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Abstract: Numerous earth observation data obtained from different platforms have been widely used
in various fields, and geometric calibration is a fundamental step for these applications. Traditional
calibration methods are developed based on the rational function model (RFM), which is produced
by image vendors as a substitution of the rigorous sensor model (RSM). Generally, the fitting accuracy
of the RFM is much higher than 1 pixel, whereas the result decreases to several pixels in mountainous
areas, especially for Synthetic Aperture Radar (SAR) imagery. Therefore, this paper proposes a
new combined adjustment for geolocation accuracy improvement of multiple sources satellite SAR
and optical imagery. Tie points are extracted based on a robust image matching algorithm, and
relationships between the parameters of the range-doppler (RD) model and the RFM are developed by
transformed into the same Geodetic Coordinate systems. At the same time, a heterogeneous weight
strategy is designed for better convergence. Experimental results indicate that our proposed model
can achieve much higher geolocation accuracy with approximately 2.60 pixels in the X direction and
3.50 pixels in the Y direction. Compared with traditional methods developed based on RFM, our
proposed model provides a new way for synergistic use of multiple sources remote sensing data.

Keywords: combined adjustment; rational function model (RFM); range-doppler (RD) model; multi-
ple sources

1. Introduction

With the development of satellite imaging technology, it is increasingly common to
obtain repeated observations of the same object from multiple sources in a short time,
which provides dozens of imagery widely used in many fields, such as 3D reconstruc-
tion [1], change detection [2] and semantic classification [3]. Nowadays, The application of
multiple sources airborne and spaceborne remote sensing imagery is increasing popular in
archaeological and cultural heritage as a supplement to traditional methods [4], which will
provide sufficient texture information. Terrestrial results obtained by laser scanning suffer
from high cost and missing data, whereas the combination of photogrammetry provides
an affordable and practical approach for the production of 3D models. Compared with
spaceborne imagery, the application of airborne remote sensing images is widespread due
to its high resolution which will provide enough details of buildings. In 2014, Xu et al.
proposed a methodology by intergrating laser scanning and image-based 3D reconstruction
techniques for the the production of 3D models [5]. Meyer et al. investigated an optimized
Unmanned Aerial Vehicles (UAV) system for the reconstruction of large scale cultural
heritage sites [6]. A digital 3D model of Asinou Church in Cyprus is obtained using a
consumer-level DJI platform equipped with a GoPro camera, and a 3D printer was used
to create a physical model of the church [7]. Moreover, multispectral and hyperspectral
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remote sensing data also contribute a lot in the classification of material features of cultural
heritage [8]. During the production of 3D models, all these datasets have to be rectified
due to the low geometric performance [4]. Some open-source tools including the structure
from motion (SfM) [9] and dense multi-view 3D reconstruction (DMVR) [10] are widely
applied. However, most of them are designed for optical images, whereas the integration
of SAR data is not well-considered for photogrammetric applications.

Generally, the geolocation accuracy of obtained satellite images varies greatly accord-
ing to different satellite platforms and imaging principles. Hence, the geometric processing
of remote sensing images is a fundamental step for further photogrammetric applications.
Traditional methods for obtaining geometric calibrated satellite images are developed
based on the rigorous sensor model (RSM) [11]. Usually, the establishment of the RSM
requires orbit, altitude or other information of the on-orbit satellite platform. Therefore,
the formula of the RSMs can be rather complicated.

As a replacement, generic models that fitting the RSM are proposed such as the di-
rect linear transformation (DLT) model [12] and the rational function model (RFM) [13].
These kinds of generic models use polynomial functions to build the relationship between
image-space and object-space coordinates. All of them are independent of the distinct
characteristics of satellite sensors. Therefore, the RFM is widely used in photogrammetric
processing of remote sensing images due to its simplicity of implementation and stan-
dardization [14]. Generally, the RFM is developed based on a third-order polynomial,
and parameters of the RFM are recognized as rational polynomial coefficients (RPCs).
Experiments have been conducted to verify the feasibility and efficiency of the RFM with
various optical remote sensing datasets [15–18]. In 2010, Teo et al. compared three block
adjustment models based on SPOT images [19]. Experimental results showed that the
geometric performance of all three models are similar. With the help of ground control
points (GCPs), all methods discussed in this paper can significantly improve the geoloca-
tion accuracy. Choi et al. also investigated the 3D performance of the vendor-provided
RPCs using two stereo pairs of high-resolution GeoEye-1 and WorldView-2. The results
indicated that the performance of the RFM and the RSM are nearly the same, and the plane
accuracy without any GCPs can reach about 2.3 m [20].

