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Abstract: In this paper, we propose a remote-sensing scene-classification method based on vision
transformers. These types of networks, which are now recognized as state-of-the-art models in natural
language processing, do not rely on convolution layers as in standard convolutional neural networks
(CNNs). Instead, they use multihead attention mechanisms as the main building block to derive
long-range contextual relation between pixels in images. In a first step, the images under analysis are
divided into patches, then converted to sequence by flattening and embedding. To keep information
about the position, embedding position is added to these patches. Then, the resulting sequence is
fed to several multihead attention layers for generating the final representation. At the classification
stage, the first token sequence is fed to a softmax classification layer. To boost the classification
performance, we explore several data augmentation strategies to generate additional data for training.
Moreover, we show experimentally that we can compress the network by pruning half of the layers
while keeping competing classification accuracies. Experimental results conducted on different
remote-sensing image datasets demonstrate the promising capability of the model compared to
state-of-the-art methods. Specifically, Vision Transformer obtains an average classification accuracy
of 98.49%, 95.86%, 95.56% and 93.83% on Merced, AID, Optimal31 and NWPU datasets, respectively.
While the compressed version obtained by removing half of the multihead attention layers yields
97.90%, 94.27%, 95.30% and 93.05%, respectively.

Keywords: remote sensing; image level classification; vision transformers; multihead attention;
data augmentation

1. Introduction

Remote sensing (RS) is the science of collecting information about objects without
any direct physical contact, typically through a satellite, aircraft or unmanned aerial
vehicle (UAV) [1]. Examples of applications of remote sensing include geological survey,
environment testing, oil exploration, traffic management, earthquake prediction, and water
conservancy construction [2,3].

Remote-sensing images have improved in both spatial and temporal resolutions with
the evolution of satellite sensors, which provides opportunities in resolving fine details
on the earth’s surface. Satellites such as MODIS (1 km × 1 km) offering thermal data with
high temporal resolution suffer from low spatial resolution. Landsat, on the other hand,
offers small-scale variations of 100–200 m but with very low temporal resolution. The
new generation of satellites can deliver very high spectral and spatial images; for example,
IKONOS-2 generates images with 4-band multispectral resolution and spatial resolution
from 2.5 to 4 m. Unmanned aerial vehicles (UAVs) present an improved solution of remote-
sensing acquisition platforms, which witnessed a high level of growth in past years and
are used widely for fire detection, surveillance mapping, and landslide monitoring, among
other uses [4]. UAVs have several advantages over satellite and aerial images. First, they are
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easier to deploy to satisfy the requirements of rapid monitoring, assessment, and mapping.
They can work at lower altitudes compared to the piloted aircraft, which provides spatial
resolution at the centimeters level. They can fly any time the weather permits, leading to
improvements in temporal resolution. As the spatial resolution increases, images are likely
to contain noisy and outlying descriptors. A recent study [5] proposed a convolutional
neural network (CNN) to classify images captured by a camera mounted on a UAV. Al-
Najjar et al. [6] proposed a CNN model to classify a digital surface model beside UAV
images. Liu et al. [7] combined CNNs with object-based image analysis (OBIA) for land
cover classification using multiview data. The author in [8] proposed a two-branch neural
network to assign multiple class labels to UAV imagery.

The topic of scene classification has been an active research field lately to face the
challenging problem of effectively interpreting remote-sensing images. It is the task of
taking an image and correctly labeling it to a predefined class as shown in Figure 1. Scene
classification is an important task for many applications, such as land management [9],
urban planning [10], and modeling wildfires [11].

Figure 1. Remote sensing scene classification.

The early works on scene classification were based on handcrafted features, manually
extracted by humans, including local binary patterns (LBP) [12], histogram of oriented
gradients (HOG) [13], and the scale-invariant feature transform (SIFT) [14]. Conventional
scene-classification methods depend on encoding handcrafted features with different
models such as the bag-of-words (BoWs) [15], Fisher vectors (FV) [16], or the vector of
locally aggregated descriptors (VLAD) [17].

