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Abstract: Due to its excellent performance in high-dimensional space, the kernel extreme learning
machine has been widely used in pattern recognition and machine learning fields. In this paper, we
propose a dual-weighted kernel extreme learning machine for hyperspectral imagery classification.
First, diverse spatial features are extracted by guided filtering. Then, the spatial features and spectral
features are composited by a weighted kernel summation form. Finally, the weighted extreme
learning machine is employed for the hyperspectral imagery classification task. This dual-weighted
framework guarantees that the subtle spatial features are extracted, while the importance of minority
samples is emphasized. Experiments carried on three public data sets demonstrate that the proposed
dual-weighted kernel extreme learning machine (DW-KELM) performs better than other kernel
methods, in terms of accuracy of classification, and can achieve satisfactory results.

Keywords: weighted kernel extreme learning; dual-weighted; multiple scales guided filter; hyper-
spectral image classification; imbalanced dataset

1. Introduction

Hyperspectral remote sensing images contain rich spatial and spectral object informa-
tion, including ultraviolet, visible, and near- and mid-infrared regions of electromagnetic
waves. For this reason, the ability to recognize and classify ground objects has greatly
improved. The classification of hyperspectral images has become a hot research topic in
recent years, with a considerable amount of research on hyperspectral image classification
having been conducted. However, despite the rich information provided by hyperspectral
images, their high dimensionality and non-linear characteristics make detailed classifica-
tion difficult. Moreover, as the number of available training samples is typically small,
we previously encountered the Hughes phenomenon [1] during the supervised classifica-
tion of hyperspectral images (HSI). To overcome the high-dimensionality problem, many
methods have been introduced for HSI classification and shown good performance, such
as manifold learning, the support vector machine (SVM) [2], and composite kernel-based
methods [3–7].

Recently, many deep learning employed for hyperspectral imagery classification tasks.
H.Wu [8] proposed semi-supervised deep learning for hyperspectral image classification,
while the approach uses limited labeled data and abundant unlabeled data to train a
deep neural network. B. Pan [9] introduced a dilated semantic segmentation network, in
order to avoid spatial information loss during the pooling operation. The network has an
end-to-end structure, thus reducing time consumption. In [10], a deep learning method
by combining spatial and spectral information for HSI classification was successfully
designed. An unsupervised spatial–spectral feature learning strategy using a 3-dimensional
convolutional auto-encoder (3D-CAE) has been proposed for hyperspectral data [11].
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The proposed 3D-CAE maximally explores the spatial–spectral structure information for
feature extraction.

Sparse representation is also a commonly used method to hyperspectral image clas-
sification. J. Peng [12] designed a self-paced joint sparse representation model which
replaces the least-squares loss in the standard joint sparse representation with a weighted
least-squares loss and adopts a self-paced learning (SPL) strategy to learn the weights
for neighboring pixels. In order to improve the robustness of joint sparse representation
(JSR) [13], J. Peng proposed maximum likelihood estimation (MLE) based a JSR model,
which replaces the traditional quadratic loss function with an MLE-like estimator to mea-
sure the joint approximation error by providing priors on the coding residuals. This model
can easily be converted to an iteratively reweighted JSR problem. Y. Yuan [14] proposed a
method that mainly focuses on multitask joint sparse representation (MJSR) and a stepwise
Markov random field framework to tackle such problems.

As an effective strategy the multi-features have been widely used to improve the
accuracy of classification. Y. Gu [15] proposed non-linear multiple kernel learning, which
learned an optimal combined kernel from pre-defined linear base kernels. J. Li [16] con-
structed a new family of generalized composite kernels, which showed great flexibility
in the way that they combined the spectral information contained in hyperspectral data
without weighted parameters. W. Li [17] introduced the one-against-one strategy by using
discriminant analysis within kernel-induced feature spaces. L. Fang [18] presented a novel
framework to effectively utilize the spectral–spatial information of super pixels through
multiple kernels, which extracted extinction profiles from three independent components
and then created an adaptive composite kernel to explore the spatial information.

Compared to the above-mentioned methods, the extreme learning machine (ELM) [19]
has received a lot more attention, due to its advantages. ELM does not need to tune the
hidden layer parameters if the network architecture is determined. The hidden layer param-
eters in ELM are randomly generated and independent of the training data and application
environments. By minimizing the training error and the norm of output weights simultane-
ously, ELM tends to have better generalization performance and provides a unified analytic
solution to binary, multiclass, and regression problems. However, despite the advantages
mentioned above, when an ELM is directly applied to a HSI data set, the accuracy is still
not high, as only spectral information is used. Some methods combining spatial–spectral
information based on ELM for HSI classification have been proposed. To evaluate the
effectiveness of a kernel-based extreme learning machine algorithm, Pal, M. [20] applied the
kernel ELM method to multispectral and hyperspectral remote-sensing data. The results
suggested that the accuracy was similar to that of SVM, while it had a lower computa-
tion cost. For weighted summation form of kernel extreme learning model, Y. Zhou [21]
proposed two spatial–spectral composite kernel ELM algorithms for HSI classification.
C. Chen [22] exploited Gabor filtering and multi-hypothesis to extract spatial information,
then used the joint spectral information as an ELM input. In [23], extended morpholog-
ical profiles were employed for spatial information in ELM-based classification of HSI.
M. Jiang [24] exploited a multiscale spatial weighted-mean filtering-based approach to
extract multiple spatial information. F. Cao [25] proposed probabilistic modeling with a
sparse representation and weighted composite features (WCFs) to derive the optimized
output weights. Similarly as deep learning method, J. Li [26] proposed a new classification
framework, derived from the deep KELM network, in which deep KELM was employed
to generate deep spectral features. Ensemble learning based method was also developed
for hyperspectral imagery classification, Ugur Ergul [27] proposed a new boosting-based
algorithm, which enables the construction of composite kernels (CKs) by using spatial and
spectral hybrid kernels. In [28], an improved hierarchical ELM was designed by adding
an ELM to a hierarchical ELM. In this model, the average spectral-spatial features were
extracted twice by this multiple layer framework; satisfactory results were achieved. As
a kind of optimization a multiple reduced kernel extreme learning machine was intro-
duced [29], with which the combination of hybrid kernels and optimal weights could be
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achieved, allowing the features of the hyperspectral image to be fully represented and
the classification error rates to be reduced. As extended attribute profiles usually require
manual parameter settings, Marpu [30] presented a technique to automatically produce
the extended attribute profiles under consideration of the standard deviation, where the
homogenous regions were retained by the minimum and maximum values of the stan-
dard deviation. Recently, group intelligent algorithms have also been used: H. Su [31,32]
proposed an extreme learning machined optimized by the firefly algorithm, where the pa-
rameters in ELM were optimized by the proposed method. J. Li [33] presented an empirical
linear relationship between the training number and hidden nodes with a linear model.
To improve the individual performance of a basic classifier, F. Lv [34] proposed a stacked
auto-encoder ELM (SAE-ELM) model. The features were extracted by this model, while
the Q statistic was adopted to determine the final results. Spatial features provide subtle
information, which helps discriminate different classes. As an excellent edge-preserving
filter, guided image filtering [35], which was proposed by He, has been widely used in
the fields of noise reduction, haze removal, and so on. B. Pan [36] proposed an ensem-
ble framework where, by integrating many individual learners, better generation can be
achieved. To establish the ensemble model, hierarchical guidance filtering was employed.
Y. Guo [37] attempted to develop two fusion methods for spectral and spatial features and,
in order to obtain better results, adopted guided image filtering. Z. Wang [38] proposed a
discriminative guided filtering framework which integrates a classifier by guided filtering.
Guided image filtering establishes a local linear model between the guided image and the
output image, implicitly completes the filtering of the input image by solving the difference
function between the input image and the output image [35,39]. Inspired by these studies,
guided image filtering is used to extract spatial information, in order to further improve
the accuracy of hyperspectral image classification (HSIC).

