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Abstract: Water transparency, measured with Secchi disk depth (SDD), is an important parameter for
describing the optical properties of a water body. This study evaluates variations of SDD and related
impact factors in the Bohai and Yellow Seas (BYS). Based on a new mechanistic model proposed by
Lee et al. (2015) applied to MODIS remote sensing reflectance data, climatological SDD variation
from 2003 to 2019 was estimated. The annual mean images showed an increasing trend from the
coastal zone to the deep ocean. Lower values were found in the Bohai Sea (BHS), while higher values
observed in the center of the southern Yellow Sea (SYS). Additionally, the entire sea has shown a
decreasing temporal tend, with the variation rate lowest in the BHS at 0.003 m y−1, and highest in
the SYS at 0.015 m y−1. However, the weak increasing trend that appeared since 2017 suggests that
water quality seems to have improved. Further, it displayed seasonal patterns of low in winter and
spring and high in summer and autumn. The empirical orthogonal function (EOF) analysis of SDD
variations over the BYS, shows that the first SDD EOF mode is the highest, strongly correlated with
total suspended matter. With the high correlation coefficients of chromophoric dissolved organic
matter, it illustrates that the SDD variation is mainly dominated by the optical components in
the seawater, although correlation with chlorophyll-a is the weakest. The second and third EOF
modes show that photosynthetically available radiation, sea surface temperature, sea surface salinity,
and wind speed are the main covariates that cause SDD changes. Water transparency evaluation on a
long-term scale is essential for water quality monitoring and marine ecosystem protection.

Keywords: Secchi disk depth; MODIS; EOF analysis; marine environmental factors

1. Introduction

In marine and lake ecosystems, the penetration and availability of light underwater
is a controlling factor of the physical (sediment suspension and heat transfer), biological
(phytoplankton photosynthesis), and chemical (cycling of nutrients) processes of the water
body [1]. Therefore, water transparency is a key parameter for describing the optical
properties in the water body. Water transparency is closely related to many environmental
parameters, such as chlorophyll-a (Chl-a) [2–4], phytoplankton biomass [5], total sus-
pended matter (TSM) [6], nutritional status [7], sea surface salinity [8], total nitrogen and
total phosphorus [9], and widely used as evaluation indicators of marine environmental
quality [10].
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The Bohai and Yellow Seas (BYS) are located in the northwestern margin of the Pacific
Ocean [11]. The sea area has a complex hydrodynamic environment, and also affected by a
large amount of freshwater and sediments from the surrounding two world-famous rivers
(the Yellow River and the Yangtze River). The marine community is rich and diverse, with
clear seasonal changes of water optical properties. Due to the complexity of the optical
properties and the importance of the marine ecological environment, it is desired to obtain
the long-term monitoring data of water transparency and establish its relationship with
environmental factors in the BYS, to improve the understanding of the dynamic variations
of marine ecosystems in the region.

For the in situ water transparency measurement, the Secchi disk, which is the oldest
“optical instrument” and dates from 1865, is a simple, fast, and low-cost commonly used
tool [12]. The Secchi disk depth (SDD) is the depth when a black and white Secchi disk
disappears from the observer’s sight in the human eye when it is deployed into the
water [13] and is considered to be a reasonable estimate of water transparency at visible
light range [14]. Due to the limitations of a ship survey, the measured data can be discrete
and sparse in time and space, and poorly synchronized, which can affect the detailed
and objective evaluation of the variation of water transparency. As proved in the past
few decades, the satellite sensors with repeated measurements of the same sea area can
offer a wealth of ocean information, and improve the spatial and temporal coverage of
environmental monitoring. It has been an important source of information for assessing
global and regional aquatic environment conditions and trends [15–17]. On-board ocean
color sensors have been successfully used to monitor SDD, such as the Moderate Resolution
Image Spectroradiometer (MODIS) [18–20].

In previous studies, the water transparency estimation using remote sensing ap-
proaches were mainly applied to inland water in China [21–23] with few reports on the
coastal and marine regions of China seas. For example, the Bohai Sea (BHS) was found
to have the lowest water transparency among the East China Seas from in situ collected
data over a 21-year period (1959–1979) [24]. Considering the residual error in satellite
remote sensing reflectance (Rrs) data, an SDD empirical retrieval model coupled with a
band difference method was developed for China Eastern Coastal Zone and shows that
increasingly more waters within 30–35 and 20–25 m isobaths were deteriorating from 2002
to 2014 [25]. For the central BHS, accompanying rapid economic growth at the end of the
1980s, there was a significant decrease in the water quality, but no significant variations
were detected between 2003 and 2014 [26]. Using a regionally tuned model from the Geo-
stationary Ocean Color Imager (GOCI) data over the BYS, the water transparency shows
obvious temporal variations, the daily change is primarily driven by the changes in the
solar zenith angle, and the monthly variation is mainly driven by the stability of the water
body stratification [27]. However, the main driving force of the long-term SDD changes in
the BYS has not yet been evaluated and analyzed in detail.