Differently from traditional optical satellite images, satellite images obtained from
Synthetic Aperture Radar (SAR) sensors can provide valuable information at all times
and all weather [21]. Benefitting from all these characteristics, the technology of SAR
has been greatly improved. World-class SAR sensors, such as the TerraSAR-X [22], the
ALOS [23] and the COSMO- SkyMed [24], can provide images with an accuracy of higher
than 10 m. The single look complex (SLC) images from the TerraSAR-X platform especially
can even reach decimeter level. In contrast, the obtained performance of the Chinese GF-3
SAR imagery is relatively poor, with an accuracy of approximately 40 m in plane [25,26].
Therefore, investigations have been conducted to improve the geolocation accuracy of GF-3
SAR images [27–30]. Most of them are experimented based on the RPCs provided by image
vendors. Differently, coefficients of the RD model are supplied for most world-class SAR
sensors instead of the RFM. Furthermore, the production of RPCs by users will introduce
extra fitting errors inevitable. Generally, RPCs can be approximated based on the terrain-
independent method [31]. A set of virtual GCPs are arranged in a grid-shape format on
planes located at different heights. Usually the fitting accuracy of approximated RPCs
is better than 5% pixels, whereas errors increased to pixel-level in areas with undulating
terrain [32].

Compared with traditional satellites, the geometric performance of imagery obtained
from small satellites, a new kind of satellite with small volume and quick response, is
unstable and usually poor due to the low measurement accuracy [15,33–35]. Traditional
methods using existed reference data (such as GCPs, digital orthophoto map (DOM) or
LiDAR data) to improve their geolocation accuracy [36–39]. In practice, the collection of
these reference data requires considerable financial and human resources. Therefore, com-
bined adjustment methods designed for multiple sources satellite imagery are investigated.
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In 2015, Jeong et al. investigated the performance of images from IKONOS, QuickBird
and KOMPSAT-2 [40]. Redundant observations were involved for geolocation accuracy
improvement of multiple sources satellite images [41]. In contrast, the integration of optical
and SAR images are seldom investigated. Furthermore, most of the previous studies are
experimented based on the RFM, which is not suitable for the geometric processing of
multiple sources optical and SAR images in most cases.

In this paper, we propose a new and generic combined adjustment model designed
for optical and SAR satellite images. When considering aerial remote sensing images,
coefficients of the RFM for optical imagery should be produced first by users before the
application of our proposed model. By introducing the relationships between coordinates
defined in the Geodetic Coordinate System and Cartesian Coordinate System, parameters
of the RD model are transformed into the same system with the RFM. Therefore the
normal equations for the combined adjustment model are developed based on an image-
space compensation model. A heterogeneous weight strategy is introduced for better
convergence. With the help of a popular modified Least-Square method, the ill-conditioned
problem can be solved efficiently.

The remainder of this paper is organized as follows—the basic principles of the RFM
based combined adjustment model are introduced in Section 2. Our proposed combined
adjustment model and the determination of the heterogeneous weight strategy is shown
in Section 3. In Section 4, experimental results are shown to verify the efficiency of our
proposed method using multiple optical and SAR images covering the Mount Song area.
Conclusions and discussions are drawn in Section 5.

2. Basic Principle of the RFM

Generally, the RSM is composed of various on-orbit information of satellite platforms,
which leads to a complicated form. Therefore, the RFM is proposed as a substitution
of the RSM. Usually, the relationship between image-space coordinates and object-space
coordinates are described by two polynomials as:

x =
NumS
DenS

=
[1 P L H · · · PLH][a0 a1 a2 a3 · · · a19]

T

[1 P L H · · · PLH][b0 b1 b2 b3 · · · b19]T

y =
NumL
DenL

=
[1 P L H · · · PLH][c0 c1 c2 c3 · · · c19]

T

[1 P L H · · · PLH][d0 d1 d2 d3 · · · d19]T
,

(1)

where (x, y) is the normalized image-space coordinate. (P, L, H) denotes the normalized
latitude, longitude, and height in object-space. NumS, DenS, NumL and DenL are third-
order polynomials consisting of 80 coefficients marked as ai, bi, ci and di (i = 0, 1, 2, · · · , 19).

