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Abstract: Thunderstorms and especially induced lightning discharges have still not been fully
understood, although they are known to cause many casualties yearly worldwide. This study aims
at filling the gap of knowledge by investigating the potential of phase and power of the co- and
cross-channels of a vertical cloud radar to indicate lightning close to the radar site. We performed
statistical and correlation analyses of vertical profiles of phase and power spectra in the co- and
the cross-channel for 38 days of thunderstorms producing lightning up to 20 km from the radar in
2018–2019. Specifically, we divided the dataset into “near” and “far” data according to the observed
distance of lightning to the radar and analyzed it separately. Although the results are quite initial
given the limited number of “near” data, they clearly showed different structures of “near” and “far”
data, thus confirming the potential of radar data to indicate lightning. Moreover, for the first time in
this study the predictability of lightning using cloud radar quantities was evaluated. We applied a
Regression Tree Model to diagnose lightning and verified it using Receiver Operating Characteristic
(ROC) and Critical Success Index (CSI). ROC provided surprisingly good results, while CSI was not
that good but considering the very rare nature of lightning its values are high as well.

Keywords: cloud radar; thunderstorm; power spectrum; phase; lightning; discharge; predictability

1. Introduction

Cloud radars are a helpful tool for studying differences in the structure of convective
storms with or without the occurrence of lightning. The differences in the structure of
convective storms obtained in the measured radar data provide information, which helps
to understand the processes taking place in clouds. One of the key processes occurring
in thunderclouds is the process of electrification, which precedes lightning discharges.
Although cloud radars cannot explicitly measure the origin and the evolution of electrifi-
cation of clouds, they can describe it indirectly; using derived or directly measured radar
data. It is important that the cloud radars are polarimetric to be used in the research of
cloud electrification.

Cloud radars are not the only or the most important source of data on cloud electri-
fication and related lightning discharges. Useful data are also obtained from laboratory
experiments [1,2] and measurement campaigns performed in the field through areas in
thunderclouds (e.g., balloon experiments, devices on board aircrafts) [3–7]. Further, data
on lightning discharges are available as ground observations or from satellites [8–13].

A few papers has been published that used cloud radars for the investigation of cloud
electrification. These were mainly focused on the alignment of cloud particles in intensified
electrostatic field [14–22]. This paper builds on our previous work [23], where we dealt with
the differences in selected quantities derived from the data of a cloud profiler (Ka-band),
which has been installed at the top of the Milešovka mountain (Czech Republic, Central
Europe). In the mentioned work, we used almost exclusively data from the co-channel;
only the variable called Linear Depolarization Ratio (LDR) used information from both
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the co- and the cross-channel. In that paper, we evaluated LDR values in dependence
on whether a lightning discharge was recorded in the vicinity of the radar site or farther
using the information on time and location of lightning discharges from the EUCLID
(European Cooperation for Lightning Detection) network [24], provided by BLIDS service
(Blitz Informationsdienst von Siemens) [25].

Based on analysis of 38 days with thunderstorms, which occurred in 2018 and 2019 in
Central Europe, Sokol et al. [23] concluded that the cloud radar data can identify “lightning”
areas indirectly - by higher values of LDR measured at higher gates. The higher values of
LDR were associated with the alignment of ice crystals, likely caused by strong electric
field in the thundercloud. Since a mixture of hydrometeor species was found at higher
gates, the results also suggested that collision of hydrometeors might be responsible for the
process of electrification.

Several papers have been published that used cloud radars, their derived quantities,
to study cloud electrification with a focus on the alignment of cloud particles in the
electrostatic field [15–22]. However, as far as we know, there has not been any study which
would have analyzed the attributes of basic polarimetric radar measurements (i.e., power
spectra and phase) in both the co- and the cross-channel in thunderstorm environment.
Therefore, in this study we used these data obtained by our cloud profiler (radar) with the
main aim to find out which values or relations of phase or power spectra in the co- and the
cross-channel indicate whether a given cloud produced or not lightning discharges in the
vicinity of the radar site.

This paper is organized as follows. After this introductory section, Section 2 provides
a brief description of the vertically pointing cloud radar, shows the analyzed radar quan-
tities and thunderstorms, describes the division of radar data into “near” and “far” data
according to the distance of the lightning occurrence to the radar site and their statistical
assessment and finally Section 2 also displays our approach to diagnose lightning occur-
rence based on analyzed radar quantities. Results of the analyses as well as examples
of multi-discharge thunderstorms are given in Section 3, while Section 4 discusses the
presented results and Section 5 draws conclusions of this study.