While these spatial–spectral ELM-based methods performed well, their performance
can be further improved, as they ignored the imbalanced samples in different classes
in multiclassification tasks, causing the majority of samples to weaken the minority’s
influences on the classification performance; thus, small-sized samples should be taken into
consideration. Motivated by these, we propose a dual weighted kernel extreme learning for
hyperspectral image classification. For one thing, different scales of spatial features extend
the feature space, the combination of multiscale spatial features will rich the diversity
of samples which may bring more information for our classification task. The other, in
imbalanced data environment, the separating boundary is supposed to be pushed toward
the side of minority class, which in fact favors the performance of majority class. To
alleviate the depression by the majority, we attempt to assign an extra weight to each
sample to strengthen the impact of minorities and weaken the impact of majorities in
some distant.

To tackle the above task, the main contributions of this paper are summarized below:
A spatial–spectral dual-weighted kernel extreme learning machine framework for

hyperspectral image classification is proposed. As important spatial features can help
to identify similar classes, the spatial- and spectral-added weight summation make hy-
perspectral imagery classification feasible. In addition, the minority class should not be
ignored, as the majority classes may weaken the generalization performance of minorities.
For this reason, the weighted extreme learning machine is employed, in order to counteract
this imbalance problem.

The rest of the paper is organized as follows: In Section 2, the related works of
single layer feed-forward networks, ELM and weighted kernel ELM, and guided filters are
introduced; furthermore, the proposed dual-weighted kernel ELM is described in detail.
The experimental results and analysis are provided in Section 3. The conclusions of this
paper are given in Section 4.
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2. Materials and Methods
2.1. Weighted Kernel Extreme Learning Machine
2.1.1. Single-Layer Feedforward Neural Networks (SLFN)

ELM is a fast-learning algorithm for single hidden layer neural networks, which
works by randomly initializing the input weights and biases, which can greatly save a
considerable amount of computation time. Meanwhile, the random input may bring
diversity of samples.

For a single hidden layer neural network, we suppose that there are N arbitrary sam-
ples, {(xi, yi)}N

i=1, where xi = [xi1, . . . xid]
T ∈ Rn and yi = [yi1, . . . yim]

T ∈ Rm. Therefore, a
single hidden layer neural network with one hidden layer node can be expressed as

fL = ∑L
i=1 βiGi(x) = ∑L

i=1 βiG(ai, bi, x), (1)

where Gi(x) = G(ai, bi, x) is the activation function, βi is the output weight, ai = [ai1, . . . , aid]
T

is the weight vector, and bi is the bias of the ith hidden layer.
G. Huang [19] proved that SLFN with L nodes can approximate an arbitrary function.

Therefore, βi, ai, and bi can satisfy ∑N
j=1 ‖ fL

(
xj
)
− yj ‖= 0, such that

∑L
i=1 βiG(ai, bi, x) = yj. (2)

We used the matrix form to rewrite Equation (2):

Hβ = Y, (3)

where βi = [β1, . . . βL]
T ∈ RL×m and Y = [y1, . . . , yn]

T ∈ RN×m.
The hidden layer output matrix, H, is expressed as

H =

 G(a1, b1, x1) . . . G(aL, bL, xL)
...

. . .
...

G(a1, b1, xN) · · · G(aL, bL, xN)

. (4)

The matrix H is an active function of the hidden layer. In Equation (5), the parameters
ai and bi are both unknown:

arg min
ai ,bi ,β

‖ H(a1, . . . . . . , aL; b1 . . . , . . . , bL)β−Y ‖2 . (5)

In traditional neural networks, Equation (5) is usually solved using a gradient descent-
based iterative algorithm. During the process of iteration, all parameters need to be tuned,
according to the iteration, which may cause the problems of gradient diffusion, local
minima, and overfitting.

2.1.2. ELM and Weighted Kernel ELM

As for ELM, the solution of the parameters is completely different. The parameters
ai and bi are randomly generated. They do not change during the whole procedure. The
hidden layer is determined after the input parameters are produced. Based on the input
parameter and hidden layer, we can derive the output by the linear analytic solution. The
final goal of ELM is to obtain the smallest training error with the smallest norm of the
output weight. This is expressed as

arg min
ai ,bi ,β

‖ H(a1, . . . , aL; b1, . . . , bL)β−Y ‖2 . (6)
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Based on optimization theory, Equation (6) can be formulated as follows:

min
β

1
2
‖ β ‖2

2 + C
1
2

ξ2
i s.t.h(x)β = yT

i − ξT
i , i = 1, . . . , N, (7)

where h(x) = [G(a1, b1, x), . . . , G(aL, bL, x)], ξi is the training error, and C is the regulariza-
tion parameter.

