighbors method, then fed into
a GCN framework [20].

Recent advances in HSI classification also tended to improve the traditional
GCN-based methods to inspire novelties in diverse learning paradigms [53]. As tradi-
tional GCNs might fail to utilize spectral signatures without considering spatial struc-
tures embedded in hyperspectral data, Qin et al. (2019) presented a semi-supervised
spectral-spatial GCN framework and claimed that a general backpropagation rule of
error could benefit the final classification performance [7]. Wan et al. (2019) made mul-
tiple graph inputs dynamically updated and refined with a novel dynamic graph con-
volution operation, then multiple graphs with different neighborhood scales could serve
for extracting spectral-spatial features in different scales [11]. Hong et al. (2020) intro-
duce the mini-batch strategy to improve GCN, which is capable of processing large-scale
data and out-of-samples, and then jointly fused CNN (to extract the spectral-spatial
features) and GCN (to analyze the relation representations) by testing three fusion
schemes [10]. The deeply semi-supervised learning models have drawn more attention
depending on their peculiar advantages of mining the unlabeled data to alleviate the
annotating burden in the last couple of years [54].

Relevant to this study, most related works pay attention to the graph-based
semi-supervised learning methods for HSI classification. The graph-based
semi-supervised technique makes the input data built on the full graph, which combines
the labeled and unlabeled nodes by employing a graph Laplacian regularizer when
training and evaluating node classification models. The unlabeled nodes are completely
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observed during training or testing, whereas the standard formulation of
semi-supervised learning requires the independent and identically distributed assump-
tion between the labeled and unlabeled nodes [55]. In this case, the special concern of
how to follow the usual supervised setting is raised as a research problem associated
with our scientific motivation in this study.

3. Preliminaries
3.1. Graph Structure

An undirected graph is represented by G = (V,E, A). V is a finite set with
|V| =n vertices which signify both the labeled and unlabeled data samples. E is the

edge set which denotes the similarities among the labeled samples as well as the unla-

beled samples from the dataset. The A € R is a weighted adjacency matrix (i.e.,
graph weights) encoding the connection weight between two vertices. Note that, given a

signal X defined on the nodes of the graph, which can be regarded as a vector x € R”,

X; isthevalueof X atthe i™ node.

3.2. Adjacency Matrix

The graph adjacency matrix is usually calculated by measuring the similarity be-
tween two spatial neighborhoods. The adjacency matrix can be denoted as

A= [ay.] € R™", which defines the relationships (or edges) between vertexes. Each

element a;, € A canbe generally computed by using the following:

2
[ x|

(1) the radial basis function @, ; =€Xp| — 5 [8] or the Gaussian similar-

’ o

2
[ x|
ity function @, ; =e€xp| — 5 [2], where O is a parameter to control the width
y o

of the neighborhoods, the vectors X; and X; denote the spectral signatures associated

to the vertexes Vv, and v, respectively;

1

p|P
, P =1 is defined between

C
(2) the distance function a; = ”X”p :(Z‘Xic —X,
c=1

two samples X; and X, where p isan optional parameter, and C is the dimension

of the feature vector. When p is 1 or 2, it becomes Manhattan distance or Euclidean
distance (i.e., used in this study), respectively. The distance metric of all sample pairs can

form a symmetric distance matrix Amz[a[j] € R™". For example, a; at row i and

column j in the matrix A denotes the distance between the i pixel and the j i
pixel [20].

3.3. Graph Laplacian
Once A is given, the corresponding graph Laplacian matrix L. can be defined as
L=D-A, where D=diag (a'l 7 SO dN) is a diagonal matrix representing the

degrees of A, and d, = z,«% is the degree of the node i. To enhance the generali-
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zation ability of the graph, the symmetric normalized Laplacian matrix L can be given
1 1 1 1

as L=D 2LD 2> =1-D 2AD ?, where I isan identity matrix [32].