And the normalized coordinates can be obtained according to Equation (2).

s = x · SAMP_SCALE + SAMP_OFF

l = y · LINE_SCALE + LINE_OFF

φ = P · LAT_SCALE + LAT_OFF

λ = L · LONG_SCALE + LONG_OFF

h = H · HEIGHT_SCALE + HEIGHT_OFF,

(2)

where (φ, λ, h) is the geodetic latitude, longitude and height calculated with different offset
and scale factors, respectively; (s, l) represents the image sample and line number in pixels
with pixel (0, 0) is the top-left of the image.

Fr = a0 + a1 · s + a2 · l − r

Fc = b0 + b1 · s + b2 · l − c.
(3)

The RFM can fit the RSM well in most cases. However, geolocation error still exists
due to the low measurement accuracy of on-orbit sensors. A commonly used model for
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systematically error compensation is the affine transformation model. In Equation (3), r
and c are extracted image-space coordinates; a0, a1, a2, b0, b1, and b2 are designed affine
transformation coefficients. Usually, systematic errors can be greatly eliminated based on
a translation model with a0 and b0. Hence, normal equations based on the RFM can be
simplified and described as follows [42]:

V = A · XA + B · XB − l , P, (4)

where V is the residual vector, A and B are the designed coefficient matrices containing
partial derivatives of the unknowns; XA and XB are the correction vectors of the affine
transformation parameters and object-space coordinates, respectively. l are the vectors of
residual errors and P denotes the designed weight matrix.

The normal equations can be established from Equation (4), according to the principle
of least-squares adjustment:[

AT PA AT PB
BT PA BT PB

][
XA
XB

]
=

[
AT Pl
BT Pl.

]
(5)

3. Methodology
3.1. Overview

Generally, optical remote sensing imagery can be processed based on the RFM due
to its simplicity and standardization. Instead, the geometric processing of SAR imagery
is usually conducted based on the RD model due to the lack of RPCs. In this paper, a
new combined adjustment model that aggregates the RD model and the RFM is proposed
for geometric calibration of multiple sources optical and SAR imagery. The workflow is
shown in Figure 1. Firstly, the sensor orientation of SAR images is processed for systematic
error compensation, which can be considered as the coarse-calibration stage. Secondly,
conjugate tie points are extracted using a feature-based OS-SIFT method, which is a more
robust and efficient remote sensing image-matching method compared with others in
computer vision [43]. Subsequently, the proposed combined adjustment model consisting
of the RD model and RFM is applied to fulfill the fine-calibration stage. Therefore, the
geolocation accuracy of calibrated SAR and optical images can be improved significantly,
which facilitates further photogrammetric applications.

Figure 1. Flow chart of our proposed method.
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3.2. Sensor Orientation of SAR Imagery

The RD model is usually considered as the rigorous sensor model for SAR images,
which is composed of three equations: the Range equation, the Doppler equation and the
Earth model equation as follows:

R = |Rs − RT |

fDc =
2

λ|Rs − RT |
(Vs −VT)(Rs − RT)

X2 + Y2

(Re + h)2 +
Z2

R2
p + h

= 1,

(6)

where R represents the measurement range between the target and the sensor, RT and
RS are position vectors of the target and SAR sensor, respectively; VT and VS serve as
corresponding velocity vectors of the target and SAR sensor, fDc denotes the Doppler
centroid frequency; (X, Y, Z) denotes the target position; h is the target height relative to
the surface of the earth, Re and Rp are the equatorial radius and the polar radius of the
Earth [32].

According to Equation (6), the geolocation accuracy of SAR images are mainly influ-
enced by the slant range measurement error, azimuthal time error, Doppler center frequency
error, ephemeris error of the satellite platform, and the topographic error [30]. Therefore,
the calibration of SAR images can be complicated due to different error sources.The slant
range measurement error and azimuthal time error play an important role among all
of these factors, which leads to geolocation errors in the X and Y direction, respectively.
Especially, the slant range measurement error is associated with different combinations of
bandwidth and pulse width of the SAR sensor, which can be calibrated with a simple static
model by correcting the internal calibration time delay error and atmospheric time delay
error [39].