2. Materials and Methods
2.1. Vertically Pointing Cloud Radar at the Milešovka Observatory

Since June 2018, a vertically pointing cloud radar MIRA 35c has been emitting and
receiving signal at 35 GHz (Ka-band) at the Milešovka observatory situated on top of the
Milešovka Mt. (837 m a. s. l.) in north-western Czechia in Central Europe (50◦33′18” N and
13◦55′54” E; Figure 1). The vertically pointing cloud radar MIRA 35c (Figure 1) was fabricated
by METEK Gmbh (http://metek.de/). Table 1 outlines its basic technical information.

Table 1. Basic technical information on the cloud radar MIRA 35c situated at the Milešovka observatory.

Technical Information Cloud Radar MIRA 35c

Radar system Doppler
Polarimetric radar Yes

Radar band Ka-band
Transmitter frequency 35.12 GHz +/−0.1 GHz

Pulse repetition frequency (PRF) 2.5–10 kHz
Pulse width min. 0.1 µs

max. 0.4 µs
Detection unambiguous velocity range ± 10.65 m/s

Original measurements Doppler spectra
Radar core Magnetron

Antenna type Cassegrain
Peak power 2.5 kW

Antenna diameter 1 m
Antenna gain 48.5 dB

Antenna beam width 0.6◦

http://metek.de/
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Figure 1. Geographical location of the cloud radar MIRA35c at the Milešovka observatory on top 
of the Milešovka Mt. (837 m a.s.l.) in Czechia in Central Europe. Source of the topographic maps: 
(upper left panel) European Environment Agency (https://www.eea.europa.eu/legal/copyright) 
and (upper right panel) https://maps-for-free.com/. 
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Figure 1. Geographical location of the cloud radar MIRA35c at the Milešovka observatory on top
of the Milešovka Mt. (837 m a.s.l.) in Czechia in Central Europe. Source of the topographic maps:
(upper left panel) European Environment Agency (https://www.eea.europa.eu/legal/copyright)
and (upper right panel) https://maps-for-free.com/.

The cloud radar MIRA 35c processes obtained Doppler spectra using an IDL software,
which enables also a first visualization of the data (http://metek.de/product/mira-35c/).
In this paper, we do not provide the reader with the detailed description of the process
of basic Doppler spectra processing, instead we refer the reader to our previous works
by Sokol et al. [23,26]. However, what is important to mention is that (i) the cloud radar
provides measurements with a time step of 2 s (i.e., the obtained data have high temporal
resolution); (ii) the gate size (i.e., vertical resolution) is approximately 28.8 m and (iii) the
data are measured from 4th up to maximum 512th gate (i.e., up to a height of 14 km above
the radar approximately).

2.2. Analyzed Cloud Radar Quantities

Contrary to Sokol et al. [23], who analyzed hydrometeor species and LDR, we focus
in this study on the analysis of basic quantities measured in the co- and the cross-channel,
which represent the vertical and horizontal components of the returned signal [27].

Namely, we analyze in this study:

• power spectrum in the co-channel (pow),
• phase spectrum in the co-channel (pha),
• power spectrum in the cross-channel (powx),
• phase spectrum in the cross-channel (phax).

https://www.eea.europa.eu/legal/copyright
https://maps-for-free.com/
http://metek.de/product/mira-35c/
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2.3. Thunderstorms of 2018 and 2019 with Lightning Discharges 0–20 km from the Milešovka
Observatory

In this study, we investigated cloud radar data that were registered during thunder-
storms, which occurred in 2018 (since June) and 2019 and produced lightning discharges
0–20 km from the radar site, that is, the Milešovka observatory, according to the EUCLID
lightning detection network [24]. Altogether there were 38 days with thunderstorms
recorded in the vicinity of the radar site in 2018 and 2019. They are listed in Table 2.
The dataset includes 171,754 lightning discharges observed up to 20 km from the radar
site, from which 990 were recorded up to 1 km from the radar. Note that in this work,
we did not distinguish between cloud to ground (CG) and cloud to cloud (CC) lightning
discharges with CC discharges corresponding to about 95% of the dataset. The small
number of CG discharges (5%) did not allow us to perform an analysis for CC and CG
discharges separately. Thus, we note that by processing CC and CG discharges together
in this analysis, our results correspond mainly to situations with CC discharges, given
the little number of CG discharges. However, this is in line with our goal, which is to
determine measurement characteristics of the cloud profiler for near-lightning storms as
compared to non-lightning storms (Section 2.4).

Table 2. Thunderstorms of 2018 (left panel) and 2019 (right panel) with lightning discharges
registered 0–20 km from the Milešovka observatory.

Thunderstorms in 2018 Thunderstorms in 2019

June 1 May 20
June 10 May 25
June 11 June 6
June 27 June 10
June 28 June 12
July 5 June 20

July 21 July 21
July 28 July 29

August 2 July 31
August 3 August 2
August 4 August 3
August 8 August 4
August 13 August 7
August 17 August 11
August 24 August 12

September 21 August 27
August 29

September 1

The ground-based records of lightning discharges that were at our disposal are part
of the EUCLID network [24] and we got the data from the BLIDS service [25], which
supplies the EUCLID in Central Europe. To locate lightning discharges, BLIDS uses the
principle called time-of-arrival (TOA). TOA considers that the electromagnetic field which
is produced by lightning discharges propagates in all directions from its origin at the speed
of the light. Then the electromagnetic receivers record TOA and the difference in TOA
among them enables to locate the lightning discharge.