On the other hand, deep learning methods such as Deep Belief Networks (DBNs) [18]
and stacked auto-encoders [19] gained enormous achievements in several applications,
including remote-sensing image classification. In particular, CNNs have surpassed tradi-
tional methods in many applications [20–22]. These methods have a main key advantage
of providing an end-to-end solution, which requires minimal feature engineering. Other
approaches based on recurrent neural networks (RNNs) [23], generative adversarial net-
works (GANs) [24,25], graph convolutional networks (GCNs) [26], and long- short-term
memory (LSTM) [27] have been introduced also. In a recent contribution, the authors
considered remote-sensing scene classification as a multiple-instance learning (MIL) prob-
lem [28]. They proposed a multiple-instance densely connected network to highlight
the local semantics relevant to the scene label. The method enhances the capability of
local semantic representation by effectively discarding useless information. Yu et al. [29]
proposed the attention GAN, which integrates GANs with the attention mechanism to
enhance the representation power of the discriminator for aerial scene classification. The
authors in [30] introduced a simple fine-tuning method using an auxiliary classification
loss. They showed how to combat the vanishing gradient problem using an auxiliary loss
function. Sun et al. [31] proposed a gated bidirectional network for feature fusion. Liu
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et al. [32] combined the feature maps from intermediate and fully connected layers and
input them to the classifier for classification. Yu et al. [33] combined two pretrained CNNs
with the two-stream fusion technique to classify high-resolution aerial scenes. Cheng
et al. [34] proposed a metric learning regularization on discriminative CNNs features to
optimize a new discriminative objective function to make the model more discriminative.
Xue et al. [35] proposed a method using three deep networks to extract deep features from
the image separately. Then these features were fused together to create a single feature
vector for classification.

Besides CNNs, a new type of deep-learning models called Transformers have been
proposed and received some popularity in computer vision. Transformers rely on a simple
but powerful procedure called attention, which focuses on certain parts of the input
to get more efficient results. Currently, they are considered state-of-the-art models in
sequential data, in particular natural language processing (NLP) methods such as machine
translation [36], language modeling [37], and speech recognition [38]. The architecture
of the Transformer developed by Vaswani et al. [39] is based on the encoder–decoder
model, which transforms a given sequence of elements into another sequence. The main
motivation for transformers was to enable parallel processing of the words in a sentence,
which was not possible in LSTMs or RNNs because they take words of a sentence one
by one.

Inspired by the success of Transformers in NLP, new research tries to apply Trans-
formers directly to images. This is a challenging task, due to the need in self-attention
application that every pixel attends to all other pixels. For images, this is very costly
because the image contains a huge number of pixels. Researchers tried several approaches
to apply Transformers to images. Some works combined CNN architectures with self-
attention. For example, Bello et al. [40] enhanced CNNs by replacing some convolutional
layers with self-attention layers, which led to improvement in image classification. How-
ever, this method faced high computational cost because the large size of the image causes
an enormous growth in the time complexity of self-attention. Wang et al. [41] proposed a
method to generate powerful features by selectively focusing on critical parts or locations
of the image, then processing them sequentially. Wu et al. [42] used the Transformer on top
of the CNN; first they extracted feature maps using a CNN, then fed them to stacked visual
Transformers to process visual tokens and compute the output. Ramachandran et al. [43]
first started to use self-attention as a stand-alone building block for vision tasks instead of
a simple augmentation on top of convolutional layers. They set up a fully attention model
by replacing all convolutional layers with self-attention layers. Chen et al. [44] proposed a
method that applies Transformers to raw images with reduced resolution and reshaped
into textlike long sequences of pixels.

In a very recent contribution, and different from previous works, Dosovitskiy et al. [45]
applied a standard Transformer directly to images by splitting the image into patches
not focusing on pixels, then input to the Transformer the sequence of embeddings for
those patches. The image patches were treated as tokens in NLP applications. These
models led to very competitive results on the ImageNet dataset. In this work, we will
exploit these pretrained models for transferring knowledge to the case of remote-sensing
imagery. Indeed, to the best of our knowledge in remote-sensing scene-classification
tasks, convolutional architectures remain dominant and Transformers have not yet been
widely used as the model choice in classification. For instance, He et al. [46] proposed a
model derived from the bidirectional encoder representations called BERT [47] that was
used in the natural language processing field to the context of hyperspectral images. The
method is based on several multihead self-attention layers. Each head encodes the semantic
context-aware representation to obtain discriminative features that are needed for accurate
pixel-level classification.

In this paper, we propose an extensive evaluation of the model proposed in [45]
for the classification of remote-sensing images. To this end, the images under analysis
are divided into patches, then converted to sequence by flattening and embedding. The
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position embedding is added to these patches to keep the position information. The
obtained sequence is then fed to several multihead attention layers for generating the
final representation. During classification, the first token sequence is fed as input to a
softmax classification layer. To increase the classification performance, we explore several
data augmentation strategies such as CutMix, and Cutout to generate additional data for
training. In the experiments, we show that we can compress the network by pruning half
of its layers while keeping competing classification accuracies.