3.4. Graph Fourier Transform
As L is a real symmetric positive semidefinite matrix, it has a complete set of or-

thonormal eigenvectors {ui} € R" known as the graph Fourier modes [31]. The asso-

ciated ordered real nonnegative eigenvalues {/11.} € R" of the set of eigenvectors can

be identified as the frequencies of the graph. The Laplacian is further diagonalized by
the Fourier basis U = [u l.] € R, such that we could perform spectral decomposition

on L. So, we could have L =UAU™, where U =(u,,u,,...,u,) is the set of ei-

n

genvectors of L and A =diag([4,,...,4,]) € R"". As U is the orthogonal matrix,

ie, UU' =E, the L canbe writtenas L= UAU"' = UAU" . In this regard, there is

asignal x € R", its graph Fourier transform can be defined as X =U"x e R", and its
inverse is X = UX [56]. Furthermore, the given basis functions of F can be equiva-
lently represented by a set of eigenvectors of L [8], Therefore, the F of f ona graph

can be expressed as G(F[ f ]) =U" f , and the inverse transform becomes
f=UG(F[f]).

4. Proposed Method
4.1. Graph Construction

Whether the graph-based quasi-semi-supervised learning in the literature or the
usual supervised learning in this study, both require the construction of graph data from
the labeled and unlabeled samples using a graph Laplacian regularizer to smooth the
classification function for the data manifold [2]. Accordingly, the high-dimensional hy-
perspectral data could be transferred into a low-dimensional subspace adapting to
low-dimensional modeling and computation. Here, a graph was constructed with nodes
and edges, where the nodes were specified by the unlabeled and labeled samples,
whereas the edges specified the similarities among the labeled as well as the unlabeled
samples. The effect of the Laplacian regularizer depends upon the construction of the
graph adjacency matrix. As illustrated in Figure 2, the construction of the graph struc-
ture involved (1) the determination of localized graph adjacency relationships and (2)
the calculation of multiple graph weights that have the number of samples. Finally, the
correct label of land cover classes could be assigned to each patch-based hyperspectral
cube after fitting the deep graph representation model in a standard supervised learning
paradigm.
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Figure 2. The presented graph representation learning framework for HSI classification with the
localized graph convolutional filter. Here, the localized feature cubes were created by using a
principal component analysis (PCA) transformation.

The high-dimensional data distribution might form an overlap of multiple mani-
folds [2]. The existing methods assume that hyperspectral data are a single manifold
(follows label smoothness assumption) or multiple well-separated manifolds (i.e., dis-
satisfy label smoothness assumption). A graph can be constructed with k -nearest
neighbor (k -NN) edges. The nearby nodes are strongly connected and have similar la-
bels. Therefore, the original hyperspectral data are spectral vectors structured in regular
grids requiring to be converted into graphs in the irregular (or non-Euclidean) domain
before deeply learning graph representations, given hyperspectral data matrix
X € R™, where n isthe number of samples, and ¢ (e.g., 10) is the feature dimension,
Because hyperspectral data contain redundant information of a huge volume, feature
reduction is one of the widely used techniques in machine learning-based HSI pro-
cessing [40,48]. In terms of deep learning methods represented by CNNs, the contribu-
tion of using principal component analysis (PCA) has been known to be limited. As for
the presented GCN, we found the PCA transformation was workable to enhance the
classification performance. In this regard, we tried the PCA preprocessing (note that the
number of components was set as 10) to extract unsupervised features and reduce the
effects of intrinsic data correlation and noise. Finally, the graph adjacency matrix could
be constructed by the k& -NN.

The k -NN based graph construction method is most favored by the remote sens-
ing community [2]. The adjacent matrices (i.e., graph weights) of a k-NN graph are
computed by selecting k -connected neighbor nodes closest to the central node X,
from the given data. That is, to compute the weighted graph of k -neighbors for pixels
in XeR"™, a set of localized weight matrices (i.e., adjacent matrices) {Ai }i:n will be

normally calculated among all labeled and unlabeled samples to participate in the classi-
fication procedure. So, the neighbor nodes X; and X, have an associated weight (e.g.,
w; =0 means no connection). Notice that most graph construction methods use & -NN

to generate adjacent matrices (adjacent graph). Nevertheless, & -NN might fail to obtain
sufficient discriminant information.
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4.2. Graph Convolution Filter

There are two strategies to define convolutional filters, either from a spatial ap-
proach or from a spectral approach [31]. The convolution theorem defines convolutions
as linear operators diagonalized on the Fourier basis (represented by the eigenvectors of
the Laplacian operator) [57]. Given two functions f and g, then their convolution can

be written as  f(¢)* g(¢) = J.OO f(r)g(t—7)dr, where ¢ is an independent variable,

T is the shifting distance, and * denotes the convolution operator (or using *G de-
notes convolution operator on the graph in the Fourier domain). Through the
well-known theorems presented in [58], the convolution can be generalized to

f*g=F"{F[f]xF[g]}, where X is the element-wise Hadamard product. Hence,

the convolution operation on a graph can be converted to define the Fourier transform F
or find a set of basis functions. According to the graph Fourier transform addressed be-
fore, the convolution between f and g on a graph can be further expressed as

G(1r+e)=U{[Ur]<[UTe]}.