According to Lagrange multiplier theory and Karush–Kuhn–Tucker (KKT) optimiza-
tion conditions [40], training the ELM is equivalent to solving the following dual optimiza-
tion problem:

min
(β,α,ξi)

LELM =
1
2
‖ β ‖2

F + C
1
2 ∑N

i=1 ‖ ξi ‖2
F −∑N

i=1 ∑M
j=1 αi,j

(
hT(xi)β j − yi,j + ξi ,j

)
, (8)

where β j is the column vector of matrix β and αi,j is the Lagrange multiplier. From the KKT
theorem, we can further derive:

∂LELM
∂β j

= 0→ β = H × α (9)

∂LELM
∂εi

= 0→ αi = Cεi, i = 1, . . . , N (10)

∂LELM
∂αi

= 0→ HT β = yT
i − ξT

i = 0, i = 1, . . . , N (11)

Based on Equations (9)–(11), the output weight, β, can be expressed as

β = HT
(

I
C
+ HHT

)−1
Y. (12)

After obtaining the output weight β, the output of the ELM is obtained as:

f (x) = h(x)β. (13)

Traditional ELM does not take the imbalance problem into account, while the weighted
ELM was designed to address it [41]. For this paper, two weighting schemes were proposed:

Scheme 1:
W =

1
tk

, (14)

where tk is the total number of samples belonging to the kth class. After applying weighting
scheme 1, we can obtain a balanced ratio between the minority and majority.

Scheme 2:

W =

{
0.618

tk
i f (tk > tavg)

1
tk

i f
(
tk ≤ tavg

) , (15)

where tavg represents the average number of samples for all classes. If the number of tk
is below the average, similar to ELM, the optimization form of the weighted ELM can be
expressed as:

min
β

1
2‖ β ‖2

2 + C 1
2 Wξ2

i ,

s.t.h(x)β = yT
i − ξT

i , i = 1, . . . , N.
(16)

For the multiclass-weighted kernel ELM [41,42], we define a diagonal matrix, W,
which is associated with the training sample x The output weight, β, can be expressed as

β = HT
(

I
C
+ HWHT

)−1
WY. (17)
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Given a new sample, x, the output function of the weighted ELM classifier is obtained
from f (x) = h(x)β, that is:

f (x) = h(x)β = h(x)HT
(

I
C
+ WHHT

)−1
WY. (18)

Similar to SVM kernel methods, the kernel trick can be used in Equation (18), where
the kernel function can replace the inner products h(x)HT and HHT .

The kernel trick version of the weighted ELM is the weighted kernel ELM. Thus, the
N × N version of the kernel ELM can be rewritten as:

f (x) =

 k(x, x1)
...
k(x, xN)


T(

I
C
+ WK

(
xi, xj

))
WY, (19)

where h(x)HT =

 k(x, x1)
...
k(x, xN)


T

and HHT = K
(
xi, xj

)
.

Therefore, the weighted kernel ELM provides a unified solution for networks with
different feature mappings and, at the same time, strengthens the impact of minority class
samples by adding a weighted matrix.

2.2. Spatial Feature Extraction

To improve the performance of ELM for HSI classification, guided image filtering
is adopted to extract spatial information. The guided image filtering method proposed
by He [36] is a novel type of explicit filter that can act as an edge-preserving smoothing
operator-like bilateral filter and obtain better behavior near edges. Given an image p as an
input, g is a guided image, q is an output image—which is a linear transform in a window
ωo around a pixel o with a size of (2r + 1)× (2r + 1), where r is the window radius—and
u is the pixel of ωo:

qu = aogu + bo, ∀u ∈ ωo (20)

where ao and bo are linear coefficients that are assumed to be constant in ωo. From Equation
(20), we can see that ∆q = a∆g, which means that the output q has a similar gradient as the
guidance image g. The coefficients are solved by the following minimum cost function:

E(ao, bo) = ∑u∈ωo
((aogu + bo − pu)

2 + εa2
o), (21)

where ε is a regularization parameter, to prevent ak from being too large. The values of ao
and bo can be obtained by linear regression [40]:

ao =

1
|ω| ∑u∈ωo gu pu − µo po

σ2
o + ε

, (22)

bo = po − aoµo, (23)

where µo and σ2
o are the mean and variance of g in the window of ωo, |ω| is the number of

pixels inωo, and po =
1
|ω| ∑u∈ωk

pu is the mean of p in ωo. After obtaining the coefficients
ao and bo, the guided filtering image qu can be computed. Based on the above procedure,
we can obtain the linear transformed image q.

2.3. Proposed Dual-Weighted Kernel ELM-Based Method

In this section, the proposed dual-weighted kernel extreme learning machine for hyper-
spectral image classification—termed DW-KELM—is described in detail. The joint spatial–
spectral information is employed to investigate the performance of the dual-weighted
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kernel ELM for hyperspectral imagery classification. Figure 1 shows the procedure of the
spatial–spectral dual-weighted kernel ELM-based HSI classification.
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For the classification task, principal component analysis (PCA) is applied as a pre-
procedure of feature extraction. The PCs that contain 99% of information are preserved.
We use the guided filter on PCs that have a group of spatial features.

Given pixel xi, which is a sample consisting of the spectral characteristics across a
continuous range of spectral bands, we denote its spectral and spatial features as xw

i and
xs

i , respectively. The spectral feature vector xw
i is the original xi, which consists of spectral

reflection values across all bands. The spatial feature vector xs
i is extracted by multiple

guided image filtering methods. As the first PC contains most of the useful information,
we use it as the guided image in our proposal. The first PC greatly maintains the edge
information after these operations, while the other PCs are input images for guided image
filtering. Then, we obtained groups of spatial features.

Exploiting the information from the spatial and spectral domains, the kernel method
is usually used to perform the spatial–spectral classification. For the kernel method, the
original spectral features are used to compute spatial and spectral kernels, which are
combined to form kernels.

Once the spatial and spectral features xs
i and xw

i are constructed, we can compute the
spatial kernel Ks and spectral kernel Kw, as follows:

ks
(

xi, xj
)
= exp

(
−
‖ xs

i − xs
j ‖2

2σs2

)
, (24)

kw
(
xi, xj

)
= exp

(
−
‖ xw

i − xw
j ‖2

2σw2

)
. (25)

Here, we use the Radial Basis Function (RBF)kernel. σs and σw are the width of the
respective RBF kernels. The Kernel ELM is represented as a weighted kernel summation:

K = µKS + (1− µ)Kw. (26)

Then, the weighted summation composite kernel is required. The spatial–spectral
kernel in Equations (24)–(26) is computed. Then, the features are recalculated using the
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weighted matrix, W, in order to strengthen the impact of the minority class samples.
Following this, the dual-weighted kernel ELM model solves:

f (x) = h(x)β =

 k(x, x1)
...
k(x, xN)


T

(
I
C
+ WK

(
xi, xj

)
)WY, (27)

where the weighted matrix W is the diagonal matrix of the spatial–spectral feature extracted
by weighted scheme 2 [41]:

W = diag{Wii}, i = 1, . . . , N, (28)

Wii =

{
0.618

tk
i f (tk > tavg)

1
tk

i f
(
tk ≤ tavg

) , (29)

where tk is the total number belonging to the kth class. W is assigned to 1
tk

, that is, the
inverse of the minority samples is weighted for the minorities. The golden ratio is used for
the majorities.

