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Abstract: Road extraction from remote sensing images is of great significance to urban planning,
navigation, disaster assessment, and other applications. Although deep neural networks have shown
a strong ability in road extraction, it remains a challenging task due to complex circumstances and
factors such as occlusion. To improve the accuracy and connectivity of road extraction, we propose
an inner convolution integrated encoder-decoder network with the post-processing of directional
conditional random fields. Firstly, we design an inner convolutional network which can propagate
information slice-by-slice within feature maps, thus enhancing the learning of road topology and
linear features. Additionally, we present the directional conditional random fields to improve the
quality of the extracted road by adding the direction of roads to the energy function of the conditional
random fields. The experimental results on the Massachusetts road dataset show that the proposed
approach achieves high-quality segmentation results, with the F1-score of 84.6%, which outperforms
other comparable “state-of-the-art” approaches. The visualization results prove that the proposed
approach is able to effectively extract roads from remote sensing images and can solve the road
connectivity problem produced by occlusions to some extent.

Keywords: remote sensing; semantic segmentation; encoder-decoder network; inner convolution;
directional conditional random fields

1. Introduction

Road extraction from remote sensing images is of great significance for updating
geographic information systems (GIS), urban planning, navigation, disaster assessment,
etc. [1]. In the past, the most widely used way to extract roads was through manual vision
interpretation, which takes a lot of time and has a high labor cost, and the extracted results
may vary due to the differences of interpreters. Automatic road extraction technology can
improve the efficiency of road extraction, so it has become a hot issue in this field.

Over the past few decades, many studies on automatic road extraction have been
conducted. The traditional road extraction approaches are usually based on traditional com-
puter vision methods, such as prior knowledge [2,3], the mathematical morphology [4,5],
the active contour [6,7], the Markov random field (MRF) [8,9], the support vector machine
(SVM) [10,11], and so on. These methods can work well for some simple cases, but their
performance depends on many threshold parameters that should be elaborately given. The
threshold parameters usually vary in different images, so the traditional methods can only
work in a small range of data, and cannot be validated in complex circumstances.

Benefiting from the rapid growth of available data and the computing power, deep
learning technology represented by convolutional neural networks (CNNs) has achieved a
breakthrough in the field of computer vision [12–15]. As road extraction can be considered
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a binary segmentation problem, researchers have preferred to adopt CNN-based methods
to extract roads from remote sensing images in recent years. Early in 2013, Mnih et al. first
introduced a CNN to segment a road from aerial images and established a corresponding
dataset, known as the Massachusetts dataset [16,17]. Wang et al. [18] proposed a patch-
based CNN to recognize patterns of the road, and then tracked the road by a finite state
machine (FSM). Moreover, Alshehhi et al. [19] used a patch-based CNN to extract roads
and buildings simultaneously. Additionally, Rezaee et al. [20] designed a patch-based deep
neural network to extract roads from images with a 0.15 m spatial resolution. However,
these patch-based approaches adopt the sliding window strategy, so their accuracy and
speed are limited. With the emergence of a large number of excellent semantic segmentation
network frameworks based on fully convolutional network (FCN) [21] or encoder-decoder
architecture, such as U-Net [22], SegNet [23], and DeepLab [24,25], the road extraction task
has achieved significant progress [26].

Wei et al. [27] proposed a road structure refined CNN for road extraction. It adopted
the architecture of FCN and designed fusion layers to obtain a structured output of road
extraction. Furthermore, Zhong et al. [28] designed an FCN which combines the output
of the shallow fine-grained pooling layer with the deep final-score layer. Cheng et al. [29]
presented a cascaded encoder-decoder network to extract roads and centerlines simultane-
ously. Additionally. Zhang and Wang [30] proposed a network with atrous convolution to
produce a large receptive field, so it worked well in both road and building extraction tasks.
Moreover, Zhang et al. [31] developed a deep residual U-Net for road extraction, which
combined the U-Net architecture and residual units. Xin et al. [32] applied a dense U-net
for road extraction. A dense U-net consists of dense connection units and skips connections,
which strengthens the fusion of different scales by connections at various network layers.
Li et al. [33] proposed an improved D-Linknet for detecting roads from unmanned aerial
vehicle images. In addition to the improvement of the network structure, some studies
have improved the loss function to obtain better road extraction results. Mosinska et al.
introduced [34] pixel-wise loss to capture the higher-order topological features of linear
structures. Additionally, Abdollahi et al. [35] developed a VNet model with a new dual loss
function called cross-entropy-dice-loss, which can decrease the influence of class imbalance
and improve the road extraction result. Moreover, He et al. [36] employed the structural
similarity as a loss function to improve the quality of road extraction.