After the calibration of slant range measurement error, the geolocation accuracy of
SAR images can be improved by several meters.The coarse-calibration can be achieved
by updating sensor parameters of the RD model. Normally, the geolocation accuracy of
coarse-calibrated SAR imagery cannot meet the requirement for further photogrammetric
applications. Traditional methods for geolocation accuracy improvement of SAR images
usually depend on the assistance of additional reference data—such as GCPs and LiDAR
data. The collection of these reference data usually requires considerable financial and
human resources. Hence, a free combined adjustment model is proposed for the production
of remote sensing data with very-high geolocation accuracy.

3.3. Combined Adjustment Model
3.3.1. Unification of Coordinate System

Previous studies have revealed different types of combined adjustment models for
multiple sources remote sensing data. Most of them are developed based on the RFM, and
almost all methods highly depend on some additional existed reference data as mentioned
above. Differently, we proposed a new combined adjustment model designed for the
geometric calibration of SAR and optical images.

For optical images, interior and exterior orientation parameters are necessary for
the establishment of the Collinear Condition Equations [44]. Considering the complexity
and inconsistency between different platforms, coefficients of the RFM are provided by
image vendors as a substitution. Usually, the production of RPCs is conducted under the
Geodetic Coordinate System, whereas the RD model is defined based on the Cartesian
Coordinate System. Therefore, parameters of the RD model are transformed into the
Geodetic Coordinate System according to Equation (7).
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X = (N + H) cos φ cos λ

Y = (N + H) cos φ sin λ

Z = [N(1− e2) + H] sin φ,

(7)

where (X, Y, Z) denote the space rectangular coordinates; φ and λ are the radians of the
geodetic latitude and longitude coordinates; N represents the Earth Curve Radius with

N =
Re√

1− e2 sin2 φ
, (8)

where e denotes the Earth Curve.
Giving the relationship between the geodetic coordinates and space rectangular co-

ordinates, parameters of the RD model can be translated into the Geodetic Coordinate
System. Differently, the RD model are developed based on the Range Equation and Doppler
Equation, which indicates that the geolocation accuracy should be reprojected into the
image space to keep in line with the RFM.

3.3.2. Combined Normal Equations

As demonstrated in Equation (3), an affine transformation model can compensate for
the geolocation error of the RFM efficiently. The situation can be much more complicated
when it comes to the RD model because we cannot develop a formula that indicates the
relationship between the object-space coordinates and image-space coordinates directly.
As demonstrated above, the slant range measurement error and azimuthal time delay error
are the main factors that influence the reprojection error of the image-space coordinates.
For simplicity, the RD model can be rewritten as follows:

Gr = (Vs −VT)(Rs − RT)−
λ fDc

2
· R

Gc = |Rs − RT | − R,
(9)

where Gr and Gc are influenced by the image-space coordinates. To simplify the normal
equations, a traditional “stop and go” assumption is utilized here [45]. Hence, parameters
of the RD model can be represented by the image-space coordinates as:

R = Rnear + [(x + dx) · cs]/(2 · fs)

Rre f = Rnear + W/2 · ws

dt0 = (R− Rre f )/cs , dt1 = t0 + (y + dy)/pr f

fDC =
l

∑
i=0

di · dti
0

RS =
n

∑
i=0

pi · dti
1 , VS =

m

∑
i=0

qi · dti
1,

(10)

where (x, y) represent the image-space coordinates; (dx, dy) are the corresponding correc-
tions; Rnear is the measured range corresponding to the first pixel in the image sample
direction; t0 denotes the start imaging time in the image line direction; cs represents the
speed of light; fs is the sampling frequency in the slant range direction; Rre f denotes the
reference slant range distance, dt0 is the reference of the Doppler time; di represent the
coefficients of the Doppler center frequency; W and ws are the image width and widthspace;
dt1 denotes the azimuth time; pr f is the pulse repetition frequency; pi and qi are coefficients
to fitting the position and velocity vector of the satellite platform.
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Hence, normal equations assembling the RD model and RFM can be developed as:

Fr = a0 + a1 · s + a2 · l − r

Fc = b0 + b1 · s + b2 · l − c

Gr = (Vs −VT) · (Rs − RT)−
λ fDc

2
· R

Gc = |Rs − RT | − R.