4.3. Localized Graph Convolution

When it comes to the construction of localized graph convolution operators, spatial
approaches provide filter localization via setting the finite size of the kernel, and spectral
approaches, such as spectral filtering, could provide a well-defined localization operator
on graphs via convolutions with a Kronecker delta implemented in the spectral domain
[56,59]. In this regard, spectral filtering would be an effective approach to construct a

graph convolution filter. Assume that by imposing an additional spectral filter g, on
the Fourier transform of a graph, we could have
G((f*g,])=g,(L)f =g,(UAU") f =Ug,(A)U" f, where g,(A) is the func-
tion of the eigenvalues A of L with respect to the variable @ . The parameter

0 <cR" is a vector of Fourier coefficients. As g, is a non-parametric filter, so
2, (A) = diag(#) . And then, we find that U'g could be equivalently written as

gg(A) or g,. That is, the convolution on a graph can be formulated as

G([/*g,])=Ug,U"
The non-parametric filters might have an intrinsic deficiency to be localized in node
space and have a higher learning complexity [31]. In this case, the polynomial filters are

K-l
introduced to parameterize the localized filters and defined as g,(A)= ZHkAk,
=0

where the parameter 0 = [HZ] € R* is a vector of polynomial coefficients. The value at
the vertex j of the filter g, centered at the vertex i is given by

(ga (L)ﬁj )i = (gg (L))l_ = Zk o, (Lk )i 7 where the kernel is localized via the con-

volution with a Kronecker delta function 51. e R". The K relates to the minimum
number of edges connecting two vertices on the graph (i.e., the shortest path distance).

As a result, spectral filters represented by k™ order polynomials of the Laplacian are
exactly K -localized enclosing K parameters.

When the graph convolution filter is localized with respect to K, the cost to filter a
graph signal might be relatively high because of the multiplication with the Fourier basis

U. A practical solution is to parameterize g,(L) as polynomial functions [31], e.g.,

the k" order truncated expansion of Chebyshev polynomials [60] and Lanczos algo-
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rithm [61], which can be computed recursively from L . Therefore, the localized graph
convolution filter can be parameterized as the truncated expansion of the Chebyshev

K-l - K-l . ,
polynomial G([f*go]) ~ ZGkT;((L)f and g,(A)= ZOk,Tk (A), where 8" e R*
k=0 k=0

is a vector of the Chebyshev coefficients [4]. The T, (L)eR™ and T, x (1~\) € R™ can
be evaluated at the scaled Laplacian L = 2L/ A =1 and A=2A/ Aux — 1, respec-
tively. L and A denote the normalized L and A , respectively. The A4 de-

notes the largest eigenvalue of L.

4.4. Graph-Based CNN
Regarding the architecture of the graph-based CNN (see Figure 3), we have the fol-

1 1
lowing propagation rule for fitting a designed GCN H'"' = [D 2AD H'W' + blj

[8], where A=A+I and ]~)i’i = Zj Al ; are defined as the renormalization terms of
A and D, respectively. Moreover, H' denotes the output in the /" layer and & ()

is the activation function (e.g., ELU in this study) with respect to the weights { W/}i1

and the biases {bl}il of all layers (l =12,..., p) . Particularly, the computational ef-

ficiency of the presented method is further improved using the Chebyshev approxima-
tion addressed by Rhee et al. (2017) [62].