After the final results are obtained, each test sample is assigned to the highest value
in fq

(
xq
)
=
[

f1
(

xq
)
, . . . , fm

(
xq
)]

, where q = 1, . . . , m, according to the index during the
prediction phase:

label(x) = arg max
q

fq
(
xq
)
, q = 1, . . . , m. (30)

Algorithm (Spatial–spectral dual-weighted kernel ELM for HSI classification)

Input: HSI data set, r, ε,µ, L
Output : label(x) = argmax

q
fq(xq), q = 1, . . . , m

1. Spectral information is directly extracted from HSI data set.
2. PCA operations are performed and PCs are chosen, according to the quality of information the
PCs contain; afterwards, the spatial information is extracted by guided image filtering, according
to Equation (23).
3. Kernel weighted summation is formed by spectral and spatial–spectral information, according
to Equations (24)–(26).
4. The weighted matrix W is acquired, according to Equations (28)–(29).
5. Initiation of the weighted kernel extreme learning machine.
6. Calculation of β with Equations (16)–(17).
7. Calculation of the predicted output with Equation (27).
8. Sample xi is assigned to the highest value, according to Equation (30).End procedure

3. Experimental Results and Analysis
3.1. Hyperspectral Image Data Sets

The performance of the proposed approach was evaluated using three widely used
data sets; namely, Indian Pines, the University of Pavia, and Salinas. The three data sets are
publicly available hyperspectral data sets.

3.1.1. Indian Pines

The Indian Pines data set was acquired with the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor in 1992. The image scene contains 145 × 145 pixels, 220 spec-
tral bands, and a spectral range from 0.4 to 2.5 µm, where 20 channels were discarded
due to the atmospheric affection. The spatial resolution of the data is 20 m per pixel. The
scene contains two-thirds agricultural land and one-third forest or other natural perennial
vegetation. Some of the crops present are in early stages of growth, with less than 5%
coverage. There are 16 classes and 10,249 labeled samples in the data set in total. The RGB
composite image and ground-truth map from the data set are shown in Figure 2.
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3.1.2. Pavia University

The Pavia University data set was acquired in 2001 using the Reflective Optics System
Imaging Spectrometer (ROSIS) instrument over the urban area surrounding the University
of Pavia, Italy. This image scene has a size of 610 × 610 pixels. As some of the samples
in Pavia University contain no information, we discarded these parts. Thus, the size in
our experiment was 610 × 340. The spatial resolution was 1.3 m per pixel. The ROSIS-03
sensor captures 115 spectral bands ranging from 0.43 to 0.86 µm. After removing 12 noisy
and water-absorption bands, 103 bands were retained. The data contain nine ground-truth
classes: asphalt, meadows, gravel, trees, metal sheets, bare soil, bitumen, bricks, and
shadows. There was a total of 42,776 labeled samples, The RGB composite image and
ground-truth map from the data set are shown in Figure 3.
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3.1.3. Salinas

The Salinas data set was acquired using the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor over Salinas Valley, California, USA. It contains 224 bands and
512 × 217 pixels with 3.7 m spatial resolution per pixel. The data contain 16 ground-truth
classes, and 12 noisy and water-absorption bands were removed in the experiment. An
image of Salinas is shown in Figure 4.
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3.2. Parameter Settings

The classification performance of the different algorithms was assessed on the testing
set using the overall accuracy (OA), which is the number of correctly classified testing
samples divided by the number of total testing samples; as well as the average accuracy
(AA), which represents the average of the classification accuracies for the individual classes;
and the kappa (κ) coefficient, which measures the accuracy of classification agreement. The
experiments were conducted using MATLAB R2016b on a computer with a 2.8 GHz dual
core and 16 GB RAM.

In the pre-processing stage, the principle components (PC) which contained more
than 99% information were chosen; PC1 was used as a guided image, the other PCs were
used as input images, and the step of the window was 2.

For the kernel methods, the combination of kernel ELM and coefficient µwas set to
0.95, according to our experience. For all kernel-based algorithms, the RBF kernel was
used. The parameter σ varied in the range

{
2−4, 2−3, . . . , 24} and C ranged from 100 to 105.

The number of hidden nodes for the Indian Pines data set was 500, while those for the
University of Pavia and Salinas data sets were 1250 and 650, respectively.

In the general ELM method, the sigmoid function was used and the hidden layer
parameters, (ai, bi)

L
i=1, were randomly generated based on the uniform distribution in the

range of [−1, 1].

3.3. Accuracy of Classification and Analysis

The total number of pixels of Indian Pines available in the reference data was 10,366;
however, some classes only had very small labeled samples. To evaluate the performance
of different algorithms in this challenging case, we randomly chose 10% of labeled training
samples per class. The remaining labeled samples were used for testing. At the same time,
for comparison with traditional methods, we also chose 5, 10, 15, 20, 25, and 30 samples as
training samples, in order to evaluate the effects of different methods.

The further different algorithms were then compared with seven benchmark algo-
rithms; namely, ELM, kernel ELM (KELM), weighted KELM (WKELM), the spatial feature
that uses guided filtering features combined with KELM (SS-KELM), KELM-CK (extreme
learning machine e-composite kernel) [21], ASS-H-DELM (average spectral–spatial hier-
archical extreme learning machine) [28], and HCKBoost (hybridized composite kernel
boosting with extreme learning machines) [27].
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3.3.1. Results on the Indian Pines Data Set

The accuracies of the ELM, KELM, WKELM, SS-KELM, KELM-CK, ASS-H-DELM,
and HCKBoost measures are provided in Table 1.

Table 1. Overall accuracy (OA), average accuracy (AA), and kappa (%) obtained by different approaches on the Indian
Pines data set.