For any lightning discharge, we got an information on: (i) location of the discharge
(geographical coordinates in WGS84), (ii) time when the discharge occurred [ms], (iii) peak
current of the discharge [kA], (iv) polarity of the discharge, (v) type of the discharge (cloud
to ground or cloud to cloud) and (vi) quality of the data in a binary form. The quality of
the data we obtained from BLLIDS was good for all the lightning discharges, based on the
quality information included in the dataset.
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2.4. Dividing Cloud Radar Data Based on Lightning Data into “Near” and “Far”

To compare cloud radar data with lightning data, we proceeded similar to Sokol
et al. [23]. We used temporal and spatial information on lightning discharges and deter-
mined the distance of the lightning discharge from the radar site, if there was a cloud
detected by the radar above its site. The presence of the cloud above the radar site was
defined based on the detection of at least one hydrometeor specie at a gate and a time in
the vertical profile [23]. If there was no cloud detected in the vertical profile at a gate and a
time, the radar measurements were not considered in further analyses.

To indicate whether a cloud produces or does not produce lightning discharges in the
vicinity of the radar site, we differentiated thunderstorm clouds from non-thunderstorm
clouds. The differentiation of thunderstorm clouds from non-thunderstorm clouds is
not straightforward in the case of vertical measurements provided by our cloud radar.
Therefore, we made the following assumptions:

• We assumed that there is a thunderstorm cloud with its proper signatures in the
measured data above the radar if a lightning discharge is detected near the radar.
Therefore in the text hereafter, we use the notation “near(x km)” for this case, which
means that we analyze measured data when a lightning discharge was registered to a
distance of x km from the radar.

• We assumed that there is a non-thunderstorm cloud above the radar with its proper
features if a lightning discharge occurred farther from the radar. In the text hereafter, we
denote this case “far,” which means that we analyze measured data when a lightning
discharge occurred from 10 to 20 km away from the radar site, as in Sokol et al. [23].

Since it is complicated to determine specific distance of lightning distinguishing “near”
data from “far” data (it cannot be determined exactly), we tested several pairs of the values
and show the results in dependence on these values (Section 3.2, Figure 8). Actually, we
considered 0.3, 0.5, 0.75 and 1 km as the distance defining the dataset “near” but the
smallest distance of 0.3 km turned out to be too small for creating a dataset. The very small
amount of data included in “near(0.3 km)” caused strong and unrealistic variations in the
vertical profiles and did not provide robust results. This feature was not visible in case of
the other considered distances defining “near” (i.e., 0.5, 0.75 and 1 km).

Moreover, the definition of “near(x km)” must be made circumspectly as the selected
distance x fundamentally affects the amount of data in the dataset. If we define x too
small, then the dataset “near(x km)” will not include enough data to provide robust results.
Further, the vertical properties of clouds are highly variable and the resolution of the
cloud radar is too high to smooth the variability. Therefore, instead of characterizing data
from individual gates we used vertical layers with a thickness of 10 to 20 gates, which
approximately corresponds to a vertical resolution of 290 to 580 m, respectively. This
allowed us to produce larger datasets for our analysis which is performed for different
vertical layers independently of each other. It also smoothed the highly variable vertical
profiles and increased the robustness of our results.

2.5. Statistical Assessment and Correlation Analysis of Pow, Pha, Powx and Phax for “Near” and “Far”

Contrary to Sokol et al. [23] who focused on LDR, we analyzed “near” and “far”
datasets of pow, pha, powx and phax in dependence on height above the radar for several
distances defining “near.” Specifically, we performed standard statistical assessment of
the quantities for “near” and “far” data sets in their vertical profiles and calculated their
median and 10th, 33rd, 66th and 99th percentiles to see whether the “near” data set differs
from the “far” data set or not and if yes, in which quantity.

Then we were interested in determining the interrelationships between pairs of the
quantities (pow:pha, powx:pha, pow:powx and pha:phax) for “near” and “far” data sets
separately. To assess the interrelationships, we computed Pearson and Spearman correla-
tions (PC and SC, respectively). PC is a correlation that is frequently used, especially for
testing linear relationships, while SC is more suitable for asymmetrical distributions and
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nonlinear relationships because it is independent of the magnitude of the correlated values
(it evaluates trends) [28].