S1
i n
i i
HSI Cubes (11x11x10) :I Sampling Strategy 1! HSI Cubes (11x11x10)
Input i I
CNN T )
Troining: n_class*60 + Localized Adjacency GCN
igh
Y S S PL_ e R
| | ( Fiers KerneSive | |[GraphConoEiaH{ Dropout HorapHcont)
= T - | oo oo _ ..o _~T——————. |
32,(3,3) [ 0.5 32*2,(3,3) I" a 7 32 J 0.5 32%2
. % |
) | ] s
e A . : : L N .
¢ Flatten > AT N ¢_Flatten »
N S - % 1 N 4
\, N
N e [} I N N 4
/ | | N s
/ | | N
’ [ESE - ) N
32 n_class // P2 \\ 32 n_class
A RS
N q . i N
’DenseDenseHSoftmaxl ’ ! I—fu;l(iei\_U_niti, ngluia_n_zir_' “DenseDenseHSoftmaxl
P3
ST T T T T
| Optimizer, Loss, Metrics |
Adam < ______________| J Adam
categorical_crossentropy sparse_categorical_crossentropy
accuracy Sz acc

Classification Map
Output

Classification Map
Qutput

Figure 3. The architecture of the proposed convolutional neural network (CNN) and graph convolutional network
(GCN). Here, Si {i =1, 2} denotes the key sub-flows, and P; {j = 1, 2, 3} represents several sets of parameter settings. Note
that the CNN and GCN are completely independent networks.
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Moreover, the [” output feature map of the sample s is given by

m out

i
Y. =Zg9” (L)X”. €R", where x_; are the input feature maps, and the F} xF,
i=1

vectors of Chebyshev coefficients 0,, € R* are the layer's trainable parameters [31].

When training multiple convolutional layers with the backpropagation algorithm, every

OE S — r OE
one of them needs the two gradients = ZI:XS i0oee s X K7]:| and
aHz, s=1 . v ays,j

Fo
;X—E = Z 8y, (L)a—E , Where E is the loss of energy over a mini-batch of §' sam-
ples. Each of the above three computations boils down to K sparse matrix—vector mul-
tiplications and one dense matrix-vector multiplication. At the top of the graph neural
networks, the objective function will be formulated to minimize the training loss and to
ensure robustness in terms of convergence. Finally, the unlabeled samples could be clas-
sified into different known land cover categories.

8,0 Jj=1 s,

5. Experiments and Analysis
5.1. Datasets and Settings

Four real hyperspectral datasets (see Figure 4 and Table 1) with different spatial res-
olutions were used for the experiments. The Indian Pines-A (IA), Salinas Valley-A (SA),
Salinas Valley (SV), and Pavia University (PU) datasets are openly accessible online
(http://www .ehu.eus/ccwintco/index.php? title=Hyperspectral_Remote_Sensing_Scenes).

Table 1. The division of ground truth samples for the Indian Pines-A (IA), Salinas Valley-A (SA),
Salinas Valley (S5V), and Pavia University (PU) datasets.

Datasets Codes Classes Total Training Test Validation
Co Not-ground truth 1534 0 0 0
C1 Corn-notill 1005 60 885 60
1A C2 Grass-trees 730 60 610 60
C3 Soybean-notill 741 60 621 60
C4 Soybean-mintill 1924 60 1804 60
Co Not-ground truth 1790 0 0 0
C1 Brocoli_green_weeds_1 391 60 271 60
C2 Corn_senesced_green_weeds 1343 60 1223 60
SA C3 Lettuce_romaine_4wk 616 60 496 60
C4 Lettuce_romaine_5wk 1525 60 1405 60
C5 Lettuce_romaine_6wk 674 60 554 60
Cé6 Lettuce_romaine_ 7wk 799 60 679 60
C0 Not-ground truth 56,975 0 0 0
C1 Brocoli_green_weeds_1 2009 60 1889 60
C2 Brocoli_green_weeds_2 3726 60 3606 60
C3 Fallow 1976 60 1856 60
sy C4 Fallow_rough_plow 1394 60 1274 60
C5 Fallow_smooth 2678 60 2558 60
C6 Stubble 3959 60 3839 60
Cc7 Celery 3579 60 3459 60
C8 Grapes_untrained 11,271 60 11,151 60