(11)

Assuming the number of optical and SAR images are m and n, the coefficient matrix
of normal equations can be obtained in the form of Equations (12) and (13).

A =



∂F1
r

∂a1
0

0 0 0 · · · 0 0 0 0

0 ∂F1
c

∂b1
0

0 0 · · · 0 0 0 0

0 0 ∂G1
r

∂y1

∂G1
r

∂x1
· · · 0 0 0 0

0 0 ∂G1
c

∂y1

∂G1
c

∂x1
· · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · ∂Fn

r
∂an

0
0 0 0

0 0 0 0 · · · 0 ∂Fn
c

∂bn
0

0 0

0 0 0 0 · · · 0 0 ∂Gm
r

∂ym

∂Gm
r

∂xm

0 0 0 0 · · · 0 0 ∂Gm
c

∂ym

∂Gm
c

∂xm
.



(12)

B =



∂F1
r

∂P
∂F1

r
∂L

∂F1
r

∂H 0 0 0 · · · 0 0 0
∂F1

c
∂P

∂F1
c

∂L
∂F1

c
∂H 0 0 0 · · · 0 0 0

∂G1
r

∂P
∂G1

r
∂L

∂G1
r

∂H 0 0 0 · · · 0 0 0
∂G1

c
∂P

∂G1
c

∂L
∂G1

c
∂H 0 0 0 · · · 0 0 0

0 0 0 ∂F2
r

∂P
∂F2

r
∂L

∂F2
r

∂H · · · 0 0 0

0 0 0 ∂F2
r

∂P
∂F2

r
∂L

∂F2
r

∂H · · · 0 0 0

0 0 0 ∂G2
r

∂P
∂G2

r
∂L

∂G2
r

∂H · · · 0 0 0

0 0 0 ∂G2
r

∂P
∂G2

r
∂L

∂G2
r

∂H · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 · · · ∂Fn

r
∂P

∂Fn
r

∂L
∂Fn

r
∂H

0 0 0 0 0 0 · · · ∂Fn
r

∂P
∂Fn

r
∂L

∂Fn
r

∂H
0 0 0 0 0 0 · · · ∂Gn

r
∂P

∂Gn
r

∂L
∂Gn

r
∂H

0 0 0 0 0 0 · · · ∂Gn
r

∂P
∂Gn

r
∂L

∂Gn
r

∂H .



(13)

Partial derivatives of optical images based on the RFM can be easily obtained, whereas
the formula corresponding to Gr and Gc are more complicated. With the help of Equation (11),
partial derivatives including ∂Gr

∂x , ∂Gr
∂y , ∂Gc

∂x and ∂Gc
∂y can be derived as:
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∂Gr

∂x
= −λ fDc

2
· ∂R

∂x
− λR

2
· ∂ fDC

∂dt0
· ∂dt0

∂R
· ∂R

∂x
= −λ fDc

2
· cs

2 fs
− λR

2
· 1

2 fs
·

l

∑
i=0

di · dti−1
0

∂Gr

∂y
= (VS −VT) ·

∂RS
∂dt1

· ∂dt1

∂y
+ (RS − RT) ·

∂VS
∂dt1

· ∂dt1

∂y

= (VS −VT) ·
1

pr f
·

n

∑
i=1

pi · dti−1
1 + (RS − RT) ·

1
pr f
·

m

∑
i=1

qi · dti−1
1

∂Gc

∂x
=

∂R
∂x

=
cs

2 f s
∂Gc

∂y
=

∂RS
∂dt1

· dt1

y
=

1
pr f
·

n

∑
i=1

pi · dti−1
1 .

(14)

The partial derivatives from Gr and Gc to P, L and H can be represented as Equation (15).

∂Gr

∂P
=

∂Gr

∂X
∂X
∂φ

∂φ

∂P
+

∂Gr

∂Y
∂Y
∂φ

∂φ

∂P
+

∂Gr

∂Z
∂Z
∂φ

∂φ

∂P

= − π

180
· [(VS.x−VT .x)

∂X
∂φ

+ (VS.y−VT .y)
∂Y
∂φ

+ (VS.z−VT .z)
∂Z
∂φ

]

∂Gr

∂L
=

∂Gr

∂X
∂X
∂λ

∂λ

∂L
+

∂Gr

∂Y
∂Y
∂λ

∂λ

∂L
+

∂Gr

∂Z
∂Z
∂λ

∂λ

∂L

= − π

180
· [(VS.x−VT .x)