The remainder of the paper is organized as follows: Section 2 describes the main
methods based on Transformers. In Section 3, we present the experimental results on
three well-known datasets. Section 4 provides a discussion about the results and presents
comparisons with state-of-the-art methods. Then we finally conclude and show future
directions in Section 5.

2. Materials and Methods
2.1. Vision Transformer

Let S = {Xi, yi}r
i=1 donate a set of r remote sensing images, where Xi is an image

and yi is its corresponding class label yi ∈ {1, 2, . . . , m}, and m is the number of defined
classes for that set. The objective of the Vision Transformer model is to learn the mapping
from the sequence of image patches to the corresponding semantic label.

Vision Transformer is an architecture that is based entirely on the vanilla Trans-
former [39], the architecture that has attracted a lot of interest in recent years by showing
state-of-the-art performance in machine translation and other NLP tasks [47]. The Trans-
former follows the encoder–decoder architecture, with the ability to process sequential data
in parallel without relying on any recurrent network. The success of Transformer models
has largely benefited from the self-attention mechanism, which is proposed to capture
long-range relationships between the sequence’s elements.

Vision Transformer is proposed as an attempt to extend the use of the standard
Transformer to image classification. The main goal is to generalize them on modalities
other than text without integrating any data-specific architecture. In particular, Vision
Transformer utilizes the encoder module of the Transformer to perform classification by
mapping a sequence of image patches to the semantic label. Unlike the conventional CNN
architectures that typically use filters with a local receptive field, the attention mechanism
employed by the Vision Transformer allows it to attend over different regions of the image
and integrate information across the entire image.

The complete end-to-end architecture of the model is shown in Figure 2. In general, it
is composed of an embedding layer, an encoder, and a final head classifier. In the first step,
an image X from the training set (for simplicity, we omit the image index i) is subdivided
into non-overlapping patches. Each patch is viewed by the Transformer as an individual
token. Thus for an image of X size c× h× w (where h is the height, w is the width and c
represents the number of channels), we extract patches each of dimension c× p× p from it.
This forms a sequence of patches (x1, x2, . . . , xn) of length n, with n = hw/p2. Typically,
the patch size p is chosen as 16× 16 or 32× 32, where a smaller patch size results in a
longer sequence and vice versa.

2.1.1. Linear Embedding Layer

Before feeding the sequence of patches into the encoder, it is linearly projected into
a vector of the model dimension d using a learned embedding matrix E. The embedded
representations are then concatenated together along with a learnable classification token
vclass that is required to perform the classification task. The embedded image patches are
viewed by the Transformer as a set of patches without any notion of their order. To keep the
spatial arrangement of the patches as in the original image, the positional information Epos
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is encoded and appended to the patch representations. The resulting embedded sequence
of patches with the token z0 is given in (Equation (1)):

z0 = [vclass; x1E; x2E; . . . ; xnE] + Epos, E ∈ R(p2c)×d, Epos ∈ R(n+1)×d (1)

It has been shown in [45], that 1-D and 2-D positional encodings produce nearly
identical results. Therefore, a simple 1-D positional encoding is used to preserve the
positional information of the flattened patches.

Figure 2. The Vision Transformer architecture: (a) the main architecture of the model; (b) the Transformer encoder module;
(c) the Multiscale-self attention (MSA) head, and (d) the self-attention (SA) head.

2.1.2. Vision Transformer Encoder

The resulting sequence of embedded patches z0 is passed to the Transformer encoder.
As shown in Figure 2b, the encoder is composed of L identical layers. Each one has two
main subcomponents: (1) a multihead self-attention block (MSA) (Equation (2)), and (2) a
fully connected feed-forward dense block (MLP) (Equation (3)); the latter block consists of
two dense layers with a GeLU activation in between. Each of the two subcomponents of the
encoder employs residual skip connections and is preceded by a normalization layer (LN).

z′` = MSA(LN(z`−1)) + z`−1, ` = 1 . . . L (2)

z` = MLP
(
LN

(
z′`
))

+ z′`, ` = 1 . . . L (3)

At the last layer of the encoder, we take the first element in the sequence z0
L and pass

it to an external head classifier for predicting the class label.

y = LN
(

z0
L

)
(4)

The MSA block in the encoder is the central component of the Transformer. It has
the role of determining the relative importance of a single patch embedding with respect
to the other embeddings in the sequence. This block has four layers: the linear layer, the
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self-attention layer, the concatenation layer, which concatenates the outputs of the multiple
attention heads, and a final linear layer, as shown in Figure 2c.