Therefore, this study applied the new mechanistic model from Lee et al. (2015) [28]
to MODIS Rrs data from 2003 to 2019 in order to explore the SDD changes in the BYS. Marine
environmental factors, including near-surface Chl-a concentration, TSM concentration,
chromophoric dissolved organic matter (CDOM) concentration, sea surface temperature
(SST), photosynthetically available radiation (PAR), sea surface salinity (SSS), and wind
vectors were assessed for the study region using satellite observations. Therefore, the aims
of this study are to (1) use long-term MODIS Rrs monthly mean products to estimate
the SDD values of the BYS from SDD algorithm of Lee et al. (2015), and analyze the
spatial distribution and temporal variation trend of SDD from 2003 to 2019; (2) carry out
statistical analysis between the main components from the EOF decomposition and the
environmental factors that affect SDD changes, and clarify the main impact factors of SDD
changes in the BYS; and (3) elucidate the water components and marine environmental
factors for the driving mechanism of SDD changes.
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2. Data and Methods
2.1. Study Area

The Bohai and Yellow Seas (31◦–41◦N, 117◦–127◦E) are semiclosed continental shelf
shallow seas, with depths generally less than 100 m [29], as shown in Figure 1. The Bohai
Sea is a shallow shelf basin covering 7.70×104 km2 and an average water depth of 18 m [30].
The Yellow Sea (YS) is contiguous to the Bohai Sea through the Bohai Strait with an average
water depth of about 44 m and coverage of 3.8×105 km2 [31]. Affected by the East Asian
monsoon, a north wind prevails in winter, and the average wind speed is about 8–9 m s−1.
The high-salt tongue penetrates the northern part of the Yellow Sea and enters the Bohai
Sea via the Bohai Strait. The circulation is largely affected by the sea surface wind and
brings strong vertical mixing in the water body [32]. The south wind prevails in summer
with an average wind speed of 4–6 m s−1, resulting in low surface salinity in the YS. Most
areas of the Yellow Sea are regulated by the semidiurnal tide, which is the main driving
force of the Bohai Sea environment [33].
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Figure 1. Study area over the Bohai and Yellow Seas. Contours show 20, 50, and 100 m isobaths from
ETOPO1-1 Arc-Minute Global Relief model data.

2.2. Remote Sensing Data
2.2.1. NASA Ocean Color Data

Monthly Level 3 standard mapped image of Rrs at 412, 443, 469, 488, 531, 555, 660,
680, and 745 nm, taken at a spatial resolution of 4 km × 4 km, were acquired from MODIS-
Aqua between January 2003 and December 2019. The data were downloaded from the
National Aeronautics and Space Administration (NASA) Ocean Biology Distributed Active
Archive Center (https://oceancolor.gsfc.nasa.gov/l3/). Meanwhile, sea surface Chl-a
concentration, TSM concentration, and photosynthetically available radiation (PAR) cal-
culated from monthly mean Rrs data were obtained for establishing the relationship with
water transparency variations. Chl-a concentrations were calculated using the standard
OC3/OC4 (OCx) blue-to-green band ratio algorithm [34] combined with the Hu color index
algorithm [35]. The TSM concentration was taken by applying the algorithm constructed
in Zhang et al. (2010) [36]. The PAR is derived from the solar energy at the top of the

https://oceancolor.gsfc.nasa.gov/l3/
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atmosphere that removed the ocean–atmosphere system reflection and the atmosphere ab-
sorption, and commonly related to marine primary productivity [37]. CDOM concentration
represented by CDOM absorption coefficients at 440 nm (aCDOM(440)) can be separated
from absorption coefficients of CDOM and nonalgal particles based on the QAA_CDOM
algorithm [38,39].

2.2.2. GHRSST Products

The daily gridded AVHRR SST data at 4 km × 4 km spatial resolution were provided
by the Group for High-Resolution Sea Surface Temperature (GHRSST, https://data.nodc.
noaa.gov/ghrsst/L3C/) [40,41]. Monthly mean SST time series data were composited from
daily averaged SST data from January 2003 to December 2019.

2.2.3. RMESS Products

The wind vector data near the ocean surface (including wind speed and wind direction)
were derived from Quick Scatterometer (QuikSCAT) and the first Advanced Scatterometer
(ASCAT) of Remote Sensing Systems (RSS, http://www.remss.com/). Compared with
QuikSCAT, ASCAT data shows a high level of consistency at all wind speed regimes by
using a similar methodology and wind algorithm [42,43]. Monthly gridded data of wind
vectors from January 2003 to November 2009 were derived from QuikSCAT, and data from
March 2007 and December 2019 were obtained from ASCAT. For products with the same
month in both datasets, the specified variables were averaged in the data grid to generate
monthly average fusion data.

2.2.4. CMEMS Dataset

SSS data were taken from the European Copernicus Marine Environment Monitoring
Service (CMEMS, https://marine.copernicus.eu/). Global ocean multiobservation reanaly-
sis products in the framework of CMEMS operationally provide dynamics information of
the ocean and marine ecosystems and rely on in situ measured networks to calibrate and
validate the data from satellites [44]. The SSS L4 dataset was obtained by a multidimen-
sional optimal interpolation technique from interpolating in situ and satellite-derived SSS
data [45]. The grid data were resampled to 4 km × 4 km resolution from the raw spatial
resolution of 0.25◦ × 0.25◦ (about 25 km × 25 km).