∂X
∂λ

+ (VS.y−VT .y)
∂Y
∂λ

+ (VS.z−VT .z)
∂Z
∂λ

]

∂Gr

∂H
=

∂Gr

∂X
∂X
∂H

+
∂Gr

∂Y
∂Y
∂H

+
∂Gr

∂Z
∂Z
∂H

= (VS.x−VT .x)
∂X
∂H

+ (VS.y−VT .y)
∂Y
∂H

+ (VS.z−VT .z)
∂Z
∂H

∂Gc

∂P
=

∂Gc

∂X
∂X
∂φ

∂φ

∂P
+

∂Gc

∂Y
∂Y
∂φ

∂φ

∂P
+

∂Gc

∂Z
∂Z
∂φ

∂φ

∂P
(15)

=
π

180 · |Rs − RT |
· [(RS.x− RT .x)

∂X
∂φ

+ (RS.y− RT .y)
∂Y
∂φ

+ (RS.z− RT .z)
∂Z
∂φ

]

∂Gc

∂L
=

∂Gc

∂X
∂X
∂λ

∂λ

∂L
+

∂Gc

∂Y
∂Y
∂λ

∂λ

∂L
+

∂Gc

∂Z
∂Z
∂λ

∂λ

∂L

=
π

180 · |Rs − RT |
· [(RS.y− RT .y)

∂X
∂λ

+ (RS.y− RT .y)
∂Y
∂λ

+ (RS.z− RT .z)
∂Z
∂λ

]

∂Gc

∂H
=

∂Gc

∂X
∂X
∂H

+
∂Gc

∂Y
∂Y
∂H

+
∂Gc

∂Z
∂Z
∂H

=
1

|Rs − RT |
· [(RS.x− RT .x)

∂X
∂H

+ (RS.y− RT .y)
∂Y
∂H

+ (RS.z− RT .z)
∂Z
∂H

].

Given Equation (8), partial derivatives of X, Y and Z to φ, λ and H are easy to be
derived. Hence, normal equations can be established in the form of matrices as:

VO = AO · XAO + BO · XBO − lO , PO

VS = AS · XAS + BS · XBS − lS , PS,
(16)

where the subscript O and S represent matrices designed for optical and SAR images,
respectively.

The establishment of the combined normal equations provides a generic way for the
geometric processing of SAR and optical imagery. However, the absolute geolocation
accuracy after free block adjustment cannot meet our requirements without the help of
GCPs. Therefore, the heterogeneous weight strategy, defined as PO and PS, is introduced
for better convergence.



Remote Sens. 2021, 13, 491 9 of 15

3.3.3. Heterogeneous Weight Strategy

Traditional block adjustment methods are developed with an identify weight matrix,
which indicates that the contribution of all elements involved is the same. However, the
geometric performance of multiple sources remote sensing data varies greatly according
to different platforms. Generally, the performance of most world-class SAR imagery can
achieve better than 10 m, whereas the geolocation accuracy of different optical imagery
ranging from several meters to hundreds of meters. Therefore, the heterogeneous weight
strategy is proposed to ensure that images with higher accuracy will contribute more during
the combined adjustment process, which ensures an optimum result will be obtained
without using GCPs.

Different from traditional identify weight matrix, the heterogeneous weight matrix
composed of PO and PS are defined as follows:

P =



P0
Or

0 0 0 · · · 0 0 0 0
0 P0

Oc
0 0 · · · 0 0 0 0

0 0 P0
Sr

0 · · · 0 0 0 0
0 0 0 P0

Sc
· · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · Pn

Or
0 0 0

0 0 0 0 · · · 0 Pn
Oc

0 0
0 0 0 0 · · · 0 0 Pm

Sr
0

0 0 0 0 · · · 0 0 0 Pm
Sc


,



POr = mO ·
1
q
· 1

H · tanθ
· 1

AO

POc = mO ·
lo

lo
sum
· 1

q
· 1

H · tanω
· 1

CO

PSr = mS ·
1
q
· 1

AS

PSc = mS ·
ls

ls
sum
· 1

q
· tanθ′

CS
,

(17)

where the subscripts O and S represent designed for optical and SAR imagery, respectively;
m denotes the adaptive parameter to keep balance between different weights; q is the
resolution of each involved image; H is the height of the optical satellite, θ and ω are
measured rolling angle and pitching angle of the optical imaging sensor; θ′ represent the
looking angle of the SAR sensor; l denotes the number of images divided into groups
according to different principles; lsum is the total number of involved optical/SAR images;
C and A represent the relative geolocation error of each image computed during each
iteration.