At a high level, attention can be represented by attention weight, which is computed
by finding the weighted sum over all values of the sequence z. The self-attention (SA)
head learns the attention weights by computing the query-key-value scaling dot-product.
Figure 2d shows the details of the computation that takes place in the SA block. For each
element in the input sequence, three values are generated: Q (query), K (key), and V
(value) by multiplying the element against three learned matrices UQKV (Equation (5)).
To determine the relevance between an element with other elements on the sequence, the
dot product is calculated between the Q vector of this element with the K vectors of other
elements. The results determine the relative importance of patches in the sequence. The
results of the dot-product are then scaled and fed into a softmax (Equation (6)). The scaling
dot-product operation performed by the SA block is similar to the standard dot-product,
but it incorporates the dimension of the key DK as a scaling factor. Finally, the value of
each patch embedding’s vector is multiplied by the output of the softmax to find the patch
with the high attention scores (Equation (6)). The full operation is given by these equations:

[Q, K, V] = zUQKV , UQKV ∈ Rd×3DK (5)

A = softmax
(

QKT
√

DK

)
, A ∈ Rn×n (6)

SA(z) = A.V (7)

The MSA block computes the scaled dot-product attention separately for h heads
using the previous operation, but instead of using a single value for the Query, Key, and
Value, multiple values are used. The results of all of the attention heads are concatenated
together and then projected through a feed-forward layer with learnable weights W to the
desired dimension. This operation is expressed by this equation:

MSA(z) = Concat(SA1(z); SA2(z); . . . SAh(z))W, W ∈ Rh.DK×D (8)

2.1.3. Vision Transformer Variants

To experiment on the effect of increasing the model size on the classification accuracy,
different versions of Vision Transformer have been proposed in [45]: the “ViT-Base”, the
“ViT-Large”, and the “ViT-Huge”. The three versions differ in the number of the encoder’s
layers, the hidden dimension size, the number of attention heads used by MSA layer, and
the MLP classifier size. Each one of these models is trained with a patch of size 16× 16
and 32× 32. The “ViT-Base” model has 12 layers in the encoder, with hidden size 768, and
uses 12 heads in the attention layer. The other version uses larger numbers; the “ViT-Large”
for example, has 24 layers, 16 attention heads, and a hidden dimension of size 1024. The
“ViT-Huge” has 32 layers, 16 attention heads, and a hidden size of 1280. Table 1 shows a
comparative summary of the Transformer versions.

Table 1. Parameter statistics for the Base, Large and Huge variants of Vision Transformer.

Model Number of Layers Hidden Size D MLP Size Heads Number of Parameters

ViT-Base 12 768 3072 12 86 M
ViT-Large 24 1024 4096 16 307 M
ViT-Huge 32 1280 5120 16 632 M

The experimental results on Vision Transformers of different size have shown that
using relatively deeper models is important to get higher accuracy. Moreover, choosing
a small patch dimension increases the sequence length n, which in turn improves the
overall accuracy of the model. Another important finding is that attention heads at the
earlier layers of the Vision Transformer can attend image regions at high distances. This
ability increases as the depth of the model increases. This is different from the CNNs-based
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models, in which earlier layers can only detect local information and global information
can only be detected at the higher layers of the network. This property of the Vision
Transformer is crucial for detecting the relevant features for classification.

2.2. Data Augmentation Strategies

Data augmentation is a simple but effective tool for increasing the size and diversity of
the training dataset. It is a fundamental step for tasks where the access to a large annotated
dataset is not feasible [48]. Data augmentation uses different manipulation techniques to
generate additional training samples from the existing one while preserving the validity of
the original class label. Training a model on augmented data helps to combat the overfitting
problem and thus improve the robustness and the generalization ability of the model.

Standard data augmentation techniques create new samples by applying simple
geometric transformations such as rotating, scaling, cropping, shifting, and flipping, or
use a combination of them. Color-space augmentation strategies expand the dataset by
applying transformations on the color space such as adjusting the brightness, the contrast,
or the color saturation of the images. Neural style transfer [49] extends the transformations
to include the low-level features of the image, such as texture. It transfers the style of one
image in the dataset to another image while keeping its semantic content. One interesting
approach for data augmentation is the one based on generative models, in which models
such as GANs [50] learn the distribution of the data to create synthetic samples that are as
similar as possible to the images drawn from the original dataset.