2.3. Methods
2.3.1. Algorithm to Retrieve SDD

Based on classical underwater visibility theory, an analytical model for SDD retrieval
has been developed [46], but the modeled data are not in agreement with in situ mea-
surements. To exactly interpret the physical processes of sighting a Secchi disk in water
by the human eye, a new underwater visibility theory described by Lee et al. (2015) was
then proposed and an innovative mechanistic model for SDD was established. Using this
model to retrieve water transparency, it mainly includes three main steps. First, the quasi-
analytical algorithm (QAA) is used to estimate the total absorption coefficient a(λ) and the
total scattering coefficient bb(λ) of the water from Rrs(λ) data [47]. If Rrs(670) is less than
0.0015 sr−1, the reference band is taken 550 nm, otherwise, 670 nm is selected. Second,
according to the model developed by Lee et al. (2005, 2013) [48,49], the diffuse attenuation
coefficient Kd(λ) is evaluated as follows:

Kd(λ) = (1 + m0 × θs)× a(λ) + m1 × (1 − γ × ηw(λ))× (1−m2 × e−m3×a(λ))× bb(λ), (1)

Here, the four parameters m0-3 that vary with solar altitudes and depth owing to
the change of light distribution are queried through a lookup table. The variable θs is
the solar zenith angle and ηw is the ratio of the pure seawater backscattering coefficient
bbw(λ) to bb(λ). The pure seawater coefficients of absorption and backscattering at each

https://data.nodc.noaa.gov/ghrsst/L3C/
https://data.nodc.noaa.gov/ghrsst/L3C/
http://www.remss.com/
https://marine.copernicus.eu/
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wavelength were tabulated by Morel [50] and Smith and Baker [51]. Finally, following this
new underwater visibility theory [28], SDD is given by

SDD =
1

2.5Min(Kd(λ))
ln(

∣∣0.14 − Rrs
PC

∣∣
Ctr ), (2)

where Min(Kd(λ)) is the minimum Kd value in the visible domain wavelength of MODIS,
Rrs

PC is the Rrs value matched to the wavelength with minimum Kd, and Ct
r is the contrast

threshold for human eyes to sight a Secchi disk and taken as an average of 0.013 sr−1 based
on the measurements of Blackwell (1946) [52]. For global combined in situ datasets of
338 Rrs and SDD matchup with SDD range of 0.1 m to 30 m, which contains 197 pairs of
matching points from field measurements off China Seas, the accuracy of the new model
was statistically verified. The mean absolute relative difference between measured and
model retrieved SDD is 18.2%, and this difference includes 10% or more uncertainties in
the observation of Secchi disk depth.

2.3.2. Trend Analysis

To evaluate the temporal variation of water transparency, the Mann–Kendall (MK) test
was carried out to evaluate the temporal changes and significance of trends. Meanwhile,
Sen’s slope (SS) was used to obtain the magnitude of variation [53]. The combination of
both methods has been extensively used for trend analysis in hydrometeorological time
series. In the MK test, the Z score obeys the standard normal distribution. When its
absolute value is greater than 1.96, the evaluated trends are significant at 5% significance
level [54]; it can be used to estimate the significance of the variation trend.

Regression analysis was used to evaluate the quantitative relationship between depen-
dent and independent variables. For the single variable linear regression of the observed
factors for time, the linear trend can be obtained from the least square fitting [55]. Before the
regression was applied, all assumptions of the analysis (i.e., normality, homoscedasticity,
and independence of predictor variables) were tested and met. Specifically, we used this
test to verify that there was no autocorrelation between predictor variables.

2.3.3. Empirical Orthogonal Function Decomposition

The empirical orthogonal function (EOF) is a principal component analysis (PCA)
method that was first introduced into meteorology and climate research by Lorenz in the
1950s [56], and now it has been widely used in the field of oceanography [57]. In general,
the eigenvector corresponds to the spatial sample, so called the spatial mode (hereafter
referred to as EOFs); the principal components (PCs) correspond to the time change. It can
identify key variability patterns from the time series data of the spatial map. When a
certain pattern can be statistically related to different physical processes, this allows for the
underlying driving mechanisms to be evaluated.