Adding the post-processing method can also help improve the performance of road
extraction. Sun et al. [37] proposed the stacked U-net with a hybrid loss function, and
improved the recall by post-processing methods, including road map vectorization and a
shortest path search. Conditional random fields (CRF) is a widely used post-processing
model. Chen et al. introduced the fully connected CRF to optimize the segmentation
results [38]. Panboonyuen et al. [39] proposed a SegNet-based deep convolutional neural
network (DCNN) to segment roads, and CRF was used as a post-processing step to reduce
falsely classified roads. By modeling the nearby pixels with energy terms, CRF makes the
spatially proximal and similar-colored pixels more likely to be in the same class. However,
traditional CRF only takes the position and color as energy terms, which is often used to
optimize the segmentation boundary and remove outliers. Therefore, traditional CRF is
useless for solving the problem of incomplete road extraction due to occlusions.

These methods can generally segment roads in remote sensing images well; however,
they have difficulties in predicting roads covered by trees, buildings, or other non-road
objects. Due to the unusual features of covered roads, a normal CNN method will not be
able to represent them correctly.

To address this problem, we designed an inner convolutional network and a directional
CRF for road extraction to segment roads from remote sensing images more accurately.
The main contributions of this study are as follows:

1. We designed a novel inner convolutional network (ICN) integrated encoder-decoder
network for road extraction. ICN splits the feature map into slices along a row or
column and views these slices of feature maps as layers of traditional CNN, and
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then applies convolution, activation, etc. to these slice maps sequentially. Therefore,
the spatial information can be transmitted in the same layer, which is helpful for
enhancing the ability of CNN to extract a road covered by other objects;

2. We proposed the directional conditional random fields (DCRF) as a post-processing
method to further improve the quality of road extraction. The DCRF adds the direction
of the road as an energy term of CRF, which will favor the assignment of the same label
to pixels with similar directions, so it can help to connect roads and remove noise;

3. Ablation studies on the Massachusetts dataset verify the effectiveness of the proposed
ICN and DCRF. Experimental results show that the proposed method can improve
the accuracy of the extracted road and solve the road connectivity problem produced
by occlusions to some extent.

The remainder of this study is organized as follows. In Section 2, we describe the
details of our proposed methodology. In Section 3, experimental results and the corre-
sponding analyses are provided. Finally, Section 4 concludes the study.

2. Materials and Methods

In this section, we present an inner convolution integrated encoder-decoder network
with the post-processing of directional CRF for segmenting roads from remote sensing
images. The proposed model is divided into three parts: An encoder-decoder network
as the backbone; an inner convolutional network to enable contextual information to be
transmitted between pixels across rows and columns in a layer; and the directional CRF
approach to optimize segmentation results.

2.1. Overview of the Proposed Method

An overview of the proposed method is shown in Figure 1. We applied the inner
convolutional network to the output of the backbone network’s encoder. The preliminary
segmentation result is optimized by directional CRF.

Figure 1. An overview of the proposed method.

In this study, we selected U-net [22] as the backbone for road extraction from remote
sensing images. U-net was proposed in 2015, and was first proposed for the segmentation
of blood vessels in medical imaging, but it has also been proven to perform excellently in
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remote sensing imagery segmentation. Figure 2 briefly introduces the network architecture
and parameters of the U-net used in this study.

Figure 2. The architecture of the modified U-net.