More sophisticated techniques based on random erasing and image-mixing have
been introduced recently to generate more challenging samples for the model such as
Cutout [51], Mixup [52], and CutMix [53] techniques. In Cutout, a random fixed-size region
of the image is intentionally replaced with black pixels or random noise. This technique
was developed to tackle the problem of occluded objects in scene classification and object
detection. A randomly chosen region is erased to encourage the model to learn from the
entire image’s context rather than relying on a specific visual feature. One problem of
using Cutout is that blocking could hide an essential part of the object, causing information
loss [53]. CutMix technique overcomes this problem by cutting a patch of one image
and replacing it with a patch from another image in the dataset. This can mitigate the
information loss of the Cutout technique.

With Mixup, two images are merged by linearly interpolating them along with their
class labels to create a new training instance. For both the CutMix and the Mixup aug-
mentation, the ground truth label is changed in accordance with the changes applied to
the image. If (Xi, yi) and

(
Xj, yj

)
are two samples drawn randomly from the training

data and λ ∈ [0, 1]. The mixup augmentation expands the dataset by interpolating the
two samples Xi and Xj and their associated one-hot label encodings yi and yj using the
following equations:

X = λXi + (1− λ)Xj (9)

y = λyi + (1− λ)yj (10)

Figure 3 shows examples of applying Cutout, Mixup, and CutMix on Merced dataset.
Choosing the best strategy to apply for data augmentation is usually a manual process.
Advanced methods of data augmentation try to automate the search for the optimal
transformation for the target task, without the need for any human intervention [48].
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Figure 3. Examples of applying data augmentation techniques on Merced dataset.

2.3. Network Compression

Transformers have a deep and rich architecture with millions of parameters, hundreds
of attention heads and multiple layers. As can be seen in Table 1, the ViT-Base model, for
example, has more than 80 million parameters. In general, models with large architecture
tend to produce better results. However, the enormous computational complexity and
the huge memory requirement associated with these models make them impractical for
deployment and prone to overfitting.

Model-compression techniques aim at producing a lighter version of the model with-
out hurting the original accuracy. Knowledge distillation and model pruning are commonly
used compression approaches. With knowledge distillation, the information encoded in a
well-trained model usually named as the teacher model is transferred to another smaller
model known as the student model [54]. The student network supervised by the teacher
network gradually learns how to produce results that are consistent with the results pro-
vided by the teacher network. Model pruning [55] is another technique that is used for
compression. It tries to decrease the number of the model’s parameters by removing
redundant or inessential components, keeping only the important components. Pruning
can take several forms, such as weights quantizing, which uses fewer bits to represent the
model’s weight [56], or weights pruning, which removes the least informative weights
from the network [55].

Vision Transformer is characterized by its redundant architecture with multiple layers
and multiple attention heads. In this work, we propose a simple compression approach
based on gradual pruning of the encoder’s layers. This extracts smaller models with
different depth from the full-size model. We aim to explore the trade-off between the model
performance and the model depth to determine the most compressed architecture that
gives the best accuracy. In the experiments, we will show that we can prune half of the
network while keeping competing classification accuracies.

In the following Algorithm 1, we provide the main steps for training the Vision
Transformer:
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Algorithm 1: Vision Transformer

Input: Training images: {Xi , yi}n
i=1

Output: predicted labels of the test set.

1. Set batchsize to 100, Optimizer Adam (learning rate: 0.0003), number of iterations to 30, image
dimensions to 224 or 384.

2. Set the number of mini-batches as: nb = n/batchsize
3. For iteration = 1: Number of iterations

3.1 For batch = 1 : nb

• Pick a batch from the training set,
• Generate another batch of augmented images using a particular augmentation method,
• Train the model on the original and augmented images by minimizing the cross-entropy

loss.
• Backpropagate the loss.
• Update the model parameters.

4. Classify test images

3. Experimental Results
3.1. Dataset Description

In our experiments, three well-known remote-sensing datasets are used for evaluation:
Merced land-use dataset [57], Aerial image dataset (AID) [58], and the Optimal-31 [41]
dataset. The characteristic of these three datasets are listed in Table 2, and samples from
each dataset are shown in Figure 4.

Table 2. Characteristic of the datasets.

Dataset Number of Classes Number of Images per Class Image Size Year

Merced 21 100 256 × 256 2010
AID 30 220~420 600 × 600 2017

Optimal 31 31 60 256 × 256 2019

Figure 4. Cont.
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Figure 4. Some example images from (a) Merced dataset. (b) AID dataset. (c) Optimal-31.

Merced dataset: This dataset was released in 2010, and contains 2100 RGB images of
21 land-use scene classes. Each class consists of 100 images of size 256 × 256 pixels with
0.3 m resolution. The images were extracted from the United States Geological Survey
National Map.