When EOF decomposition is applied to the special parameters observation, the long
time series data over spatial gridded points should be taken for anomaly processing
first. Then, the eigenvalues and eigenvectors can be calculated easily using singular
value decomposition (SVD) techniques to substitute for the classical covariance matrix
approach to save the entire computational time. Arranging the eigenvalues in descending
order, a list of eigenvectors corresponding to each nonzero eigenvalue is taken as a spatial
distribution mode. The temporal mode can be found by multiplying the eigenvectors with
the transpose of the original matrix. The size of the eigenvalue determines the contribution
of the corresponding eigenvector to the total variance. The first EOF mode represents the
long-term trend of time series changes, while higher-order EOF harmonics are detrended.
At last, the North test is chosen to test the significance of the error range of the eigenvalue
and judge whether the result of decomposition is meaningless noise or a signal with
physical significance [58]. It is worth noting that since each independent variability pattern
is spatially dependent, the EOF analysis results would rely on the spatial area of the data
grid involved.
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3. Results
3.1. Spatial and Temporal Patterns
3.1.1. Interannual Variations in SDD Dynamics

For the MODIS L3 monthly mean Rrs images of BYS, the percentage of valid pixels
is about 80.4%. The missing data of satellite remote sensing appeared mostly in winter
and was mainly caused by cloud cover, contamination of sun glint, atmosphere correction,
or adjacency from land. With the confidence in the model description of Lee et al. (2015)
in the China seas, monthly mean SDD images of BYS were estimated from MODIS monthly
mean Rrs. The spatial distribution of climatological annual mean SDD images from 2003 to
2019 was calculated (Figure 2), and lower/higher-value area is displayed. Overall, it shows
a large SDD variation range in the study area (0.4–15.6 m). The lower-value area is found
in the Bohai Sea (0.5–4.3 m), and the higher-value area appeared in the center South Yellow
Sea, which is consistent with the variation trend of the water depth contour marked in
Figure 1. With the influence of the shallow water depth, the terrestrial input by the Yellow
River and the Yangtze River, and the coastal currents, the transparency inshore where the
water depth is below 50 m is relatively low, and in contrast, the water transparency is high
in the deep ocean far from the coastline, which is less affected by the continent. There are
tongue-shaped low-transparency areas near Chengshanjiao and southeast of Subei Shoal.
The standard deviation of the SDD of the entire sea area is less than 6 m. The lack of data
in the northern Jiangsu Shoal and the coastal waters of Hangzhou Bay are largely due to
the failure of the atmospheric correction algorithm in the coastal turbid waters.
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Figure 2. Spatial distribution of the climatological annual mean of Secchi disk depth (SDD) data derived from MODIS
for 2003–2019 (left panel), and variation trend of each sea area using the Mann–Kendall (MK) test (middle panel) and
Sen’s slope (right panel). Six pseudostations (S1–S6) for detailed analysis are also labeled. S1 (39.23◦N, 120.27◦E) and S2
(38.65◦N, 123.23◦E) are located in the BHS and NYS respectively. S3 (35.06◦N, 120.77◦E), S4 (35.06◦N, 124.77◦E), S5 (31.98◦N,
122.98◦E), and S6 (33.27◦N, 125.23◦E) are situated in the SYS. Each station covers the spatial extent of the 3 × 3 window on
the center pixel of its latitude and longitude.
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The MK and SS analysis results for each region in Figure 2 show that the water
transparency of most areas of the BYS did not obtain statistical clustering characteristics
(1.96 > Z-value > −1.96); insignificant increasing or decreasing trend was observed ex-
cept for the coastal waters of Haizhou Bay, which showed a significant negative trend
(Z-value < −1.96). Although the transparency of the coastal waters in the BHS was also
significantly increased, the three bays (Laizhou Bay, Liaodong Bay, and Bohai Bay) have
about 3 to 4 months of the ice in winter, which will cause most of the SDD data missing in
winter. Therefore, trend analysis is not statistically significant. The SDD in the central BHS
has increased, but the time trend is not significant. The NYS area showed an increase in
SDD in the northern water depth of less than 50 m, and a negative trend covers the spatial
extent of other areas. SDD in the SYS showed an increasing temporal trend in the central
part of the YS.

Taking January and July as the representative months of winter and summer, respec-
tively, based on the spatial average of the monthly data of each sea area, linear regression
was performed on the data of SDD time anomalies, and the annual average time series were
also statistically analyzed (Figure 3). Due to the existence of the winter ice period, the three
bays of the BHS were excluded on average and only consider the central region. Regarding
the trend of SDD anomalies, the temporal variations of the three sea areas all show a certain
degree of fluctuation. In winter, both NYS and SYS areas decreased significantly, and BHS
showed an insignificant decrease. In summer, NYS showed an increasing trend, SYS and
BHS showed a decrease in variation, but none of the trends were significant. For the
insignificant trend, on the one hand, when the new transparency algorithm was established
and compared with the measured data, 10% of the uncertainties came from the visual
deviation of the in situ measurements; on the other hand, it can be attributed to the use of a
unified atmospheric correction algorithm when acquiring MODIS Rrs product data, which
leads to a large deviation in the SDD data obtained through inversion. The influence of
these uncertain errors was ignored in this study. In terms of annual changes, the SDD of the
entire study sea area shows a decreased trend, and the variation rate is lowest in the BHS at
0.003 m y−1 and highest in the SYS at 0.015 m y−1. The trend analysis of the SDD anomaly
also shows that before 2009, the water transparency was higher than the annual mean,
and lower from 2009 to 2017, which also means that the water quality of the entire sea area
may have deteriorated during this period. Since 2017, it shows a weak increasing trend,
which implies that the water quality in the study sea area seems to have improved. The
variations in water transparency are most likely related to changes in human activities and
weather conditions, so more efforts are needed to maintain a healthy marine ecosystem.