The U-net consists of an encoder part and a decoder part. The encoder part is a typical
convolutional network. It consists of repeated applications of two 3× 3 convolutional layers
with stride 1 and padding 1. Each convolution follows an exponential linear unit (ELU)
activation function and a batch normalization (BN) layer. Moreover, each convolutional
block is followed by 2 × 2 max-pooling with stride 2 for down-sampling. The number of
feature channels is doubled after each block. The encoder part carries out four convolutional
blocks. The decoder part corresponds to the encoder part. Every block in the decoder part
consists of a 2× 2 deconvolution, a concatenation with the corresponding feature map from
the encoder part, and two 3 × 3 convolutions followed by ELU activation and a BN layer.
The number of feature channels is halved after each up-sampling process. At the final layer,
a 1 × 1 convolution with a Sigmoid function is used to generate the desired prediction.

Compared with the original U-net network, the modified U-net network in Figure 2
replaces the Rectified Linear Unit (ReLU) with ELU [40] and adds the BN layer [41] after
each convolutional layer. The ELU activation function is defined in Equation (1).

f (x) =
{

x, x > 0
α(ex − 1), x ≤ 0

(1)

The ELU and batch normalization have become commonly used components of the
CNN network, as their superiority in the training of CNN has been widely recognized. It
should be noted that the number of convolution kernels of the output layer of the U-net is
set to 1, and the classifier is also transformed from Softmax to Sigmoid, as road extraction
is a binary segmentation task. The Sigmoid function is shown in Equation (2).

Sigmoid(x) =
1

1 + e−x (2)

2.2. Inner Convolutional Network

The greatest difficulty faced in a road extraction task is the extraction of the occluded
road. A road covered by trees, buildings, etc., will lead to visual invisibility, so one can
only extract the occluded road by analyzing and inferring the surrounding pixels of the
occluded road. To address this issue, we propose the inner convolutional network, which
can make better use of the road-specific contextual information. Its basic structure is shown
in the orange part of Figure 1.
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The inner convolutional network is applied to the output feature map of the encoder part
in the encoder-decoder network. The output feature map is a tensor of the size C×H×W,
where C, H, and W denote the number of channels, rows, and columns, respectively. The
feature map contains rich high-level semantic information after feature extraction by the
encoder part. Firstly, the feature map is split into H slices along rows, and the obtained H
slices are then sent to the first unit of the inner convolutional network, IC1. In this unit,
the first slice is sent to a convolution layer with C kernels of size C×w. The output of the
convolution layer is added to the second slice to generate a new slice, and the new slice is
then sent to the next convolution layer. This process continues until the last slice is processed.
In IC1, the context information is continuously transmitted from top to bottom, and the
output feature map is then sent to IC2. IC2 is similar to IC1, but the direction of convolution
is upward. First, the last slice is sent to the convolution layer, and the output is added with
the previous slice to generate a new slice, applying this process until the first slice is updated.
After that, the new slices are concated in the row dimension to recombine a complete feature
map with the size of C×H×W. In the same way, the recombined feature map is re-split
into W slices along rows along the column dimension, and these slices are sent to IC3 and
IC4 units to apply the processing with the rightward and leftward direction, respectively.

IC1, IC2, IC3, and IC4 modules constitute the whole inner convolutional network,
which propagates the spatial relationship from different directions. The inner convolutional
network enhances the ability of the network to learn the specific semantic information and
continuous prior information of roads, thus helping to extract the occluded road.

2.3. Directional Conditional Random Fields

CRF is a typical undirectional graph model [42]. As a post-processing method of image
segmentation, CRF can reduce the false prediction of a target and improve the segmentation
result. Fully connected CRF has been the most commonly used CRF model for image
semantic segmentation in recent years [43]. By utilizing the energy function of adjacent
nodes, pixels with a similar color and intensity are likely to be included in the same category.

However, the traditional fully connected CRF cannot be effectively applied to the
post-processing of the road extraction task. The traditional CRF only uses color and location
information to calculate the energy function of adjacent nodes, so, if the road is occluded
in the remote sensing images due to the influence of light, shadow, and other factors, the
color of the occluded road area is very different from that of the normal road area, so the
traditional CRF cannot work in this circumstance.