C9 Soil_vinyard_develop 6203 60 6083 60
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C10  Corn_senesced_green_weeds 3278 60 3158 60
C11 Lettuce_romaine_4wk 1068 60 948 60
C12 Lettuce_romaine_5wk 1927 60 1807 60
C13 Lettuce_romaine_6wk 916 60 796 60
Cl14 Lettuce_romaine_ 7wk 1070 60 950 60
C15 Vinyard_untrained 7268 60 7148 60
Cle Vinyard_vertical_trellis 1807 60 1687 60
Co Not-ground truth 164,624 0 0 0
C1 Asphalt 6631 60 6511 60
C2 Meadows 18,649 60 18,529 60
C3 Gravel 2099 60 1979 60
PU C4 Trees 3064 60 2944 60
C5 Painted metal sheets 1345 60 1225 60
C6 Bare Soil 5029 60 4909 60
Cc7 Bitumen 1330 60 1210 60
C8 Self-Blocking Bricks 3682 60 3562 60
9 Shadows 947 60 827 60

The Indian Pines (IP) scene was gathered by the 224-band AVIRIS sensor in the
wavelength range 400 to 2500 nm at a 20-m spatial resolution (i.e., 20 meters/pixel, or
abbreviated as 20 m/p), in north-western Indiana. The IA dataset was a subset of the IP
dataset, which consisted of 86 x 69 pixels and contained 200 spectral reflectance bands by
removing bands covering the region of water absorption. The SV scene was also collected
by the AVIRIS sensor (of which discarded 20 water absorption bands) over Salinas Valley,
which comprised 512 x 217 pixels and had 16 classes, but a 3.7 m/p spatial resolution.
Similarly, the SA scene was a small sub-scene of the SV scene, which comprised 86x83
pixels and had 6 classes. The PU scene was acquired by the ROSIS sensor over Pavia
University, northern Italy. The PU dataset consisted of 103 spectral bands after the 13
noisiest bands were discarded, which had a size of 610 x 340 at a 1.3 m/p spatial resolu-
tion. Meanwhile, there were 9 classes included in the ground truth map.

€0 Not-groundtruth

C4 Lettuce_romaine_Swk

| [

€6 Lettuce r¢

€O Not-groundtruth

B Asphatt

C2 Meadows

&8 peinted meal sheets

C6 Bare Soil

Bllsionen

Self-Blocking
8 ricks

63 shadows

(c) SV (d) PU

Figure 4. The pseudo-color images and ground truth data for four real hyperspectral datasets, i.e., (a) the IA dataset, (b)
the SA dataset, (c) the SV dataset, and (d) the PU dataset.
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It is of importance to select qualified training samples for fitting and evaluating the
presented algorithm [63]. As listed in Table 1, the unlabeled training samples were coded
as class CO with the white background color. As for all the datasets, the size of the train-
ing set of all classes was set to 60, the same as the size of the validation set (ie.,

1, X 60). Except for the samples included in the training and validation sets, all other
samples were taken as the test set. The type of dataset might be a non-negligible factor in
this study. The PU dataset was collected over an urban area. The IA, SA, and SV datasets
were collected in a natural area. The IA and SA scenes belonged to simple datasets with
low data complexity, while the SV and PU scenes appeared relatively complex, whether
in spatial scale or landscape diversity. Moreover, the IA and SA datasets had a large
proportion of ground truth samples relative to the entire scene and the lower intra-class
variability. These intrinsic differences were crucial for investigating the representation
ability of deep learning models on simple or complex data.

The experimental platform was a laptop equipped with an Intel Core i7-9750 12-core
2.60 GHz processor, a 256GB SSD, a 1T HDD, a 16 GB RAM, and an 8G GDDR6 NVIDIA
RTX 2070 graphics card. The experimental procedures ran on the GPU aimed to achieve a
higher computational speed. As only small training data was used, the time consumption
of experiments could be controlled within a few minutes with the 5 and 10 independent
runs and 200 epochs (or early stopping over 100 epochs) per run. It was relatively fast
and showed promising efficiency in terms of complex networks. To ensure a complete
comparison with CNN and to improve the traditional GCN, we tried to keep the param-
eter settings of the network structure as similar as possible. In this regard, we ran the
experiments 5 and 10 times with each model for each dataset and kept the sizes of the
training and validation sets independent. These sets of samples were randomly shuffled
to reduce the possible influence of random effects, and the statistical accuracies were
recorded.