2.6. Modelling the Relationship between Radar Measurements and the Occurrence of Lightning
Near the Radar: Identification of Ligtning Near the Radar Using Its Data

Since we found differences in mean values of pow, pha, powx and phax for “near”
and “far” data (Section 3.2), it made sense to try to find a model which could calculate
probability of lightning in dependence on the measured pow, pha, powx and phax values
at various heights above the radar. To describe and model the relationship between
cloud radar measurements and occurrence of lightning near the radar site, we tested
several simple models calculating the probability of lightning occurrences, such as linear
regression, logistic regression and so forth; however, we found that the regression tree
ensemble model (RTE) provided best results. RTE is a predictive model composed of a
weighted combination of multiple regression trees. The combination of multiple regression
trees increases the predictive performance of the model. Specifically, for RTE we used the
algorithm called fitrensemble in the Matlab software (www.mathworks.com).

The difficulty in finding the relationship between the measured values by the radar
and the occurrence of lightning lies primarily in the extremely low probability of lightning
occurrence in the defined region close to the radar site in the entire data set. The probability
of occurrences is in the order of 0.01%. Thus, also the verification of the model outputs
of such low probable phenomena is problematic. Standard methods of verification such
as Brier score [28] are not suitable since a reference model with constant outputs of 0
probability gives almost a perfect result. Therefore, we transformed probabilistic model
outputs into binary outputs with 1 or 0 meaning that lightning occurs or not, respectively.
We used two measures: (i) Receiver Operating Characteristic (ROC) and (ii) Critical Success
Index, which are based on the contingency table and are defined as follows.

If:

• a is the number of cases when Forecast=YES, Observed=YES,
• b is the number of cases when Forecast=YES, Observed=FALSE,
• c is the number of cases when Forecast=FALSE, Observed=YES,
• d is the number of cases when Forecast=FALSE, Observed=FALSE,

Then:

• Critical Success Index (CSI):

CSI =
a

a + b + c
(1)

• Hit rate (H):

H =
a

a + c
(2)

• and False alarm rate (F):

F =
b

b + d
(3)

The Receiver Operating Characteristic (ROC) curve is defined by coordinates Fi, Hi,
which are calculated for hypothetical decision thresholds i [28]. The ROC shows the
ability of probabilistic forecasts to discriminate dichotomous events. To generally assess
the possible success of forecasts, the Area under the ROC (A) is often used. In our case
of assessing the success of forecasts of lightning using cloud radar data, we compared
calculated values of A with A = 0.5, which corresponds to a random forecast [28].

Due to the limited number of “near” data and the large difference between the number
of “near” and “far” data, we applied the following procedure to independently verify the
RTE model. The “near” and the “far” data sets were independently randomly divided
into two data sets each; N1, N2 and F1, F2, respectively, with N1 and F1 containing 80%
of the original “near” and “far” data, respectively. We used N1 and F1 as calibration
data to derive the RTE model, whereas we used N2 and F2 to independently verify the

www.mathworks.com
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forecasts. Random division into N1, F1 and N2, F2 was performed 99 times and the results
on independent data were processed using A. We calculated the average values of A and
its standard deviations over the 99 realizations.

In addition, we verified the RTE model outputs using Critical Success Index (CSI)
as well. In this case, the optimum threshold for the RTE model output probabilities was
determined in a way to maximize the CSI on the calibration data. This optimum threshold
was then applied on the verification data.

3. Results
3.1. Examples of Pow, Pha, Powx and Phax for Near Multi-Discharge Storms

In 2018 and 2019, there were three significant multi-discharge storms, which occurred
in the immediate vicinity of the cloud radar. It was on 1 June 2018, 2 August 2018 and
10 June 2019. Lightning discharges in the near vicinity of the radar were observed also
during the other analyzed days (Table 2). Figures 2–4 show the time evolution of pow, pha,
powx and phax for the three multi-discharge storms, respectively, within a 60 min time
window. They also show the time of the lightning occurrences up to 0.75 km from the radar.
Lower part of each of the figures displays the 1-min precipitation totals during the storms,
as they were measured by the automated weighting rain gauge situated at the Milešovka
observatory next to the cloud radar.

It is obvious from Figures 2–4 that the radar signal is often strongly attenuated during
storms which occur in the immediate vicinity of the radar. The strong attenuation can be
associated with heavy rain and other hydrometeors, which “hides” the storm (its center
and its maximum intensity) to the radar, as the time evolution of the measured precipitation
totals demonstrates. For instance, Figure 4 shows that in the time interval from 2000 to
2500 s approximately, the attenuation of the radar signal caused by heavy rain was such
intense that the radar measurements were available for few gates only (up to a height of 2
km roughly). To a lower extent, the same phenomenon occurred at approximately 1500 s
on 1 June 2018 (Figure 2), while the attenuation by heavy rain was not obvious from 1300
to 2000 s on 2 August 2018 (Figure 3). Despite the strong attenuation of the signal and
related low availability of radar measurements above the radar at the time of the maximum
intensity of the storms on 1 June 2018 and 10 June 2019, we consider data from the initial
stage and decaying stage of storms valuable for describing the behavior of the measured
radar data. It should be mentioned that during other analyzed thunderstorms, we did not
observe that strong attenuation of the signal.