1 
 

 

Figure 3. Cont.
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1 
 

 
Figure 3. Temporal SDD anomaly changes in January (a), July (b), and annual mean (c) from 2003 to 2019. Dashed lines
represent regional averaged MODIS-derived SDD values for the Bohai Sea (BHS) (red line with hollow square), North
Yellow Sea (NYS) (green line with hollow triangles), and South Yellow Sea (SYS) (blue line with hollow circles) using the
innovative mechanistic model of Lee et al. (2015), and solid lines are the temporal trend of linear regression with R-square
and p-value equations shown on each panel.

3.1.2. Seasonal Patterns of SDD and Related Marine Environmental Factors

Climatological SDD time series data also indicated seasonal patterns of low in spring
and winter and high in summer and autumn, as displayed in Figure 4. Related marine
environmental factors, including Chl-a, TSM, CDOM, SST, PAR, SSS, and wind vectors
(wind speed and direction) are all given in similar patterns.

In spring, the water transparency is low, less than 4 m in the Bohai Sea, the coastline
of the Yellow Sea, Subei Shoal, and Yangtze River estuary. Values are higher in the central
South Yellow Sea, reaching 14 m. The low-value area near Chengshanjiao is related to the
strong mixing caused by the flow around the peninsula, and also to the sediment of the
Yellow River carried by the North Shandong coastal currents. When the SST gradually rises
in summer, the increasing thickness of the thermocline strengthens the vertical stability
of coastal waters, and the upper and lower layers of seawater are not easily mixed [59],
making this the most transparent time of the year. The water transparency is 1.6–8 m in
the Bohai Sea and 2.4–19.4 m in the Yellow Sea, which is significantly higher than that in
spring. The low-value area in the east of the Subei Shoal decreases to the smallest area of
the year. In autumn, as the northwest wind weakens and the northwest wind strengthens,
the convective mixing of seawater gradually increases, and the concentration of suspended
matter increases, which leads to a general decrease in water transparency. The high-value
area in the center of the Bohai Sea no longer exists, and water transparency on the entire
sea area is relatively uniform, with its values <5 m. The water transparency range of the
Yellow Sea is 0.2–16 m. The water transparency in winter is the lowest among the four
seasons. The water transparency in the Bohai Sea is 0.1–2 m, and the spatial difference is
the smallest. The transparency of the coastal waters of the Yellow Sea is less than 3 m. Most
of the central sea areas in the Yellow Sea are still in high transparency (6–8 m).
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From the climatological image of the optical components of the seawater, the regional
distribution trends of Chl-a, TSM, and CDOM in the Bohai Sea are relatively consistent:
from the high-value area of Bohai Bay, Laizhou Bay, and Liaodong Bay to the low-value
area of Bohai Strait. All factors show regular gradient changes, and the isoline is basically
consistent with the trend of the coastline. Near the Subei Shoal in the Yellow Sea, coastal
currents and terrestrial input leads to the high content of suspended particles and chro-
mophoric dissolved organic matter throughout the whole year. The center of the North
Yellow Sea and the South Yellow Sea are mainly affected by the Yellow Sea warm current.
The seawater of this area contains a certain portion of suspended sediment and nutrient
matter. The Chl-a concentration is relatively high in spring and winter. The coastal waters
of the North Yellow Sea and the Shandong Peninsula are affected by the combined action
of density currents and coastal currents, and the contours of each factor are almost parallel
to the coastline.

As seen from the series of climatological changes of marine environmental factors, the
spatial patterns of PAR, SST, and wind vectors are nearly coherent in the seasonal cycles.
The PAR is mainly related to solar radiation intensity. Accounting for the difference in
solar altitude angles of different seasons, SST presents the characteristics of low in winter
and high in summer, and its spatial distribution roughly corresponds to the latitude zone.
On account of the East Asian monsoon [60], northerly winds prevail in winter, the average
wind speed is about 7–8 m s−1; spring monsoons alternate and wind directions become
unstable; in summer, southerly and southeast winds prevail and the average wind speed is
about 4–6 m s−1. In terms of the spatial distribution of SSS, the salinity in the near-shore is
low, resulting from the input of freshwater from the river, and gradually increases from
inshore to offshore. Winter and spring are mainly under the influence of the Yellow Sea
warm water mass, and the high-salt water body carried is tongue-shaped, extending to the
central Yellow Sea. In summer and autumn, two low-salt areas formed near the mouths of
the Yellow River and the Yangtze River are more obvious, and the freshwater input by the
rivers extends from the coastal areas to the deep ocean.

3.2. Variations of Marine Environmental Factors and Relevance for SDD

The principal modes obtained by the EOF decomposition can be used to achieve
the dominant space and temporal patterns and main impact factors from the time series
satellite images [61–63]. A strong environmental factor can appear in several principal
modes, and there many environmental factors can take effect in one mode. Figure 5 shows
spatial patterns (a–c) and temporal amplitudes (d) for the first three SDD EOF modes.