The training details incorporated the accuracy and loss of the training and valida-
tion procedures. Many factors impacted these curves, which show whether a model is
qualified enough or its parameter configuration is appropriate for the subsequent pa-
rameter learning. The experiments demonstrated that, for the simple datasets, i.e., the IA
and SA datasets, the CNN and GCN models appeared to converge gradually and showed
good convergence behavior. When it came to the complex datasets, i.e., the SV and PU
datasets, the CNN model stabilized much faster at ~10 epochs, while its validation loss
curve (Val_loss) appeared to have an abnormal behavior of convergence, and the corre-
sponding GCN model was getting better slowly (see Figure 5). As a whole, the GCN
model showed a better representation of the global convergence than the CNN model,
though the GCN model had some difficulties in handling the local portions, which might
be influenced by the learning rate.
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Figure 5. The accuracy & loss curves of the CNN and GCN models in the 1st run for the SV and PU datasets, i.e., (a)
CNN-SV, (b) CNN-PU, (c) GCN-SV, (d) GCN-PU, corresponding to the experiment with five random runs.

Relative to deep learning models, the machine learning algorithms (i.e., support
vector machine (SVM)) often involve the training set (i.e., randomly selecting 60 samples
of each category for fitting the classifier) and the test set, without the specialized valida-
tion set. In this study, we fine-tuned the hyperparameters (i.e., two parameters, the pen-
alty parameter of the error term and the kernel coefficient for “rbf”). The implementation
of the SVM classifier is based on “libsvm” with a one-vs.-one scheme. Moreover, all grid
searches are calculated using the five-fold cross-validation. For the IA, SA, SV, and PU
datasets, the best parameters obtained in the first independent run were: (1) the penalty
parameter fixed at 10.0, 10.0, 100.0, and 100.0, respectively; and (2) the kernel coefficient
for “rbf” determined to be 0.1, 0.1, 0.1, and 0.1, respectively. Finally, the best score was
0.8875, 0.9861, 0.9292, and 0.8481, respectively.

5.2. Classification Maps

The presented experiments regarding HSI classification were achieved based on the
intensity values (i.e., not the reflectance values) distributed along with spectral bands.
After the training and evaluating procedures, all the unlabeled samples were classified
into the proper categories; then the classification maps would be particularly helpful to
assess the final classification results qualitatively. As the experiments using each algo-
rithm for different datasets had been randomly run 5 and 10 times, we first plotted the
classification maps of SVM, CNN, and the presented GCN for the IA dataset in the five
running times (see Figure 6). Subsequently, the classification maps of three algorithms in
the 1¢t run for all hyperspectral datasets were illustrated as well (see Figure 7).
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() GCN

-Corn—notill C2 Grass-trees -Soybean-notill C4 Soybean-mintill

Figure 6. The classification maps of the presented GCN and its competitors,i.e,, SVM and CNN, in
five times random run for the IA dataset. The 1st, 2nd, and 3rd rows correspond to the (a) SVM, (b)
CNN, and (c) GCN algorithms, respectively. Meanwhile, the 1st, 2nd, 3rd, 4th, and 5th columns
correspond to different random runs, respectively.

As shown in Figure 6, the classification maps obtained by the SVM algorithm ap-
peared as scattered spots, as the SVM is a pixel-level classifier essentially. The misclassi-
fications might often be caused by the high intra-class variability and the low inter-class
variability among different land cover classes. The similar results of different algorithms
were commonly seen in the different random runs. The subsequent accuracy statistics
and the corresponding probability maps also supported such an analysis. Referring to
Figure 7, the GCN model had promising outputs compared to the other two algorithms,
i.e., SVM and CNN. Furthermore, most errors of commission and omission occurred in
the non-homogeneous areas involving complex landscape structures or land surface
materials. The misclassifications might be mainly caused by some inherent uncertainties
between classes. It is obvious that the GCN model obtained fairly good results and sur-
passed the SVM and CNN algorithms.
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Figure 7. The classification maps of the presented GCN (the 4th column) and its competitors, i.e.,
SVM (the 2nd column) and CNN (the 3rd column), in the 1st run for four real hyperspectral da-
tasets, i.e., (a) the IA dataset, (b) the SA dataset, (c) the SV dataset, (d) the PU dataset, correspond-
ing to the experiment with five random runs.