Without the help of GCPs, the above strategies provide a generic guidance for the
determination of an optimum weight for each observation. In practice, the determination
of mO and mS is conducted based on more than one test. A converged solution will
be obtained with the aid of some popular modified Least-Square method, and further
photogrammetric applications can be investigated after the fine-calibration of the multiple
sources dataset.

4. Experimental Results and Analysis
4.1. Experimental Dataset

Considering the revisited period of different commercial satellites with very high
resolution, the collection of multiple sources and multiple observation dataset is time-
consuming and expensive. In comparison, the comparison of some open access datasets,
such as the Sentinel-1 data, are much lower. Hence, multiple remote sensing images
obtained from the Jilin-1 (JL-1) optical small satellite constellation and the Gaofen-3 (GF-3)
SAR satellite are involved to verify the efficiency of our proposed method. As the first
commercial optical satellite constellation, it is composed of 14 small satellites by the end
of 2020. The resolution of JL-1 optical images is 0.92 m and the swath width is 11 km.
Benefited from the non-fixed camera on the platform, images can be obtained at different
imaging times and looking angle, which provides multiple observation dataset with more
information. The GF-3 satellite is the first civilian microwave remote sensing imaging
satellite. The nominal resolution of obtained GF-3 images varies from 1 m to 500 m with
the swath width ranging from 10 km to 650 km. In this experiment, 7 JL-1 optical images
obtained from 4 different platforms and 3 GF-3 SAR images covering a rural area around the
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Mount Song area are selected. Detailed information is listed in Table 1, and the geometric
distribution can be found in Figure 2.

Table 1. Detailed information of experimental dataset (DEC means descending, and ASC is the abbreviation of ascending).

Platform Acquisition Date Orbit Incidence Angle (◦) Size (Pixels) Resolution (m)

JL-104-1 2 April 2018 DEC 8.73 11,516 × 12,143 0.93 × 0.94
JL-104-2 23 June 2018 DEC 4.33 11,506 × 12,148 0.92 × 0.92
JL-104-3 29 October 2018 DEC 0.84 11,518 × 12,120 0.92 × 0.92
JL-105-1 15 June 2018 DEC −0.52 11,518 × 12,056 0.92 × 0.92
JL-105-2 10 October 2018 DEC 5.19 11,518 × 12,008 0.92 × 0.94
JL-106-1 7 June 2018 DEC 1.38 11,530 × 12,007 0.92 × 0.92
JL-107-1 31 March 2018 DEC 1.97 11,513 × 11,991 0.92 × 0.92
GF3-1 28 December 2016 DEC 37.43 16,215 × 21,531 2.24 × 2.86
GF3-2 14 November 2019 DEC 24.68 21,625 × 23,354 1.12 × 2.61
GF3-3 20 December 2019 ASC 41.43 18,124 × 20,316 2.24 × 3.03

Figure 2. Geometric distribution of multiple sources JL-1 and GF-3 imagery.

Influenced by the imaging modality, targets in SAR images are difficult to be identified
compared with optical images. Therefore, 5 check point sets are extracted from an existed
database of control points. All check points located in the corner of border areas or road
intersections. Moreover, 147 tie points are extracted automatically based on an efficient
multiple source image matching method [43]. Figure 3 shows the geographical distribution
of involved optical and SAR images, as well as the distribution of extracted corresponding
tie points.

4.2. Performance of the Combined Adjustment

Before the adjustment process, the slant range measurement error is firstly calibrated
based on our previous statistic results [39]. Table 2 gives the geolocation results before
and after the coarse-calibration. The initial geolocation accuracy of both GF-3 SAR images
is approximately 11 pixels in the X direction and 8 pixels in the Y direction, which is in
accordance with previous studies [25]. After calibration, the geolocation error in the X
direction influenced by the slant range measurement error is eliminated greatly, whereas the
variation of geolocation error in the Y direction is negligible. Based on the coarse-calibration
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step, the geolocation accuracy of both GF-3 SAR images is improved significantly, which
guarantee a better result of the whole combined adjustment process.