3.2. Analysis of Pow, Pha, Powx and Phax for “Near” vs. “Far” Data

Figures 5 and 6 show distributions of measured values of pow, pha, powx and phax
from all the gates for “near(1 km)” and “far” data, respectively, during the analyzed days
with thunderstorms (Table 2). It is clearly visible that the distributions are asymmetric for
both the “near(1 km)” and the “far” data. Therefore, we used median and percentiles to
describe the data distribution in further analyses.
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axis shows time (T [s]), while the y-axis displays the height above the radar site (z [m]). Quantities pow and powx are in 
dB, whereas pha and phax are in arctan of phase degree multiplied by 100 and 1000, respectively. The dashed line shows 
the time of recorded lightning –as there were 6 lightning discharges registered within 1 s up to 0.75 km from the radar 
site, they appear as a single dashed line in the figure. The lower graph shows the 1-min precipitation totals as measured 
during the same period by the automated weighting rain gauge situated next to the cloud radar. 

Figure 2. Time evolution of pow, pha, powx and phax (upper two rows) from 11:30 to 12:30 UTC on 1 June 2018. The x-axis
shows time (T [s]), while the y-axis displays the height above the radar site (z [m]). Quantities pow and powx are in dB,
whereas pha and phax are in arctan of phase degree multiplied by 100 and 1000, respectively. The dashed line shows the
time of recorded lightning –as there were 6 lightning discharges registered within 1 s up to 0.75 km from the radar site, they
appear as a single dashed line in the figure. The lower graph shows the 1-min precipitation totals as measured during the
same period by the automated weighting rain gauge situated next to the cloud radar.
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Since the results might be influenced by the thickness of considered vertical layers
determined by the selected number of gates, ngate, included in a layer, we clarify this
influence by comparing vertical profiles for ngate=10, 15 and 20. The impact of selected
ngate on the results is illustrated in Figure 7 for pha, which depicts median values, area
between 33rd and 66th percentiles and 10th and 90th percentiles (hatched curves).
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Figure 7. Distribution of pha in the co-channel for (red) “near(0.75 km)” and (blue) “far” data depending on layer thickness
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displays the height above the radar site (z [km]). The pha is expressed in arctan of the phase degree.

Figure 7 clearly shows that the thicker the layer (i.e., larger ngate), the smoother
the calculated vertical profile. On the other hand, it is also obvious that the results are
similar from one ngate to another and therefore, we can consider that the results are not
fundamentally dependent on the selected ngate value. Based on these results, we used
ngate = 15 to illustrate further results of this study (figures hereafter).

Furthermore, the amount of processed data is, in addition to the thickness of the layer,
influenced by the selected distance of the lightning discharge from the radar site, which
defines the “near” data set. Figure 8 shows the number of pha data in each vertical layer
including ngate = 15 depending on the distance defining the “near” data. Note that the data
decrease at higher vertical levels is the direct consequence of the attenuation of the signal,
which increases with increasing distance from the radar (i.e., height in case of our vertically
pointing radar) and/or because these heights are above the existing cloud tops. As far
as the cross-channel quantities are concerned, their counts are much lower (not depicted)
which is related to naturally lower signal received by the radar in the cross-channel.

Figures 9 and 10 compares statistical characteristics of pow, pha, powx and phax
calculated for “near(0.75 km),” “near(0.5 km)” and “far” data in order to find out the
features of thunderstorm and non-thunderstorm clouds occurring above the radar. Figure 9
shows median and 10th, 33rd, 66th and 90th percentiles in the same way as Figure 7. At the
first glance, the quantity pha reaches clearly different values for thunderstorm and non-
thunderstorm clouds. From a height of about 3 km, the areas between the 33rd and the 66th
percentiles do not intersect. However, this is not the case for areas between the 10th and
the 90th percentiles. The difference between thunderstorm and non-thunderstorm clouds
is also evident for pow at altitudes of 4 to 9 km, although to a clearly smaller extent as the
areas between the 33rd and the 66th percentiles do not intersect. Conversely, for powx and
phax, the difference is smaller and manifests only in case of comparing medians. For powx
the difference in medians is visible from 3 to 8 km, while for phax it is from 3 to 6 km.
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Figure 10. Comparison of statistical characteristics of pow, pha, powx and phax for “near(0.5 km)” and “far” data. Detailed
figure caption is given in Figure 7. Both pha and phax are depicted using 10*log10(arctan) for better representation of
vertical profiles of the data.