In terms of the road, there is also a significant characteristic in that the road has an
extending direction. Previous studies have shown that learning the road direction can
improve the connectivity of road segmentation results [44,45]. Based on this, we considered
adding the direction of roads to the energy function of CRF to improve the extraction of
the occluded road. Notations used in the formalization are presented in Table 1.

Table 1. Description of notations.

Notation Description

Md Road direction map
I An image
X Segmentation map of I
G A graph on X

P(X|I) Gibbs distribution
E(x|I) Gibbs energy
φu(x) Unary potential function

φp(xi, xj) Pairwise potential function
µ(xi, xj) Compatibility function

w(m) Linear combination weights
k(m) Gaussian kernels

fi Feature vector for pixels i in an arbitrary feature space
Λ(m) Positive-definite precision matrix
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We generated the corresponding direction maps from binary maps of the segmentation
result. The algorithm employed for generating the direction maps is shown in Algorithm 1.

Algorithm 1 Algorithm for Generating the Direction Map

Input: Binary map of road segmentation result M
Parameters: angle step ∆θ, detecting radius r;
Output: road direction map Md
1. for M(i, j) in M
2. if ( M(i, j) = 1)
3. for θ = 0 to π step ∆θ

4. dθ(i, j) = ∑r
ρ=1 M(ρ sin θ, ρ cos θ) + M(−ρ sin θ,−ρ cos θ)

5. end for
6. find θmax :
7. dθmax (i, j) = max

{
dθmax (i, j)

}
, θ ∈ [0, π]

8. Md(i, j) = θmax
9. else
10. Md(i, j) = null
11. end if
12. end for
13. return Md

Given an input image I, defined over variables {I1, · · · , IN}, X is its road segmentation
result from DCNN. For any pixel Ii, its segmentation result is xi. Consider G = (V, E)
is a graph on X, where conditional random fields (I,X) can be characterized by a Gibbs
distribution P(X|I). The conditional probability of a pixel belonging to label x is

P(X = x|I) = 1
Z(I)

exp(−E(x|I)), (3)

where Z(I) = ∑ P(X|I) is the normalized constant and E(x|I) is the energy function.

E(x|I) = ∑
i

φu(xi) + ∑
i<j

φp
(
xi, xj

)
(4)

In Equation (4), the unary potential function ∑
i

φu(xi) is independently computed by

the segmentation result of the DCNN, and the pairwise potential function φp
(
xi, xj

)
can be

expressed as

φp
(
xi, xj

)
= µ

(
xi, xj

) K

∑
m=1

w(m)k(m)f
(
xi, xj

)
, (5)

where µ
(
xi, xj

)
=

{
0, xi = xj
1, xi 6= xj

, w(m) are the linear combination weights, and k(m) is a

Gaussian kernel.

k(m)
(
fi, fj

)
= exp

(
−1

2
(
fi − fj

)TΛ(m)
(
fi − fj

))
, (6)

where the vectors fi and fj are feature vectors for pixels i and j, respectively, which can be
chosen arbitrarily, and Λ(m) is the positive-definite precision matrix.

For image segmentation, traditional CRF uses two Gaussian kernels: The smoothness
kernel and the appearance kernel. The smoothness kernel is defined in terms of positions
pi and pj, which can remove small isolated regions. The appearance kernel kα utilizes color
vectors Ci and Cj as features, which encourages pixels with a similar color and position to
have the same label. In addition to the smoothness kernel and the appearance kernel, we
use the direction vectors Di and Dj on the direction map Md as the third Gaussian kernel—
the direction kernel—which encourages pixels with a similar direction and position to be
in the same class.

The entire pairwise potential can be defined as
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k
(
fi, fj

)
= w(1) exp

(
−
∣∣pi − pj

∣∣2
2θ2

α

)
+ w(2) exp

(
−
∣∣pi − pj

∣∣2
2θ2

β1

−
∣∣Ci − Cj

∣∣2
2θ2

γ1

)
+ w(3) exp

(
−
∣∣pi − pj

∣∣2
2θ2

β2

−
∣∣Di −Dj

∣∣2
2θ2

γ2

)
, (7)

where w(1), w(2), and w(3), as well as θα, θβ1 , θγ1 , θβ2, and θγ2 , are the learnable parameters.
The size of the Gaussian kernel is controlled by θα, θβ1 , θγ1 , θβ2, and θγ2 , respectively.