The first SDD mode explains 58.75% of the total variance. The change of spatial
patterns is not obviously apparent. The amplitude value is positive everywhere, but the
time amplitude changes drastically, indicating that the SDD temporal trends are consistent
throughout the study area. The amplitude of the spatial pattern increases from the coast to
the open sea, with the largest changes found in the center of the Yellow Sea. It is similar
to the annual average SDD image. The corresponding time mode reveals a clear seasonal
cycle change signal, which is positive from May to September, indicating that the water
transparency is higher than the annual mean, and the other months are negative, indicating
that the transparency is lower. It also shows that seasonal ocean and atmospheric processes,
such as PAR, SST, and wind vectors, are the important factors that cause periodic changes
of the mode. Since the optical components of water also have seasonal cycle changes,
they must be included when analyzing the physical processes related to leading patterns.
The second and third EOF modes of SDD play a small role in SDD changes. Higher-order
EOFs are not considered in this study, and only explain the minor component of the
total variance.
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The second mode of EOF accounts for 4.14% of the total variance. Combined with
the spatial patterns and temporal amplitudes, it decreases in summer and increases in
autumn. The transparency changes between the center Yellow Sea and the region near
the Yangtze River estuary are opposite. The presence of a thermocline generated by the
increase in surface water temperature in the central Yellow Sea in summer prevents the
suspended particles at the bottom from mixing with the upper water body. In offshore
waters, the shallower water depth and the shallower thermocline weaken the effect of
hindering the resuspension of particles. The change of transparency in autumn may be
affected by the decrease of freshwater drained down from the Yangtze River estuary and
the high-salt water body brought by the Yellow Sea warm water mass. Therefore, this mode
is closely related to SST and SSS. The third mode of EOF contains 2.97% of the total variance,
and the explained SDD feature is weaker. It shows that the SDD in the central Yellow Sea
increases in autumn and winter, whereas the SDD near the coastal area decreases. This
may be owing to the increased sea surface wind intensity in autumn and the effect of
suspended sediment on the bottom of the coastal waters, which leads to a greater degree of
transparency than the central South Yellow Sea. The large spatial amplitude of the southern
branch of the Shandong Peninsula and the Bohai Sea is perhaps caused by seasonal blooms
from the changes of Chl-a.

Since the overall transparency of the Bohai Sea and the North Yellow Sea are relatively
low, the water properties can be regarded to be similar. It should be noted that since the
spatial area is relatively small, the characteristics of the signal in this area can be easily
covered by the strong signal of the South Yellow Sea when EOF is decomposed. We also
performed EOF analysis in the BNYS and SYS areas at the same time. The spatial and
temporal modes from the EOF decomposition of long-term data are not shown in this study.

To clarify what environmental factors cause the time changes of SDD in the area of
BNYS, SYS, and BYS respectively, Table 1 displays the correlation coefficient (r) between
SDD EOF temporal modes and the marine environmental factors in each region. The first
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EOF mode in the BYS shows a strong negative correlation with Chl-a, TSM, aCDOM(440),
SSS, wind speed, and a significant positive correlation with PAR and SST. This mode has
the highest correlation with TSM (r = −0.910). Although the weakest correlation with
Chl-a (r = −0.508), strong correlation with TSM and CDOM (r = −0.905) illustrates that the
change of SDD is determined by the optical components of the water body. The correlation
between the second mode and PAR, SST, and SSS is significant, but the correlation is weaker.
The third mode has the highest correlation with wind speed, but not strong. It can be taken
that PAR, SST, SSS, and wind speed are covariates of SDD changes. It is consistent with the
analysis above for each SDD EOF mode on BYS. The contribution rate of PC1 in the BNYS
area to the total variance is about 72.64%, which is higher than that of SYS and BYS. The
first mode also has a higher correlation with TSM and CDOM, whereas the second and
third modes are significantly correlated with SSS and Chl-a, respectively. The correlation
between SDD changes and environmental factors in SYS is similar to that of BYS overall,
but the first mode has the highest correlation with CDOM.

Table 1. Correlation coefficient between SDD EOF temporal modes and marine environmental factors in BNYS, SYS,
and BYS.

Region Temporal
Mode Chl-a TSM aCDOM(440) PAR SST SSS Wind

Speed

(Units) (mg·m−3) (mg·L−1) (m−1) (E·m−2·d−1) (◦C) (psu) (m·s−1)

BNYS
PC 1 −0.309 −0.931 * −0.930 * 0.745 * 0.896 * −0.356 * −0.737 *
PC 2 0.005 0.098 0.163 * −0.302 * −0.264 * 0.528 * 0.307 *
PC 3 −0.283 * 0.078 0.021 −0.219 * 0.005 −0.119 0.138 *

SYS
PC 1 −0.606 * −0.862 * −0.875 * 0.702 * 0.838 * −0.810 * −0.681 *
PC 2 0.061 0.150 0.142* −0.321* −0.236* 0.235* 0.183
PC 3 0.139 * −0.071 −0.053 0.229 * −0.171 0.186 −0.243 *

BYS
PC 1 −0.508 * −0.910 * −0.905 * 0.728 * 0.868 * −0.778 * −0.714 *
PC 2 0.069 0.156 * 0.145 * −0.276 * −0.201 * 0.238 * 0.188 *
PC 3 0.256 * −0.080 −0.068 0.323 * −0.244 * 0.304 * −0.328 *

Note: * p-values < 0.05.