Class No. Train/Test ELM KELM WKELM SS-KELM KELM-CK ASS-H-DELM HCKBoost DW-KELM

1 5/41 43.14 81.65 86.75 84.55 87.92 86.50 87.23 91.42

2 143/1285 70.51 73.03 74.19 90.23 90.65 89.80 89.88 88.98

3 883/747 45.61 73.25 76.70 93.86 95.10 95.12 94.16 96.29

4 24/213 42.24 62.16 68.75 66.38 92.86 92.66 93.52 94.36

5 50/433 85.96 88.53 89.97 94.15 94.63 95.35 94.27 97.14

6 75/655 92.16 92.61 93.58 94.70 95.85 95.40 99.65 99.62

7 3/25 20.26 66.58 72.13 69.22 97.05 94.68 95.10 96.96

8 49/429 96.64 96.08 97.08 97.35 99.50 99.45 99.43 99.98

9 2/18 23.30 63.21 73.71 68.35 99.45 99.13 100 99.85

10 97/875 50.38 79.91 83.56 94.27 90.01 95.60 96.31 93.30

11 247/2208 79.82 86.35 88.71 95.12 95.25 94.48 96.55 98.34

12 62/531 45.18 82.24 84.62 85.35 87.62 88.26 89.34 95.61

13 22/183 97.26 99.01 99.45 99.13 99.03 99.10 99.25 99.38

14 130/1135 97.27 97.44 97.75 98.35 99.67 99.85 99.30 99.80

15 38/348 40.17 72.58 76.29 75.20 91.28 92.68 93.29 96.75

16 10/83 46.20 86.23 87.13 87.25 86.53 88.59 86.36 94.69

OA 63.52 84.45 88.25 94.55 94.28 94.30 94.55 98.25
std 1.05 1.29 0.95 0.95 0.69 0.88 0.95 0.95

AA 56.06 81.57 84.25 90.28 93.18 93.16 93.27 98.27
std 1.83 2.26 1.41 1.56 1.72 1.16 0.63 0.99

κ 65.37 80.73 84.52 84.52 93.16 93.22 92.19 94.25
std 1.25 2.44 2.30 2.30 0.72 0.75 1.16 0.86

Time(s) 0.35 3.65 5.41 47.56 43.67 135.25 322.45 96.26
std 0.03 0.38 0.85 1.08 0.68 0.65 1.05 0.58

From Table 1, it can be observed that the ELM method only required a few seconds for
hyperspectral classification application. At the same time, ELM provided the worst results,
especially for the classes with limited training samples. The KELM method alleviated this,
to some extent, but not significantly. This demonstrates that the kernel used in kernel ELM
is more powerful than that which is randomly generated. For the DW-KELM algorithm,
when additional spatial information was available, the dual-weighted framework improved
the performance of the classifier, while the accuracy dramatically increased. This conclusion
can be clearly seen for classes 1, 7, and 9. These three classes contained very similar spectral
information, which made the results of classification bad, due to the spectral classifier.
Classes 2, 3, 4 are corn subclasses and, thus, had very similar spectral curves; however,
the spatial information helped to discriminate the subtle differences and, so, DW-KELM
achieved good classification accuracies on corn (more than 95%) and on soybeans (more
than 96%). After comparing the cost of time among those methods, it was observed that
the ELM method consumes the least amount of time. There are three reasons which explain
this phenomenon: Only spectral information was used, the random initial parameters, and
the analytic solution for the network. While the same parameter settings were retained,
the solution form decides the computation time. It is very common to use the spatial
feature as an effective supplement. From the results of classification of classes 1, 7, and
9 for the SS-KELM, KELM-CK, ASS-H-DELM, and HCKBoost algorithms, we can see
improvements in both spatial feature use and multiple kernel sides. However, despite the
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considerable improvement of these methods, the proposed dual-weighted kernel provided
more satisfactory results, as the minority class sample was a more important consideration.

Further experiments on the performance with different numbers of labeled training sam-
ples per class were conducted, using the three previously introduced data sets. The training
set was formed by randomly choosing from 5 to 30 samples, with a step of 5. The remaining
samples were used as testing sets. As shown in Table 2, the OA, AA, and κ values were greatly
improved with an increase in training numbers. When only spectral information was used,
KELM achieved better results than ELM, especially in the condition of extremely small-sized
samples. Among the spatial–spectral methods, the proposed DW-KELM showed a significant
improvement over the SS-KELM, KELM-CK, ASS-H-DELM, and HCKBoost algorithms. This
means that the proposed DW-KELM method is a powerful algorithm for this task, especially
for enhancing the performance relating to minority class samples. When the number of training
samples was 5 per class, the DW-KELM improved the OA by 4.36%, AA by 4.09%, and κ by
3.50%, while the presence of 30 samples conditions improved the OA by 3.29%, AA by 2.8%,
and κ by 3.03%, when compared with HCKBoost on the Indian Pines data set.

Table 2. OA, AA, and kappa (%) obtained with different training numbers of labeled samples per class on the Indian Pines data set.

Training
Numbers Assessments ELM KELM WKELM SS-KELM KELM-CK ASS-H-DELM HCKBoost DW-KELM

5

OA 42.61 48.33 51.25 65.23 64.80 65.42 66.14 70.50
std 1.23 2.88 2.37 2.55 0.85 1.28 0.55 3.22

AA 53.01 61.25 64.75 74.58 76.25 77.80 77.45 81.91
std 2.17 1.87 1.95 1.29 1.46 0.66 1.17 1.83

κ 36.45 42.67 44.56 62.06 58.95 64.35 64.62 68.12
std 2.93 3.12 2.23 2.12 0.67 1.25 1.25 3.35

10

OA 55.22 62.22 65.26 73.52 74.85 76.95 77.25 80.84
std 2.15 2.17 1.89 2.27 1.45 1.23 0.87 4.01

AA 68.58 73.50 75.53 80.35 79.12 90.23 91.13 92.26
std 2.85 1.98 1.66 1.35 2.26 0.68 1.65 2.99

κ 50.61 58.27 62.75 65.16 72.35 70.15 73.52 78.53
std 2.21 2.31 1.99 2.54 0.75 0.95 0.95 4.59

15

OA 62.59 68.12 71.19 73.56 79.56 82.12 83.14 87.28
std 1.55 2.21 2.09 2.113 1.46 1.55 1.54 2.67