For pow, powx and phax, the “near(0.75 km)” values are lower or comparable to those
for “far” from 3 to 9 km, whereas above 10 km, the “near(0.75 km)” values gets higher than
the “far” values for powx and phax. Nevertheless, we should consider that there is clearly
less data in powx and phax at these heights than for other quantities. Therefore, a question
arises whether these results cannot be produced by randomness of the data. This should not
be the case because we obtained very similar results for “near(1 km)” data (not depicted)
and for “near(0.5 km)” data (Figure 10). Although it is clear from Figure 10 that a smaller
amount of data included in “near(0.5 km)” data causes less smooth vertical profiles showing
thus more oscillations, the basic dependencies between “near(0.5 km)” and “far” data for
above mentioned heights are kept. The fact that pow gives lower values for “near” data than
for “far” data can be explained by lightning, which usually precedes precipitation.

3.3. Correlation Analysis of Pow, Pha, Powx and Phax for “Near” data vs. “Far” Data

To obtain the interrelationships between pow, pha, powx and phax, we performed a
correlation analysis between pairs of the quantities. We calculated the correlation using
the standard Pearson correlation coefficient (PC; [28]). Since the quantities have strongly
asymmetrical distributions (Figures 5 and 6) and there are nonlinear relationships between
quantities, we also performed a control calculation using the Spearman correlation coefficient
(SC; [28]). Resulting PC and SC correlations are presented in Figures 11 and 12, respectively.

Comparison of Figure 11 with Figure 12 suggests that if we focus on the field structure,
we can state that the resulting PC and SC do not fundamentally differ. This confirms the
experience that PC can be used even if the theoretical assumptions on linearity of the relation-
ships are not met. Based on the similarity of PC and SC (Figures 11 and 12, respectively), we
comment the PC results in the following text only as PC is easily interpretable.
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Figure 11. Correlations (CC) by Pearson (PC) between pairs of pow, pha, powx and phax in dependence on height (z [m])
above the radar site. Red points represent PC for “near(0.75 km)” data, while the green line indicates PC for “far” data.
Horizontal lines shows 95% confidence intervals.

It is visible in Figures 11 and 12 that for most of the correlations of pairs between “near”
and “far” data, those for “near” data are visually different from those for “far” data at
various heights. To objectively evaluate the differences between the obtained correlations
for “near” and “far” data we calculated the 95% confidence intervals for both PC and
SC [29]. If the intervals did not intersect then the correlations were different at the 95%
level. It should be mentioned that in case of “far“ data, Figures 11 and 12 show that the
confidence intervals of 95% are very small (invisible) because of the very large size of the
“far” data. Figures 11 and 12 also confirm that the majority of the differences between
correlations for “near” and “far” is statistically significant at 95% level of confidence.
Comparing Figure 11 with Figure 12, PC values give much more points with statistically
significant differences than SC values.

For all combinations of pairs in dependence on height, it is evident that the PC
values for “near(0.75 km)” data differ from those for “far” data. However, it should be
emphasized that PCs for “near(0.75 km)” data were calculated from significantly less values
as compared to PCs for “far” data. This explains the oscillating nature of “near(0.75 km)”
data and the dot representation of “near(0.75 km)” data, instead of the line which we used
to represent more numerous “far” data. The largest difference between PCs is for the pair
pha:phax at a height of 5 to 9 km. The differences are significant at 95% confidence level
with the exception of the height 6000 m for SC. This is the height where the most intense
electrification of cloud usually occurs and lightning discharges originates [30].
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Figure 12. Correlations (CC) by Spearman (SC) between pairs of pow, pha, powx and phax in dependence on height (z [m])
above the radar site. Red points represent SC for “near(0.75 km)” data, while the green line indicates SC for “far” data.
Horizontal lines shows 95% confidence intervals.

Another clear difference between “near(0.75 km)” and “far” data is also obvious in
PCs for the pair pow:pha and pha:powx and at the same time, the mutual correlations
are very similar. This corresponds to high correlations of the pair pow:powx for both the
“near(0.75 km)” and the “far” data. According to SC significant differences between “near”
and “far” data are from 6 km in contrast with PC where differences start at about 3 km.

The correlation structures of pow:phax and powx:phax are very similar as well as
their dependence on height. Obviously, the correlation of “far” data is in some cases
significantly lower than the correlation for “near(0.75km)” data. For that, it is interesting to
compare these correlations expressed by PC with those expressed by SC (Figures 11 and 12,
respectively). SC correlations are significantly higher with values about 0.9 and higher. The
lower PC correlations are caused by phax values, which are highly variable and can vary
significantly in height. The high variability of phax together with the general nonlinearity
of the relationship between pow or powx and phax are the reasons why the resulting PC
values are much lower than SC values. On the other hand, very high SC values mean that
the tendencies of pow or powx with phax are almost the same. For instance, if for two
values of pow or powx, x and y, x <y, then for the corresponding values of phax, x´ and y´,
the same inequality x´ < y´ is valid.