As the SDD changes in the entire sea area of the BYS have the highest correlation with
TSM, and the relationship between the water optical properties and the water components
(such as Chl-a concentration and TSM concentration) strongly depends on the composition
of suspended particles in water, so it is necessary to characterize the dominant suspended
particulate matter types in the water. The ratio of the Chl-a concentration to TSM concen-
tration (Chl-a/TSM) can be considered as a good indicator to quantify the composition of
suspended particulates. When the ratio is greater than 0.5 × 10−3, it means that the optical
properties of the water body are mainly dominated by phytoplankton [64–66]. Analyz-
ing the Chl-a/TSM ratio of the six stations (Figure 6), the values are concentrated in the
range of 0.25 × 10−3–3.0 × 10−3, most of which are in the range of 0.5 × 10−3–2.5 × 10−3.
In terms of seasonal changes, S1 and S6 indicate a trend of being high in summer and
autumn, and show that the Chl-a/TSM ratio of the sea surface at the S6 station is lower
than 0.5 × 10−3 in winter and spring, which means the suspended particles are mainly
inorganic and mainly resuspended sedimentary particles. Station S1 is strongly mixed in
both the upper and lower water column layers, and only shows characteristics of inorganic
particles in winter. Other stations show more or less phytoplankton-dominated features
throughout the year, which is that the remote sensing reflectance spectrum of the water in
these stations shows a higher absorption coefficient in the red band. Stations S2, S4, and S5
showed double peaks in spring and autumn. The water at all stations has a low Chl-a/SPM
ratio in spring but a high TSM concentration, which may be carrying more nutrients and
more likely to cause algal blooms [67].
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Further analysis of the role played by marine environmental factors, SDD changes,
and the corresponding seasonal changes of marine environmental factors at the six stations
is presented in Figure 7. Overall, the water transparency is the greatest at S4 and S6, and
lowest at S1 and S5. The seasonal variation trends of SST, PAR, SSS, and wind speed at
each station are roughly the same, but the changes in the optical components of the water
body are quite different. The detailed contrastive analysis shows the following features:
(1) The SDD changes of S1 and S5 are only different in July; S1 continues to increase whereas
S5 decreases. Station S1 is located near the mouth of the Yellow River in the Bohai Sea,
and station S5 is near the mouth of the Yangtze River. Comparing the changes in related
marine environmental factors from June to August, this trend of change is caused by the
optical components of the water at station S5 in July, and can be attributed to the huge
amount of freshwater from the Yangtze River estuary. (2) The variation trends of S2 and
S3 are similar in spring, but their difference increases afterward. Different from S2, S3 has
a higher concentration of Chl-a and CDOM that leads to lower transparency. It may be
caused by the large-scale algal blooms that occurred every summer in the western part of
the Yellow Sea since 2008, which led to the increase of Chl-a concentration and the decrease
of water transparency [68,69]. (3) The water depth at S4 and S6 are greater than 50 m, and
the water transparency varies from July to October. Although the TSM at each station is
relatively low, S6 is adjacent to the diffusion area of the Yangtze River estuary freshwater.
The increase in nutrients in seawater drives the photosynthesis of phytoplankton, and
Chl-a increases correspondingly and reduces the water clarity.
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4. Discussion

In natural waters, the downward spectral radiation within water bodies decreases
with increasing water depth; the attenuation process underwater is closely related to the
absorption and scattering of the optical components (water molecules, phytoplankton,
total suspended particulate matter, and CDOM) [70,71]. In water dominated by inorganic
particulate matter, scattering is relatively more significant to SDD than absorption [1].
In the visible light range, water molecules strongly absorb at red wavelength, whereas
scattering is very weak. Phytoplankton has two strong absorption peaks at the blue and
red wavelength, and strong scattering at the same time [72]. The total suspended partic-
ulate matter is composed of the inorganic part and organic part. Inorganic particulate
matter has a high refractive index relative to water molecules, so the light underwater
would be strongly scattered, but the optical properties of debris-like organic particulate
matter are similar to CDOM [73]. CDOM can absorb the light underwater at the blue band
and scatter at the yellow band, thus making the sea surface water present as yellow [74].
The Bohai and the Yellow Seas have typical water characterized as Case II. Apart from
water molecules, the three main optical components jointly determine the optical charac-
teristics of the water body. Their absorption and scattering characteristics overlap each
other during the underwater light penetration process, and each contribution to SDD is
nonlinear [75,76]. The long-term SDD changes in the BYS are highly correlated with TSM
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and CDOM, indicating that the underwater light attenuation of the entire sea area is mainly
due to the combined effect of these two optical components. The fact that chlorophyll-a
is not highly correlated with SDD also shows that the contribution of phytoplankton in
the study area is masked by other water components. Generally speaking, the influence
between phytoplankton and water transparency is reciprocal. On the one hand, the ab-
sorption of underwater light by phytoplankton biomass will reduce the amount of light
that can penetrate the water body. On the other hand, the reduction of light underwater
results in lower carbohydrate content in phytoplankton cells and restricts the growth of
phytoplankton [77]. Although the SDD changes in the BYS are mainly caused by TSM and
CDOM, there are significant differences in the weights of the three optical components for
different types of water [78], and the driving factors for SDD changes are also different [79].