Since the graph model in the image segmentation task has millions of nodes and edges,
we used the mean field to approximate [38].

3. Experimental Results and Discussion
3.1. The Dataset and Preprocessing

The Massachusetts roads dataset [17] was selected for the validation experiments. The
Massachusetts roads dataset contains 1171 images in total, including 1108 training images,
14 images for validation, and 49 images for the test. Each image is 1500 × 1500 pixels,
with the ground sampling distance (GSD) of 1.2 m/pixel. All the images were captured
over Massachusetts, US, containing urban, suburban, and rural regions, with an area of
2.25 km2 Several samples are shown in Figure 3.

Figure 3. Examples of the Massachusetts roads dataset.: (a) town area, (b) rural area, (c) river area.

We conducted the experiments by using the PyTorch framework, with a GPU of
NVIDIA GeForce GTX 1080Ti (11G), which was employed to accelerate the process. Limited
to the capacity of the GPU memory, each original image was randomly cropped to 512× 512
To increase the capacity and generalization of training data, we augmented the training
data by rotating (90, 180, and 270 degrees) and flipping (horizontal and vertical) them.

Before training the network, we normalized the images to [−0.5,0.5] by 0-1 normaliza-
tion and average value subtraction, in order to improve the stability of gradient calculation
during the network training.

All of the networks in the experiments use the Adam algorithm to update the param-
eters. The parameters in the Adam algorithm are recommended in ref. [46], and include
the learning rate α = 10−3, the attenuation coefficient β1 = 0.9 and β2 = 0.999, and the
constant ε = 10−8. Additionally, the batch size is set to 6.

3.2. Evaluation Method

As road extraction can be viewed as a problem of semantic segmentation, we used the
recall, precision, and F1-score to evaluate the extraction results. The precision, which is also
called the correctness in remote sensing literature, is the ratio of predicted road pixels that
are true roads. The recall, which is also called the completeness, is the ratio of true road
pixels that are correctly detected. F1 is a comprehensive metric, which can be calculated by
precision and recall.
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True-Positive (TP) denotes the number of road pixels that are correctly identified.
False-Positive (FP) denotes the number of non-road pixels that are detected as road pixels.
False-Negative (FN) denotes the number of road pixels that are detected as non-roads. The
metrics are calculated as follows:

recall =
TP

TP + FN
, (8)

precison =
TP

TP + FP
, (9)

F1 =
2TP

2TP + FN + FP
. (10)

3.3. Experimental Results and Analysis

In comparative experiments, we compared the proposed method with other road
extraction approaches. The quantitative comparison of different approaches for the test
dataset is listed in Table 2.

Table 2. Results of different methods for the Massachusetts roads dataset.

Method Precision Recall F1-Score

Wegner et al. [8] 40.5% 33.2% 35.9%
Wegner et al. [47] 47.1% 67.9% 55.6%

RSRCNN [27] 60.6% 72.9% 66.2%
FCN-4s [28] 71.0% 66.0% 68.4%

DeepLab v3+ [25] 74.9% 73.3% 74.0%
JointNet [30] 85.4% 71.9% 78.1%

Pixel-wiseNet [34] 77.4% 80.5% 78.9%
CasNet [29] 77.7% 80.9% 79.3%

ResUNet [31] 77.8% 81.1% 79.5%
DiResNet [45] 80.4% 79.4% 79.7%
Our method 87.1% 82.2% 84.6%

In Table 2, approaches 8 and 47 are traditional approaches, which do not use the
framework of convolutional networks, and their F1-scores are lower. Among deep learning-
based methods, the metrics show that the encoder-decoder architectures, especially the
UNet-like networks, achieve positive performances, which proves that UNet-like networks
are appropriate for road extraction from remote sensing images. Compared with the
literature works, our proposed method performs the best.