Aerial image dataset (AID) dataset: The AID dataset is a large-scale dataset of 10,000
for aerial scene images published in 2017 by Wuhan University. The dataset contains
30 different classes of 220 to 420 images per class. The images were cropped from Google
Earth imagery measuring 600 × 600 pixels with a resolution varying from 8 m to about
0.5 m.

Optimal-31 dataset: This dataset was captured from Google Earth imagery covering
31 scene classes. Each class contains 60 images of size of 256 × 256 pixels in the RGB color
space. The pixel resolution for the images is 0.3 m.

3.2. Experimental Setup

We conducted three sets of experiments. In the first set, we used different data aug-
mentation strategies to assess how well the vision Transformer performs with augmented
data. It is worth recalling that we used the standard cross-entropy loss for learning the
weights of the network. In the second experiment, we varied the number of encoder layers
and studied the relation between the network depth and model performance. Then, we
investigated the impact of changing the image size on the overall accuracy of the model.
Finally, we compared our results against several state-of-the-art methods.

In all experiments, we adopted the ViT-Base model following settings from [45]. The
model consists of 12 encoder layers each with 12 attention heads. It has an embedding
dimension of 768 and feed-forward subnetwork with size of 3072. We used a model
pretrained on Imagenet-21k and then fine-tuned on Imagenet-1k. To fine-tune it on remote
sensing scene data, we trained it for 30 iterations and used a minibatch size of 100. We
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optimized it with Adam method and set the learning rate to 0.0003. We initially fixed the
image size to 224 × 224 and the patch size to 16 × 16 and got a sequence with 196 tokens
length.

For comparison purposes, we evaluated the performance of the method in terms of
the standard overall accuracy(OA), which represents the number of correctly classified
images over the total number of images.

We conducted all the experiments on an HP Omen Station with the following spec-
ification: Central processing Unit (CPU) Intel core (TM) i9-7920× CPU @ 2.9 GHz with
a RAM of 32 GB and an NVIDIA GeForce GTX 1080 Ti Graphical Processing Unit (GPU)
(with 11 GB GDDR5X memory). All codes were implemented using Pytorch, which is an
open-source deep neural network library written in python.

3.3. Experiment 1: Preliminary Analysis

For preliminary analysis of the Vision Transformer, we followed a low training regime
and performed the experiment with minimum data. Specifically, for the AID dataset, we
selected about 33 samples from each class for training, which comprised 10% of the dataset.
For both Merced and Optimal31 datasets, we extracted 30 samples from each class, which
comprised 30% and 50% of the first and second dataset, respectively.

We trained the network on the original and augmented images for 30 iterations. Table 3
shows the classification accuracies obtained when different data-augmentation techniques
are applied. The standard data augmentation uses rotation, vertical and horizontal flipping,
and random adjusting of the brightness and the color of the image. For the Cutout
technique, we set the number of holes to eight and the cutout region size to 10 × 10 pixels.
For the CutMix, the mixing ratio was sampled from the uniform distribution [0,1]. Finally,
the hybrid data augmentation randomly selected one of the three augmentation techniques
(standard, CutMix and Cutout) for each batch during the training phase.

Table 3. Classification results on: (A): Merced dataset (30% train set), AID (10% trainset) and Optimal
31 (50% Train set). Image size: 224 × 224.

With Augmentation

Dataset Clean Images Standard CutMix Cutout Hybrid

Merced 94.55 96.32 96.66 95.44 96.73
AID 89.31 92.06 90.50 91.62 91.76

Optimal31 88.27 91.43 92.44 92.25 92.97
Average 90.71 93.27 93.20 93.30 93.82

The results in Table 3 clearly show the effectiveness of using data augmentation as
widely known in the literature. In general, all strategies provided close results, but for
the Merced and Optimal31 datasets, using a hybrid data augmentation yielded slightly
better results with accuracy of 96.73% and 92.97%, respectively. Standard augmentation
performed slightly better than other techniques for the AID dataset with 92.06%. Normally,
and as the results of all the three datasets suggest, using a combination of data augmentation
strategies provides slightly the best behavior.

Figure 5 shows the evolution of the loss function during training with and without
data augmentation. It can be seen that training the model on the original images made the
loss converge smoother and faster. In contrast, when the model is trained on the augmented
images the loss oscillates after the warm-up iterations and takes longer to converge.
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Figure 5. Loss function without data augmentation for: (a) Merced, (b) AID, and (c) Optimal31, and with data augmentation
for: (d) Merced, (e) AID, and (f) Optimal31.