AA 74.62 78.29 78.29 83.59 88.23 89.52 90.25 94.26
std 1.75 1.25 1.25 1.86 1.68 0.68 1.44 1.35

κ 60.45 63.82 65.28 76.18 79.12 81.65 82.06 84.72
std 1.22 2.23 1.85 2.53 1.88 1.56 0.92 2.66

20

OA 68.10 69.26 72.35 81.53 87.85 84.56 85.16 89.91
std 1.05 1.31 1.56 1.68 1.72 0.68 1.18 1.23

AA 78.29 80.20 83.69 88.53 94.56 93.13 94.25 95.59
std 1.78 2.44 1.49 2.32 0.85 1.35 0.79 2.28

κ 64.87 67.65 70.65 83.12 86.89 85.65 86.16 89.86
std 0.98 3.10 2.69 2.29 1.27 0.58 1.59 2.55

25

OA 69.42 71.21 73.25 83.23 87.85 88.45 89.26 93.06
std 3.31 2.21 2.47 1.35 1.72 0.65 1.75 2.28

AA 79.35 82.20 84.55 89.55 94.56 94.18 95.25 97.23
std 1.52 2.41 1.85 1.56 0.85 0.65 1.97 1.12

κ 65.29 67.65 69.96 85.02 86.89 88.12 89.92 92.51
std 1.25 3.10 2.83 2.14 1.27 0.86 0.76 2.90

30

OA 71.21 72.59 75.66 88.56 93.52 94.15 94.59 97.88
std 1.72 2.62 1.82 0.56 0.55 0.73 1.14 1.21

AA 80.55 82.90 84.59 90.42 96.51 96.12 96.35 99.15
std 0.88 1.82 1.16 0.73 0.38 0.75 0.66 0.96

κ 67.37 69.82 72.59 87.05 90.68 91.65 92.39 95.42
std 2.21 1.75 1.69 1.35 0.75 0.64 1.36 0.87
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The classification map of the Indian Pines data set is shown in Figure 5. It can be clearly
seen that the classification maps of DW-KELM were more coherent in the homogeneous
regions, compared with the ELM, KELM, WKELM, SS-KELM, KELM-CK, ASS-H-DELM,
and HCKBoost algorithms. In addition, the spatial–spectral methods provided better
results than the spectral methods, in terms of consistent classification results with less
noise. In particular, in the application of dual-weighted KELM, subtle features and minor-
ity samples were considered; this improvement typically arises for classes with similar
spectral signatures.
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(e) KELM-CK, (f) ASS-H-DELM, (g) HCKBoost, and (h) DW-KELM. 

3.3.2. Results on the University of Pavia Image Data Set 
The classification results for the University of Pavia images are shown in Figure 6 

and the accuracy measures are given in Table 3. The total number of pixels available in 
the reference data was 414,815. Accordingly, a training set of 10% samples per class were 
used. Regarding Table 2, the accuracy measures of the proposed ELM-based technique 
provided equally competitive and even better classification results, when compared to the 
traditional approaches. The results of the classification of the University of Pavia data set 

Figure 5. Classification map of the Indian Pines data set with 30 samples: (a) ELM, (b) KELM, (c) WKELM, (d) SS-KELM,
(e) KELM-CK, (f) ASS-H-DELM, (g) HCKBoost, and (h) DW-KELM.

3.3.2. Results on the University of Pavia Image Data Set

The classification results for the University of Pavia images are shown in Figure 6
and the accuracy measures are given in Table 3. The total number of pixels available in
the reference data was 414,815. Accordingly, a training set of 10% samples per class were
used. Regarding Table 2, the accuracy measures of the proposed ELM-based technique
provided equally competitive and even better classification results, when compared to the
traditional approaches. The results of the classification of the University of Pavia data set
are shown in Figure 7. Figure 8a represents a map of ELM, only using spectral information.
The accuracy measures for classification of the University of Pavia image are shown in
Table 3. The first columns are the samples that we chose in the experiment.
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ASS-H-DELM, (g) HCKBoost, and (h) DW-KELM.

Table 3. OA, AA, and kappa (%) obtained by different approaches on the Pavia University data set for different classes.

Class Train/test ELM KELM WKELM SS-KELM ASS-H-
DELM CK-KELM HCKBoost DW-KELM

1 64/6599 72.56 77.15 80.28 91.82 92.88 92.60 95.15 100

2 184/18465 74.35 75.28 78.46 93.59 92.19 95.55 93.29 98.88

3 20/2079 66.19 67.13 78.37 86.551 86.99 86.28 90.03 94.29

4 28/3026 67.45 68.27 72.18 93.65 92.59 92.09 93.50 95.47

5 11/1134 70.23 74.52 77.28 97.59 95.35 97.46 97.86 98.27

6 48/4981 79.53 82.33 84.19 94.90 94.53 95.58 94.91 98.36

7 11/1319 76.58 78.65 82.34 95.29 97.28 95.36 95.28 97.85

8 34/3648 75.86 79.21 80.25 86.90 89.33 87.89 88.45 97.41

9 8/939 70.35 77.35 81.55 95.38 93.25 94.58 98.06 98.17

OA 71.26 78.53 82.35 93.15 94.16 93.37 94.59 98.36
std 2.38 1.81 1.28 1.62 0.95 1.28 1.32 0.68

AA 73.66 83.76 86.57 95.16 95.51 93.53 95.26 99.22
std 1.25 1.29 1.17 1.33 0.98 1.29 1.35 0.65

κ 70.15 74.38 75.83 90.66 93.15 92.66 94.27 96.42
std 1.38 1.29 1.22 1.35 1.15 1.35 1.35 0.37

Time(s) 0.76 5.26 6.53 40.15 135.17 46.55 157.69 98.63
std 0.07 0.85 0.96 1.42 1.55 1.74 2.03 1.98
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From Table 3, we can clearly see that, when spatial information and dual-weighted
KELM were used, the accuracy of classification was dramatically increased; for instance,
for bare soil, from 84.10 to 97.25% and, for bitumen, from 78.93 to 99.90%. There were
two main reasons for this: First, the weighted matrix strengthened the importance of class
samples, which may be ignored in the presence of many majority class samples; second,
TTthe spatial information helped to discriminate samples with similar spectral curves.