From the perspective of ocean optics and ecology, the effects of marine environmental
factors on the changes in water transparency cannot be ignored. As analyzed in Table 1,
PAR, SST, SSS, and wind speed are covariates that cause SDD changes in the BYS. These
factors directly vary the distribution of underwater light and the process of underwater
ecosystems, thereby affecting the primary production of seaweed, microalgae, and benthic
organisms [80]. The intensity of PAR, corresponding to the intensity of solar radiation,
determines the amount of input that may enter the underwater light field. Due to its regular
seasonal changes, it cannot be a decisive variable in the SDD variation. There is also a
significant positive correlation between SST and SDD (Figure 7). In summer, the sea surface
absorbs more solar radiation, and the sea surface temperature rises. The upper-ocean
water body gradually forms a stable thermocline, which prevents upward movements
of the bottom particles and nutrients. The material is mixed with the upper water body,
so the water transparency is generally higher during this period. At the same time, the
increase in water transparency promotes the penetration of solar irradiance, increases the
light absorption in the deeper part of the water, and then varies the heat transmission of
the upper and middle water bodies of the ocean [81]. Since the global SST has increased
year-by-year since 2000 [82,83], it may cause an increase in interannual SDD in the deep-sea
area of the Yellow Sea (stations S4 and S6). On the spatial distribution of SSS, low-salinity
areas are formed near the coast due to runoff input. A large amount of suspended sediment
and CDOM accumulate in the water body, and the CDOM concentration is significantly
higher in low-salinity water bodies, but the sediment input is usually trapped there with
the high sedimentation rate caused by regional circulation [9,84]. The high-salinity areas in
the central Yellow Sea are the mixing of coastal low-salt water bodies with high-salt water
bodies carried by the Yellow Sea warm water mass. The significant positive correlation
between SDD and SSS (Table 1) further highlights the powerful role of CDOM in light
attenuation in water bodies. The wind field is the most important factor that affects the
TSM changes, especially in the coastal estuary area. The central Yellow Sea is deeper.
The stable thermocline in summer prevents the suspended particles driven by the tide
and circulation from reaching the upper water body, and the thermal layer gradually
disappeared in autumn, the strong wind intensified the mixing of the upper and lower
water bodies, resulting in more bottom sediments suspended.

Furthermore, in the analysis of long-term SDD changes, it is essential to take account
of the influences of water depth changes caused by topography and tides [85,86]. As shown
in Figure 2, the depth of the coastal waters on the west side of the station S3 and station
S5 increases with the distance from the coastline. The SDD changes also show a similar
increasing trend, and the contour is approximately parallel to the coastline. For deep-sea
areas, especially water areas with fast currents and large tidal height changes, for example,
the transparency of seawater at station S6 is lower than that at station S5; it is also considered
to be affected by the mixing of tidal currents.

5. Conclusions

In this study, climatological SDD images from 2003 to 2019 are estimated using the
innovative mechanistic model of Lee et al. (2015) over MODIS L3 monthly mean Rrs data
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of BYS. The spatial distribution of annual mean SDD shows lower SDD values (0.5–4.3 m)
in the Bohai Sea, but higher values in the center of the South Yellow Sea with a large
variation range (0.4–15.6 m). The terrestrial input from the Yellow River and the Yangtze
River, and coastal currents, lead to water transparency that is relatively low in the inshore
area where the water depth is below 50 m but high in the deep ocean. There are tongue-
shaped low-transparency areas near Chengshanjiao and southeast of Subei Shoal. The
standard deviation of the SDD of the entire sea area is less than 6 m. The seasonal SDD
variations also indicate seasonal patterns of low in spring and winter and high in summer
and autumn. On the SDD annual changes analysis of the six stations, water transparency
at S1 and S3 both decline and other stations increase.

To determine the main impact factors from the time series satellite images, EOF decom-
position was carried out. The dominant space and temporal patterns obtained from EOF
analysis show that the first SDD EOF mode in the BYS is the highest, and closely correlated
with TSM. The high correlation coefficients of CDOM also illustrate that the SDD variation
is mainly dominated by the optical components in the seawater, although correlation
with Chl-a is the weakest. The contribution of each optical component to the changes of
SDD is found to be different in the seawater with different content of optical components.
Meanwhile, the dominant suspended particulate matter composition is characterized by
Chl-a/TSM. From the second and third EOF modes, PAR, SST, SSS, and wind speed are
found to be the covariates that cause SDD changes in the BYS. Furthermore, the impact
of changes in water depth caused by topography and tides also need to be taken into
consideration. Future research of SDD changes in the marine ecosystem should consider
other influencing factors, such as phytoplankton biomass, algal bloom, and river discharge.
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