3.4. Experiment 2: Network Compression

In the second set of experiments, we further analyzed the role of each layer in the
encoder. First, we trained the model with the maximum number of layers (i.e., 12 layers).
Then, we repeated the experiments with the same parameters, except that we took the out-
put of each intermediate layer and projected it directly into the classifier while discarding
the upper layers. In order to better understand the behavior of the network and the region
attended by the attention heads in each layer, we extracted the output representations and
visualized the per-layer attention maps for the Merced and AID datasets in Figures 6 and 7,
respectively.

Figure 6 shows four samples from the Merced dataset along with the outputs of the
first, sixth, and twelfth layers. We can see that the network gradually learns to concentrate
on regions that have the most representative information of the class. For instance, in the
airport sample the network shows some attention on airplanes at layer 1. This progressively
improved in the subsequent layers. For example, for the baseball class, the network at
the first layer focused mostly on unrelated information and then the model attempted to
capture the discriminative areas that is corresponding to the baseball class. For the harbor
class, as the depth of the encoder increased the model tended to put more focus on the
region of the boats. This change in concentration could be strongly noticed from layer 1 to
layer 6. However, after layer 6 we can see that the attention to unrelated areas was reduced.
This will be further confirmed in the next section.
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Figure 6. The class attention maps resulted from different encoder’s layers for the Merced dataset.

Figure 7. The class attention maps resulted from different encoder’s layers for the AID dataset.
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Figure 7 shows four images from the AID dataset along with the output of three
different encoder layers (layer 1, 6 and that last one). As can be seen, for the beach class the
network at layer 1 mostly focuses on the sea regions. Then, the next encoder layers learn
to gradually shift the attention to the beach line while gradually ignoring the unrelated
regions. In addition, we observed that the attention maps provided by layer 6 are visually
similarly to the one provided at the last layer. We observed also a similar behavior for the
river class where the network concentrates on the river region at layer 6 and the attention
slightly improves in the last layer. For the stadium image, as the encoder gets deeper
it learns to localize the discriminative parts that are corresponding to the stadium class.
Finally, for the tank class, we observed that the network concentrates on unrelated objects
in the first layer but was able to concentrate on the tank objects at layer 6. This means that
the attention improves as the encoder goes deeper.

From a quantitative point of view, Figure 8 shows the classification accuracies obtained
at each layer of the encoder for the Merced, AID, and Optimal 31 datasets. In general, we
can see that deep encoders tend to perform better, and the classification performance is
consistently increasing with the number of layers. The figure shows that using encoders
with at least 5 layers is sufficient to reach 90% classification accuracy in all datasets. The
subsequent layers from 6 to 12 improve the accuracy by 2%. This indicates that the earlier
layers in the Vision Transformer model play the key role in extracting the discriminative
representation that is required for classification.

Figure 8. Relative change in model classification accuracy with respect to the encoder layers for the (a) Merced, (b) AID,
and (c) Optimal-31 datasets.
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The average results of the three datasets show that pruning the model up to layer 10
gives the best performance, with average accuracy of 93.88% compared to 93.82% with the
full model. Therefore, for scene classification the last layer of the vision Transformer model
can be removed without affecting the performance of the model.

More specifically, for the Optimal31 dataset the best classification accuracy can be
obtained from the last layer with accuracy of 92.97%. However, it is interesting to observe
that the highest accuracy can be obtained from earlier layers for the other two datasets. For
example, an encoder with 10 layers gives the best classification accuracy for the Merced
dataset with accuracy of 97.89%. For the AID dataset, layer 8 and 12 equally give the best
results with 91.76%. These results are consistent with the qualitative results obtained from
the attention maps. In next section, we will show that using only 50% of the layers can
yield competing classification accuracies.

4. Discussion

We further investigate the effect of varying the image size on the performance of
the model. To this end, we repeat the experiments using images with two different sizes,
224 × 224 and 384 × 384. Indeed, the vision Transformer models were pretrained on the
ImageNet dataset with image size 384 × 384.

The overall accuracies and running times of the experiments are summarized in
Table 4. The results clearly show an increase in image size when the model is trained with
large image size. However, increasing the size can remarkably raise the training time. On
average, using larger images has improved the result by 0.93% but doubled the training
time from 32 to 67 min. For the Optimal31 dataset, this cost has a slight improvement on
the accuracy with only 0.03%.

Table 4. Overall accuracies and training times obtained using different image size on different remote
datasets.