When the training samples increased, the OA, AA, and κ values improved, which can
be clearly seen from Table 4. When only spectral information was used, ELM provided
worse results than KELM. Among the joint spatial and spectral information classification
methods, DW-KELM provided the best results. When the number of training samples
per class was 30, DW-KELM improved the OA by 3.95%, AA by 2.99%, and κ by2.53% on
the University of Pavia image, when compared with the HCKBoost algorithm. It seems
that the proposed dual-weighted KELM is not only suitable for data with an imbalanced
distribution, but also for balanced data.

3.3.3. Results on the Salinas Image

The classification results of different methods for the Salinas image are shown in
Figure 8. Similar settings as those in the aforementioned images were used. It can be
clearly seen that the classification maps of DW-KELM are more spatially coherent in the
large homogeneous region than other methods; further, the results have little noise. The
increasing trend of OA, AA, and κ was also the same as for the images of the Indian
Pines and Pavia University data sets. Among the other ELM- or KELM-based approaches,
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DW-KELM improved the OA by 3.72%, AA by 2.32%, and κ by 2.64%, when compared
with HCKBoost, on the Salinas image.

From Tables 5 and 6, we can observe the trend of accuracy change, in all of the
experiments, the proposed DW-KELM method provided more accurate results than the
other (ELM- or KELM-based) methods. This indicates that the weighted matrix kernel
and weighted kernel summations are effective for identifying the subtle differences among
similar objects.
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Table 4. Results obtained with different training numbers of labeled samples per class on the University of Pavia data set.

Training Evaluation ELM KELM WKELM SS-KELM KELM-CK ASS-H-DELM HCKBoost DW-KELM

t5

OA 60.06 59.22 62.36 64.5 65.42 66.55 67.39 71.85
std 3.72 5.83 3.12 1.98 4.55 3.37 4.16 6.52

AA 66.53 69.81 71.58 71.6 73.71 74.26 74.78 75.92
std 3.11 3.02 1.78 2.25 3.58 3.55 3.85 5.41

κ 49.92 51.52 53.34 54.96 56.56 60.29 61.95 62.65
std 3.85 5.52 4.19 4.55 5.35 4.46 4.29 6.86

10

OA 47.25 64.17 66.38 71.25 78.46 79.62 80.89 83.29
std 2.21 2.83 2.87 2.29 6.07 3.57 3.48 4.65

AA 59.62 74.62 76.28 82.36 85.12 85.6 85.49 85.65
std 2.29 3.56 2.66 2.05 2.85 3.31 2.96 4.65

κ 41.35 53.61 59.63 68.09 69.58 70.25 70.48 77.23
std 3.55 2.01 2.36 2.7 3.85 3.54 3.09 5.85

15

OA 53.71 68.74 72.56 84.55 83.5 83.89 83.92 87.81
std 3.52 1.27 1.35 1.85 6.15 4.42 3.99 2.81

AA 64.5 78.65 81.57 83.65 88.23 88.95 89.12 91.09
std 2.66 1.85 2.37 2.16 4.79 3.86 3.67 4.15

κ 49.18 63.59 65.56 80.03 81.51 83.87 84.02 87.75
std 3.35 3.02 2.08 1.45 3.65 3.28 3.47 2.29

20

OA 58.02 71.56 73.71 86.95 88.66 89.93 91.05 93.31
std 1.65 1.99 1.85 1.45 2.53 2.25 2.19 1.87

AA 70.25 80.36 83.35 92.35 90.9 91.32 91.85 93.72
std 1.18 2.68 2.43 2.18 1.51 1.27 1.07 1.88

κ 52.55 67.15 72.64 80.26 79.35 88.68 89.53 91.85
std 2.28 2.35 2.31 1.53 3.6 2.75 2.38 1.39

25

OA 63.16 71.51 73.68 88.92 91.12 91.56 91.89 94.67
std 2.21 3.02 2.79 1.85 1.06 0.98 0.88 0.78

AA 75.73 81.63 83.95 91.33 92.06 92..36 92.46 94.25
std 1.86 1.08 1.14 0.9 0.65 0.85 0.57 0.82

κ 60.52 67.14 71.43 86.59 87.13 89.82 90.23 91.86
std 2.26 2.25 2.52 1.12 1.87 1.24 0.97 0.99

30

OA 70.06 79.16 82.36 93.22 92.82 93.19 94.2 98.15
std 2.51 1.63 1.75 1.68 1.89 0.87 0.78 0.45

AA 72.25 85.29 87.65 95.67 94.25 94.68 96.13 99.12
std 0.89 0.89 1.29 1.55 2.21 2.89 1.17 0.8

κ 69.66 73.52 75.88 92.16 91.75 92.35 93.34 95.87
std 1.2 1.35 1.4 1.96 0.97 0.89 0.93 0.56

Table 5. OA, AA, and kappa (%) obtained by different approaches on the Salinas data set.

Class No. Train/Test ELM KELM WKELM SS-KELM KELM-CK ASS-H-DELM HCKBoost DW-KELM

1 20/1989 84.32 85.62 86.25 87.80 87.55 86.35 88.26 90.35

2 37/3689 97.50 97.92 98.26 98.56 98.02 98.80 99.15 100

3 20/1956 86.15 87.50 88.53 90.23 89.10 90.02 91.23 92.83

4 14/1380 88.26 89.71 90.05 91.85 92.15 90.14 92.64 95.28

5 27/2651 76.54 77.95 79.21 79.55 78.63 77.27 78.15 81.95

6 40/3919 99.62 99.70 99.80 99.91 99.63 98.38 99.26 99.80

7 36/3543 74.52 76.20 79.26 78.26 77.23 76.68 79.16 81.37

8 113/11158 98.65 99.08 99.35 99.14 99.50 99.76 99.82 99.90

9 62/6141 71.52 73.84 76.38 75.94 76.49 77.25 79.98 82.31

10 33/3245 69.20 71.25 74.46 74.56 75.01 73.64 76.21 78.14

11 11/1057 79.15 81.65 84.50 85.30 86.25 84.48 85.65 87.21



Remote Sens. 2021, 13, 508 18 of 21

Table 5. Cont.