5.3. Classification Accuracies

Three widely used accuracy metrics, i.e., the Kappa index (K), overall accuracy (OA),
average accuracy (AA), were used to assess the classification results, which were derived
from the site-specific confusion matrix. As Table 2 illustrated, the presented GCN un-
doubtedly obtained the best classification performance for all the used hyperspectral
datasets. Concerning the CNN model for the SA and SV datasets, the resultant accuracies
appeared unanticipated. The reason is that we expanded the number of epochs from 50 to
200, and the CNN model triggered the early stopping event when monitoring its valida-
tion loss. The larger epochs might lead to a worse convergence and a decrease in per-
formance simultaneously. Meanwhile, such a result also disclosed that the differences
between the simple and complex datasets might have a significant impact on measuring
performance.



Remote Sens. 2021, 13, 526

16 of 22

To analyze the misclassifications of the GCN model, we drew the confusion matrices
for different datasets with the best performance based on the presented GCN model (see
Figure 8). As for the IA dataset, we got accuracies {K: 0.9644; OA: 0.9750; AA: 0.9796};
there were 32 samples (0.04%) of Class 1 (Corn-notill) wrongly classified as Class 4
(Soybean-mintill) while there were 58 samples (0.03%) of Class 4 (Soybean-mintill)
wrongly predicted as other classes, which might mean a potential inter-class negative
influence. Because the SA dataset was relatively simple, the corresponding derived ac-
curacies appeared almost saturated, i.e., {K: 0.9997; OA: 0.9998; AA: 0.9998}. For the SV
dataset with accuracies {K: 0.9486; OA: 0.9539; AA: 0.9711}, most of misclassifications
occurred in Class 8 (Grapes_untrained) and Class 15 (Vinyard_untrained), which might
mean a conspicuous inter-class similarity between two classes. Looking at the PU dataset
with accuracies {K: 0.9247; OA: 0.9436; AA: 0.9123}, more classes might get into the in-
ter-class classification errors, probably because the PU scene was located in an urban en-
vironment and with a relatively complex landscape component.

1.0

1.0

Actual

0.0

Predicted Predicted

(@)1A (b) SA

Actual

1.0

1.0
0.01 0.03

84003 001 008 0.01 0.87

12 3 45 6 7 8 9 10111213141516 ’ 1 2 3 4 5 6 7 8 9

Predicted Predicted

(c) SV (d) PU

Figure 8. The confusion matrices of the presented GCN for different datasets, corresponding to the experiment with five
random runs. (a) The IA dataset was at the 5th random run, (b) the SA dataset was at the 3rd random run, (c) the SV da-
taset was at the 3rd random run, and (d) the PU dataset was at the 2nd random run.
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Table 2. The statistical classification accuracies for four real hyperspectral datasets with 5 and 10 random runs. Note that
the experiments regarding a different number of random runs were carried out independently.

Alg, SVM CNN GCN
Dat/Acc. K OA AA K OA AA K OA AA
s 07646% 0.8343: 08574 08990+ 09294x 09506= 09550x 09685% 0.9692%
00174 00120 00136 00103 00076 00043  0.0064 00045  0.0062
op  0979B3x  09836x 09818x 09477: 09586 09701  0.9983:  0.9987% 09982
0.0054 00043 00065 00153 00122 00079 00010 00008  0.0011
gys  08370%  08533x 09229+ 07895: 08101x 08244x 09360: 09426+ 09614
00076 00070 00027 00126 00115 00057  0.0099 00088  0.0090
pus  07015%  07651x 08270 07238 0785+ 08423 09113x 09336x 08927x
0.0065 00051 00090 00235 00204 00121 00080 00059  0.0128
aw  0767L% 08355: 08613: 08930+ 09250+ 09475 0959x 09706% 0.9702%
00156 00114 00106 00249 00182 00094 00104 00072  0.0075
gan  09795%  09837x  09823x 09637x 09713 09783  0.9978%  0.9982x  0.9977x
0.0046 00036 00055 00074 00058 00038 00020 00016  0.0021
gy 08389%  08551x 09224: 07896% 08105: 0.8234x 09405: 09465+ 09663
0.0080 00073 00037 00069 00064 00098 00136 00123  0.0063
puo 07038  07674x  0.8274% 07218+  07836x 08424x 09079  09309: 08916
0.0168 00148 00088 00314 00267 00152 00153 00117 00185

5.4. Probability Maps

Probability density has been taken as an effective indicator to indicate the confi-
dence of the classification output [63]. In this regard, the label assignment depends on the
credible predictions with the maximum predicted probabilities and determines the final
output maps. Probability maps are often utilized to observe the probability density and
to find weak predictions. Therefore, we graphed the probability maps of each algorithm
to show that the GCN model had clear advantages over the popular CNN model, and an
apparent distinction could be reflected in the probability maps (see Figure 9).