Dataset 224 × 224 384 × 384

Merced 96.73
30 min

97.43
46 min

AID 91.76
43 min

92.94
88 min

Optimal31 92.76
25 min

92.79
68 min

Average 93.45
32.66 min

94.38
67.33 min

Finally, we compare the results of our method with the state-of-the-art results reported
so far in the literature. These methods are the attention recurrent convolutional network
(ARCNet) [41], in which multiple attentional features are generated using a CNN -LSTM
architecture. GoogleNet extracted features classified with an SVM classifier [58]. Gated
bidirectional network that uses hierarchical feature aggregation (GBNet) [31]. Multilayer
stacked covariance pooling (MSCP) [59], in which features from different layers of the
pretrained CNN are combined using covariance pooling and classified using an SVM. In
addition, we add the results of fine-tuned VGG16 and GoogleNet models [60] and models
fine-tuned with an auxiliary classifier [30].

Table 5 shows detailed comparisons for the Merced, AID, and Optimal-31 datasets,
respectively. Besides these three datasets, we compare our results on the well-known
NWPU dataset, which is composed of 45 classes containing 31,500 remote sensing images.
Depending on the data splits reported in the literature, we set the training–testing split
differently for each dataset. We termed the proposed method as V16_21k (224 × 224), and
V16_21k (384 × 384) for Vision Transformer that splits images into 16 × 16, pretrained
on Imagenet-21k dataset and fine-tuned with images of size 224 × 224 and 384 × 384,
respectively. The results in Table 5 show that the network yields interesting results for
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all datasets. In particular, the configuration with large image size and smaller patch size
achieves superior performance. In terms of computation time, the network takes for
Merced: 153 min; AID: 347 min; Optimal31: 220 min; and NWPU: 465 min. Furthermore,
Table 5 shows that the network yields very competitive results after pruning 50% of its
layers.

Table 5. Comparison with state-of-the-art methods.

Datasets

Method Merced
(50% Train)

AID
(20% Train)

Optimal31
(80% Train)

NWPU
(10% Train)

ARCNet-VGG16 [41] 96.81 ± 0.14 88.75 ± 0.40 92.70 ± 0.35 -
ARCNet- AlexNet [41] - - 85.75 ± 0.35 -
ARCNet- ResNet [41] - - 91.28 ± 0.45 -
GoogLeNet+SVM [58] 92.70 ± 0.60 83.44 ± 0.40 - -

GBNet + global feature [31] 97.05 ± 0.19 92.20 ± 0.23 93.28 ± 0.27 -
VGG-16+MSCP [59] 98.36 ± 0.58 91.52 ± 0.21 - -

Fine-tuning VGG16 [31] 96.57 ± 0.38 89.49 ± 0.34 89.52 ± 0.26 87.15 ± 0.45
Fine-tuning GoogLeNet [60] - - 82.57 ± 0.12 82.57 ± 0.12

Inception-v3-aux [30] 97.63 ± 0.20 93.52 ± 0.21 94.13 ± 0.35 89.32 ± 0.33
GoogLeNet-aux [30] 97.90 ± 0.34 93.25 ± 0.33 93.11 ± 0.55 89.22 ± 0.25

EfficientNetB0-aux [30] 98.01 ± 0.45 93.69± 0.11 93.97 ± 0.13 89.96 ± 0.27
EfficientNetB3-aux [30] 98.22 ± 0.49 94.19 ± 0.15 94.51 ± 0.75 91.08 ± 0.14

Proposed V32_21k [384 × 384] 97.74 ± 0.10 95.51 ± 0.57 94.62 ± 0.38 92.81 ± 0.17
Proposed V16_21k [224 × 224] 98.14 ± 0.47 94.97 ±0.01 95.07 ± 0.12 92.60 ± 0.10
Proposed V16_21k [384 × 384] 98.49 ± 0.43 95.86 ± 0.28 95.56 ± 0.18 93.83 ± 0.46
Proposed V16_21k [384 × 384]

[pruning 50%] 97.90 ± 0.10 94.27 ± 1.41 95.30 ± 0.58 93.05 ± 0.46

5. Conclusions

In this work, we have proposed a method for classifying remote-sensing images based
on Vision Transformers. Different from CNNs, the model is able to capture long-range de-
pendencies among patches via an attention module. The proposed method was evaluated
on four public remote-sensing image datasets, and the experimental results demonstrated
the effectiveness of these new type of networks in improving the classification accuracies
compared to state-of-the-art methods. Moreover, we showed that using a combination
of data augmentation techniques can help in further boosting the classification accuracy.
To reduce the size of the model, we presented a simple model-compression solution that
prunes the network layers. For future developments, we suggest investigating alternative
approaches for compressing the transformer and generating light-weight models.
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