Class No. Train/Test ELM KELM WKELM SS-KELM KELM-CK ASS-H-DELM HCKBoost DW-KELM

12 19/1908 96.51 97.18 97.45 97.24 98.42 98.15 98.64 99.01

13 9/907 99.16 99.43 99.45 99.31 99.01 99.17 99.33 99.52

14 11/1059 97.27 97.75 98.10 98.64 99.27 98.49 99.16 99.75

15 73/7195 98.57 98.96 99.11 99.20 99.28 99.37 100 100

16 18/1789 98.20 98.76 98.23 98.45 98.53 98.29 98.87 99.47

OA 86.62 88.07 90.32 92.58 94.35 93.22 96.38 98.35
std 2.35 1.68 1.65 0.99 0.76 0.96 1.16 0.95

AA 88.27 89.35 91.68 93.16 95.13 94.52 97.57 99.17
std 1.95 2.24 1.99 1.98 1.46 1.36 0.89 0.99

κ 86.16 88.25 90.60 91.11 93.23 93.65 94.55 96.18
std 1.66 2.13 2.09 1.68 1.12 1.75 1.30 1.16

Time(s) 0.56 4.46 5.24 60.57 47.55 141.06 335.85 98.95
std 0.02 0.09 0.06 1.44 0.88 0.71 1.05 0.87

Table 6. Results obtained with different training numbers of labeled samples per class on the Salinas data set.

Training Evaluation ELM KELM WELM SS-KELM KELM-CK ASS-H-DELM HCKBoost DW-KELM

5

OA 81.75 83.5 84.62 85.13 83.16 84.64 83.72 91.52
std 2.54 2.26 1.99 3.11 3.32 3.05 3.39 0.62

AA 86.88 89.89 89.6 86.88 89.45 89.92 90.02 95.28
std 1.71 2.83 2.95 2.05 2.21 1.88 1.67 0.82

κ 79.52 82.15 83.06 79.96 82.78 83.4 83.26 90.35
std 2.52 1.17 1.28 3.24 4.24 3.65 3.16 0.37

10

OA 83.06 86.73 87.54 89.96 88.29 88.85 89.03 92.29
std 2.64 1.56 1.06 1.52 1.25 1.07 1.3 0.81

AA 89.05 92.86 93.16 93.95 93.06 93.49 93.61 96.06
std 1.26 1.35 1.28 0.89 1.07 1.55 1.28 1.86

κ 81.29 85.33 86.29 83.98 82.32 82.96 83.1 92.03
std 2.65 1.85 2.01 1.75 2.62 3.18 2.28 0.75

15

OA 85.85 87.35 87.97 91.34 89.71 90.05 90.35 94.25
std 1.92 1.94 1.88 1.86 1.1 1.55 1.07 1.29

AA 91.23 92.38 92.69 93.28 92.26 92.75 92.64 96.89
std 0.76 1.26 1.35 0.95 0.74 0.88 0.93 0.99

κ 84.05 93.31 93.61 90.32 91.18 91.59 91.58 92.85
std 1.79 0.93 0.59 1.65 1.04 0.92 1.15 0.78

20

OA 87.58 87.65 88.56 91.93 92.15 92.69 92.75 95.37
std 1.92 1.02 1.65 1.37 1.12 1.4 1.27 1.06

AA 92.19 94.54 94.84 94.85 95.32 95.87 95.67 97.52
std 0.58 0.5 0.66 0.87 1.83 1.09 0.85 0.5

κ 85.36 87.87 88.26 93.64 92.38 92.75 92.82 93.24
std 0.88 0.49 0.63 1.58 0.88 0.63 0.85 0.62

25

OA 88.55 87.95 88.98 94.86 94.45 94.86 94.9 96.29
std 0.82 1.23 1.45 1.43 1.55 1.25 1.43 1.35

AA 93.22 95.13 96.23 98.15 96.3 96.84 97.01 98.75
std 0.92 0.86 0.96 1.33 0.62 0.75 0.65 0.88

κ 86.87 97.99 98.19 95.22 93.79 94.17 94.42 95.31
std 0.58 1.12 1.35 1.61 1.29 1.35 1.12 1.01

30

OA 88.95 89.17 89.65 95.65 94.85 95.16 95.38 99.1
std 0.76 1.06 1.24 1.87 0.93 0.85 0.79 0.73

AA 94.2 95.72 96.32 97.89 96.94 97.26 97.46 99.78
std 0.63 0.63 0.75 0.88 1.12 0.94 0.99 0.55

κ 88.13 88.18 89.16 95.15 94.12 94.58 94.61 97.25
std 0.62 0.52 0.77 1.85 0.58 0.64 0.73 0.92
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3.4. Ablation Study

To evaluate the purpose of our method, the ablation experiments are also carried,
which termed as WKELM and SS-KELM respectively. From Tables 1 and 2, we can clearly
see that, without multiple spatial information, the accuracy is not high as those within
spatial features methods. At the same time, when the extra weight not assigned to each
sample, the accuracy is also not high. Specially, for these samples whose training sample
are extremely small, for instance the class 7 and class 9 in the image of Indian Pines, the
weight will affect a lot. The same trend happens on the image of Pavia University and the
Salinas, we can see these from Tables 3–5 and Table 6 respectively.

3.5. G-Mean as a Supplementary Measure for Evaluation

Overall accuracy has been widely used to evaluate the performance of classifiers. In
addition, if the samples are imbalanced or distributed, it may not be possible to provide
adequate information regarding the generalizability of a classifier; for instance, with a
data set which has 10 samples belonging to a negative class and 90 samples belonging to a
positive class, if there are 10 misclassified samples, the overall accuracy is equal to 80%, but
the G-mean is equal to zero. Thus, we used the G-mean [36] as a supplementary measure
to evaluate the performance of the proposed dual-weighted method:

G−mean = (
s

∏
r=1

Recallr)
1
s

, (31)

Recall =
TP

TP + FN
, (32)

where TP represents the number that correctly classified positive samples and FN is the
number of incorrectly classified positive samples.

From the box plot in Figure 8, the results show that the proposed DW-KELM obtained
a more concentrated G-mean, especially on the Indian Pines image, due to consideration
of the importance of the minority samples. In addition, its interquartile range (IQR) was
smaller than those of the other methods.

4. Conclusions

In this paper, a dual-weighted kernel extreme learning machine was proposed, in
order to tackle the hyperspectral imagery classification task. It is more effective when using
small-sized samples, as the cumulative errors of the minority samples were previously
ignored in traditional ELM algorithms. In particular, the weighted matrix W plays an
important role in the proposed method; larger weights are assigned to samples from the
minority class, thus emphasizing their importance. In addition, as useful supplementary
features, the spatial features are fully mined by adding weighted summation. This spatial
information contains rich structure features, which help in distinguishing subtle differences
in similar classes. The experimental results demonstrated that the proposed DW-KELM
method is more accurate than the considered benchmark methods for the classification of
hyperspectral imagery.
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