3.4. Estimation of Lighning Ocurrence Using the Cloud Radar Data

Since Figures 9–12 showed that there are differences in the values of the studied
quantities for “near” and “far” data, we focused on modelling the relationship between
cloud radar measurements and the occurrence of lightning near the radar site using the
RTE model which we verified using ROC, A (the area below ROC) and CSI (Section 2.6).
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Specifically, we focused on estimating the occurrence of lightning up to 500 m, 750 m and 1
km from the radar site using the radar quantities for vertical layers including 15 gates, as in
Sections 3.2 and 3.3. In the following, we present results that we obtained for the distance
of 750 m.

Figure 13 presents an example of ROC curves calculated at the 99 independent ver-
ification sets obtained by 99 realizations of random splitting of the data into calibration
and verification data sets for a layer consisting of 15 gates with a center at about 6 km
above the radar. The figure clearly shows the ability of the RTE model (its high potential)
to distinguish “near” data from the “far” data. This result is also confirmed in Figure 14,
where the values of A and the values of A plus or minus the standard deviation of A are
shown for all the layers having centers at different heights.
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Figure 13. The 99 Receiver Operating Characteristic (ROC) curves calculated using random splitting of
the data into calibration and verification data sets (black curves). Red line displays the mean ROC curve
over 99 random realizations, whereas the blue line shows the random forecast. H on the y-axis depicts
the hit rate, while F on the x-axis the false alarm rate (Section 2.6). The results are shown for cloud radar
data covering the vertical layer of 15 gates with the center at a height z = 5947 m above the radar.
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Figure 14. Calculated A, the area below ROC, in dependence on elevation above the radar site (z
[m]). The figure shows mean values of A (black solid line) and mean A ± standard deviation of A
(dashed lines).
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Contrary to the convincing results provided by ROC and A, verification using CSI of
the yes/no RTE model outputs is less successful (Figure 15). Mean CSI values are between
0.20 and 0.35 approximately. Significant decrease of CSI at a height above 10 km is due to
the small number of data with lightning at this height and high sensitivity of the model
outputs on the selected threshold. However, two points should be mentioned here. The
first is that the weakest point of the RTE model is the calculation and the application of
the threshold value because CSI is very sensitive to the threshold value. Note that if we
used the threshold optimization on the verification file, then the CSI values would have
exceeded 0.60 (not depicted). The second point is that although the CSI values are low in
absolute value, according to our experience in predicting rare events such as heavy rain,
the obtained CSI values can be considered quite high for such extremely rare phenomenon
the lightning is.
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Figure 15. Calculated Critical Success Index (CSI) in dependence on elevation above the radar site (z
[m]). The figure shows mean values of CSI (red solid line) and mean CSI ± standard deviation of CSI
(dashed lines).

The presented modelling can seem simple; however, there are two reasons why we
intentionally applied simple modelling of the relationship between cloud radar data and
lightning occurrence. The first reason is that we wanted to find out whether it is possible to
model lightning occurrences using cloud radar data with reasonable results identifying
thunderstorms. The second reason is that for more sophisticated models we need more
data that are not at our disposal yet since thunderstorms are rare and our measurements
date from 2018 only.

4. Discussion

Within this research, we encountered two problems: (i) there are few discharges
detected near the radar site as compared to “far” data, (ii) there are several cases with high
attenuation of the signal caused by heavy rain during a short period of time in case of
strongest thunderstorms occurring in the immediate vicinity of the radar. This reduces
partly the “near” data set. Nevertheless, as the heavy rain did not occur during all the
analyzed thunderstorms and if it occurred, its duration was usually shorter than the period
of lightning occurrence, that is, “devastating” signal attenuation was not observed. Thus,
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we believe that our results obtained in this study are valid, although they need to be refined
as soon as we obtain larger data sets (i.e., from a longer period).

The limited number of “near” data as compared to “far” data is due to the fact that the
occurrence of lightning is a very rare phenomenon at a particular place. We partly solved
this problem by processing the radar data through vertical layers, consisting of several
gates, instead of analyzing data per each gate. This data processing through layers has a
physical justification since data of individual thunderstorms differ, the grouping of data
from several gates does not disturb the results, as we have presented and at the same time
it increases the robustness of the data analysis. Therefore, we believe that the obtained
characteristics of the data are reliable, although the inclusion of data into the analysis from
the following years will undoubtedly bring more accurate results.

Further, we did not distinguish between CC and CG discharges in our study due to the
limited number of CG (5%). Therefore, our obtained results express mostly the properties
of cloud radar measurements for the occurrence of CC discharges. We are aware that the
localization of CC may include an error in the order of hundreds of meters which can affect
our selection of “near” and “far” data based on the distance of discharges from the radar.
Therefore, we used different distances for “near” data selection and separated “near” from
“far” by at least 9 km. The results of the analyses for different distances defining “near”
data are similar, so we believe that the inaccuracy related to possible errors in determining
the location of CC discharges did not significantly affect our results.