(a)

(b)

Figure 3. The experimental overlapping area of the JL-1 and GF-3 imagery, marked with extracted tie points (in red) in
the experimental analysis. (a) an example of extracted tie points on optical imagery. (b) the corresponding scence on SAR
imagery.

To verify the efficiency of our proposed combined adjustment model, a traditional
RFM based adjustment process is conducted in comparison. Hence, the RPCs of SAR
images need to be produced in advance. Generally, a terrain-dependent method relying on
well-distributed GCPs performs the best [46]. In contrast, the terrain-independent method
is commonly applied with the help of an open-source DEM. Based on the established
spatial grid, the fitting accuracy of produced RPCs can reach sub-pixels [47]. Hence, RPCs
of GF-3 SAR images are produced after coarse-calibration and the RFM based combined
adjustment model including all SAR and optical images can be developed according to
Equation (4).

Table 2. Geometric performance of GF-3 Synthetic Aperture Radar (SAR) images before and after
coarse calibration (pixels).

Images
Before Calibration After Calibration

X Y X Y

GF3-1 11.11 8.09 1.56 8.09
GF3-2 10.96 7.84 1.73 7.84
GF3-3 12.37 8.21 1.61 8.21
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Table 3. Geometric performance of the whole dataset with different combined adjustment methods
(pixels).

Items
Before Adjustment After Adjustment After Weighted Adjustment

X Y X Y X Y

RFM 146.36 111.75 61.97 72.23 2.97 4.78
Proposed 146.36 111.75 59.43 71.89 2.65 4.43

Figure 4 gives the relative geolocation accuracy between optical and SAR images after
combined adjustment. Without the help of GCPs, geolocation results after free combined
adjustment cannot meet the requirement for further processing, such as the production of
geocoded 3D products and target localization. Hence, the heterogeneous weight strategy is
applied for better convergence. The final results are listed in Table 3. After processing, the
geolocation accuracy increases to approximately 3 pixels in the X direction and 4.5 pixels in
the Y direction. At the same time, our proposed model also shows better performance than
the traditional RFM based combined adjustment model. Furthermore, Figure 5 shows the
error distribution after processed by these two methods. Compared with the traditional
one, our proposed model also gives the best performance in convergence, which can be
derived from the consistency between images.

Figure 4. Relative geolocation accuracy between optical and SAR images after combined adjustment.

Table 3 gives the root mean square error (RMSE) of the whole dataset processed with
different models. The RFM based combined adjustment model improves the geolocation
accuracy of all datasets from about 146.36 pixels in the X direction and 111.75 pixels in the
Y direction to 61.97 pixels in the X direction and 72.23 pixels in the Y direction with an
identity weight matrix. In contrast, the performance of our proposed model is better than
the traditional one, with an accuracy of 59.43 pixels in the X direction and 71.89 pixels in
the Y direction.
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(a) (b)

Figure 5. Geolocation error distribution after processed with (a) the rational function model (RFM)
based combined adjustment model and (b) our porposed model.

5. Discussions and Conclusions

Traditional methods for the geometric processing of multiple sources optical and SAR
imagery are developed based on the RFM. Different from most optical satellite imagery,
RPCs of SAR images are not always provided by image vendors, especially for some
popular SAR sensors such as the TerraSAR-X and Sentinel-1 satellite. Therefore, the
production of RPCs for SAR imagery has to be produced by users additionally. Moreover,
the fitting accuracy is highly dependent on the terrain.

Aiming at finding a generic and simple way for geometric calibration of multiple
sources optical and SAR images, we proposed a new combined adjustment model. Un-
like traditional RFM-based methods, the slant range measurement error of SAR images
obtained from the GF-3 satellite is calibrated based on our previous work. After the coarse-
calibration step, tie points are automatically extracted from both optical and SAR images.
The combined adjustment model is established by reprojecting parameters of the RD model
into the same coordinate system with the RPCs. Together with an additional heterogeneous
weight strategy, our proposed model gives the best performance. Compared with tradi-
tional methods, our proposed model provides a new way for the integration of multiple
sources optical and SAR data, which do not introduce extra fitting accuracy. Further, this
proposed model also enables the application for precise photogrammetric reconstruction.
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