Weak predictions in a holistic scene regarding the HSI classification task have been
reported by scholars previously [63]. Figure 9 indicates the typical but not noticeable
differences between the CNN and GCN models. That is, the maximum predicted proba-
bilities of each hyperspectral cube whose central pixel was located at the edge of a cate-
gory were relatively low. It seems that the GCN might be better at illustrating the
boundaries among different land cover categories. Moreover, weak predictions might be
more likely to occur in the cross areas and the areas covered by non-ground truth sam-
ples.
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Figure 9. The probability maps of the presented GCN and its competitors in the 1st run for four
real hyperspectral datasets, i.e., (a) the IA dataset, (b) the SA dataset, (c) the SV dataset, (d) the PU
dataset, corresponding to the experiment with five random runs. Note that the deeper the color,
the weaker the prediction.

5.5. Time Consumption

The statistics of time cost are related to deep learning network structures. So, the ef-
ficiency of deep learning models can be approximately deduced as per the scales of
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network parameters. In practice, the training and test times are often recorded based on
the clock setting of the computer operating system (see Table 3). The processing time
with CPU plus GPU may depend on many possible factors, i.e., the randomness in neu-
ral networks, the efficiency of memory storage, and the difference of computational en-
vironment. Note that we tried to make the network structures of the presented CNN and
GCN as comparable as possible, thus facilitating further improvement and contrastive
analysis.

Table 3. Total network parameters and time consumption (i.e., the average time of 5 and 10 random runs). Note that the
numbers in parentheses regarding datasets and models indicate the number of samples and the number of network pa-
rameters, respectively.

IA (86 x 69 x 200) SA (83 x 86 x 204) SV (512 x 217 x 204) PU (610 x 340 x 103)
Alg. (Para.)/Dat. . . . . .
(Num.)/Time (s) Training Test Training Test Training Test Training Test
) (240) (3920) (360) (4628) (960) (52209) (540) (41696)
SVM? 1.00+0.04 0.01+0.01 222+0.01 0.02+001 1735025 129+0.05 577+0.01 0.55+0.04
5
a g\l XI\; 09) 1465447 031+£001 17.07+£333 039+£0.02 1849+027 5.00+£014 1503+094 3.21+0.05
GCN?®
(250 % 109) 1322+122 024+000 2041+072 031+000 43.39+048 3.61+0.07 28.10+0.59 3.03+0.06
SVM© 1.05+006 0.01+0.00 224+003 0.02+0.01 1747+020 1.27+0.03 5.80+0.10 0.56+0.04
NN
(1(;2 <109 1269+298 033+0.03 14.79+234 037+001 1806+116 4.79+031 13.72+0.85 3.04+0.04
GCN™©
(2550 % 10%) 13.50£4.12 024+001 2152+131 032+0.01 5004+285 4.08+013 3508+2.69 3.62+0.14

The differences between the presented CNN and GCN models relied on the differ-
ences between the convolution layer with a batch normalization layer and the graph
convolution layer, under a comparable paradigm of network architecture design. From
another perspective, both network structures had approximately the same network
complexity, as we expected. Then by observing Table 3, except for the simple datasets,
the presented GCN model cost ~2 times the training time than the CNN model. Such a
finding could be further confirmed by the number of their network parameters (i.e.,
CNN: 1.22 x 105, GCN: 2.50 x 10).

6. Conclusions

Deep learning models have been extensively employed for HSI classification and
have attracted increasing attention for their strong representation ability. Particularly,
the nascent graph representation learning has shown good goodness for resolving the
graph-structured data. In this study, we not only reviewed the recent publications re-
lated to the graph-based representation learning methods for HSI classification but also
presented a novel graph-based spectral filtering approach that has promising benefits. It
is worth mentioning that we found that the presented GCN model indeed has the ad-
vantage of illustrating the boundaries of different land cover classes by observing the
weak predictions derived from the probability maps. In short, graph representation
learning might represent future directions to enhance the research field of HSI classifica-
tion. Future work would involve (i) testing the n-dimensional datasets where the num-
ber of components less than 10, and (ii) using the explained variance ratio for the PCA
preprocessing.
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