As far as the modelling of the relationship between the cloud radar data and the
occurrence of lightning in the near vicinity of the radar site concerns, it is likely going to
remain problematic in future due to the fact that the proportion between “near” and “far”
data will not significantly change even when the data amount will increase in future by
adding additional years of measurements. Thus, the verification of the modeling will likely
be limited in future as well.

Similar problem is often encountered in forecasting very rare events, for example,
heavy rain. The core of the problem is that the prediction methods do not objectively
predict high probabilities of the phenomenon from strongly asymmetric calibration data,
where the non-occurrence of the phenomenon fundamentally prevails. As a rule, this
problem is solved by considering the ratio between the calculated probability and the
climatic probability of the occurrence of the phenomenon and the prediction itself is then
based on the application of a profit function comparing the impacts of correct and incorrect
predictions. We deliberately avoided to provide the answer whether the (lightning) phe-
nomenon will or will not occur (i.e., identification of the event), instead we used the ROC
and A analyses, which characterize the potential of separating lightning from non-lightning
events based on the radar data. In addition, we also used a simple deterministic method
determining the occurrence of “near” data and verified it using CSI to show what we can
expect from the model in real applications.

5. Conclusions

This study analyzed and compared basic measured cloud radar quantities, namely
pow, powx, pha and phax, for thunderstorm clouds producing lightning in the direct
vicinity of the radar site (i.e., “near” data) and for non-thunderstorm clouds producing
lightning farther from the radar site (i.e., “far” data). The analysis was performed using
data from 38 days of thunderstorms which occurred in 2018 and 2019 in the region of
the Milešovka observatory, where the radar is installed and which produced lightning
discharges in the 20 km radius around the radar.

Our results can be summarized as follows:

• The difference between “near” and “far” data is clearly manifested in the quantities
of pow, pha, powx and phax. The fundamental difference is in pha. A thunderstorm
cloud causes significantly higher pha values than a non-thunderstorm cloud. This is
true especially for the height of 3 km and higher. Moreover, there is a clear difference
between “near” and “far” data for pow, although smaller than for pha. In the case of
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cross-channel quantities (powx and phax), the difference between “near” and “far”
data is small as compared to those in the co-channel (pha and pow).

• From the correlation analysis among pow, pha, powx and phax it follows that correla-
tion relationships are clearly different for “near” and “far” data. The biggest difference
is evident for the correlations of pha vs. phax. Another finding is that pow and powx
give very similar results in correlation relations, that is, the correlations of pow vs.
pha and powx vs. pha as well as the correlations of pow vs. phax and powx vs. phax
are very similar.

• An important result is that the phase shifts, pha and phax, contain important informa-
tion that is not contained in pow and powx. This is especially true for pha.

• Based on differences found between the values of “near” data and those of “far” data,
we tested the possibility of indicating the occurrence of lightning discharges around
the radar using a RTE model on radar measurements. We found that “near” lightning
events can be quite successfully distinguished from “far” lightning events using the
RTE model in terms of ROC.

• To answer whether a lightning discharge is close to the radar or not, the RTE model
application evaluated by CSI gave values of 0.2 to 0.3 only, in dependence on the
used vertical layer. Although these CSI values are low in absolute values, they can be
considered quite high given the fact that lightning is a very rare phenomenon.

We are aware that the extent of data with lightning in the vicinity of the radar is
limited. Therefore, we plan to extend our research using the data from next years. Further,
we consider lightning measuring essential for analyses similar to ours.

Author Contributions: Z.S. and J.P. conceived the paper and discussed and interpreted the results.
Z.S. developed the presented algorithms and performed most of the analyses. J.P. processed the
results graphically and wrote most of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by project CRREAT (reg. number: CZ.02.1.01/0.0/0.0/15_003/00
00481) call number 02_15_003 of the Operational Programme Research, Development and Education
and was also supported by Charles University (UNCE/HUM 018) and by project Strategy AV21
Water for Life.
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21. Ryzhkov, A.V.; Zrnić, D.S. Depolarization in Ice Crystals and Its Effect on Radar Polarimetric Measurements. J. Atmos. Ocean.
Technol. 2007, 24, 1256–1267. [CrossRef]

22. Hubbert, J.C.; Ellis, S.M.; Chang, W.-Y.; Rutledge, S.; Dixon, M. Modeling and Interpretation of S-Band Ice Crystal Depolarization
Signatures from Data Obtained by Simultaneously Transmitting Horizontally and Vertically Polarized Fields. J. Appl. Meteorol.
Clim. 2014, 53, 1659–1677. [CrossRef]
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