An ablation study was performed to test the modules. Table 3 provides the quantitative
comparison of the ablation study on the Massachusetts dataset. The Baseline network is the
modified U-net introduced in Figure 2. Baseline-ICN integrates the ICN module at the top
of the modified U-net. Baseline-CRF utilizes conditional random fields in post-processing,
while baseline-DCRF utilizes directional conditional random fields in post-processing.
Baseline-ICN-DCRF integrates the ICN module and uses DCRF as a post-processing step.

Table 3. Results of the ablation study on the Massachusetts roads dataset.

Method Precision Recall F1-Score

Baseline 80.4% 78.6% 79.4%
Baseline-ICN 84.9% 81.7% 83.3%
Baseline-CRF 81.8% 77.6% 79.6%

Baseline-DCRF 82.2% 80.3% 81.3%
Baseline-ICN-DCRF 87.1% 82.2% 84.6%

As a widely used encoder-decoder network, U-net displays a good performance in
road extraction research. Therefore, the baseline network used in this study also obtains
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good road extraction results, and its precision, recall, and F1-score are 80.4%, 78.6%, and
79.4%, respectively. Compared to the baseline network, the precision, recall, and F1-score
of Baseline-ICN are approximately improved by 4.5%, 3.1%, and 3.9%, respectively, which
proves that the strategy of integrating the ICN module into the encoder-decoder network
is effective.

Although CRF is a well-known post-processing method for semantic segmentation, it
does not work well in the road extraction task. Compared with the results of the baseline
network, the precision of Baseline-CRF is 1.4% higher, but its recall is reduced by 1.0%. This
is because the CRF is more conducive to processing massive targets, rather than slender
targets. The idea of using color as an energy function means that the regions with similar
colors are combined as one category, which is not conducive to the extraction of road edges
and occluded areas. The proposed DCRF not only considers the influence of color and
location for pixel classification, but also considers the direction of the road, which can
effectively improve the segmentation accuracy. The experimental results show that the
recall of Baseline-DCRF is greatly improved, and the F1-score is also increased by 1.9%.

The precision, recall rate, and F1-score of Baseline-ICN-DCRF are 87.1%, 82.2%, and
84.6%, respectively. The proposed method achieves significant advantages over the baseline
network, with an advantage of 5.2% for the F1-score, 3.6% for the recall, and 6.7% for
the precision.

To visually assess the effect of ICN and DCRF, in Figure 4, we compare the extraction
results with and without the use of these two models. The use of inner convolution enables
the network to better embed the linear features, so as to improve the extraction of roads.
DCRF can reduce false alarms and interruptions by utilizing the relationship between
adjacent pixels.

In Figure 4a–c, the roads that need to be extracted are roads with complex backgrounds
and high curvature. In this case, the road extracted by the baseline U-net is ambiguous, and
the results of the ICN-DCRF are more complete and smoother. Figure 4d,e presents some
examples of rivers, whose features are similar to those of the road. The baseline network
cannot distinguish roads and rivers accurately, so the segmentation result may classify
rivers as road targets, while the ICN-DCRF recognizes the river area correctly. Figure 4f,g
show two samples in which the road network is partly occluded by trees. The results show
that the ICN module enhances the connectivity of the road network, and DCRF can further
remove noise points. In summary, compared with the baseline network, the proposed
ICN-DCRF obtains more complete results with fewer false alarms. Indeed, ICN-DCRF
significantly improves the precision of the results and reduces the broken segments by
making better use of the linear features.

Figure 5 shows the extraction results when the road is covered by trees and shadows.
As shown in Figure 5, the roads are partly covered by trees, and our proposed method can
successfully extract the occluded road.

Figure 6 Shows more details about false positive and false negative predictions by
the model. In Figure 6, typical false positive areas are caused by a road boundary or
narrow roads. As the annotation of the road width is not completely accurate, it is hard
to determine the road boundary accurately. Typical false negative pixels occur in areas
where roads are covered by trees and shadows or interior roads in residences. Generally,
our proposed method has far fewer red and green pixels than the baseline methods, as
ICN integration can obtain road-specific contextual information to reduce FNs and achieve
more coherent results, and the application of DCRF can remove false positive predictions
to improve the image quality.
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Figure 4. Visual comparisons of the ablation study using test samples from the Massachusetts roads dataset. Each row in
(a–g) contains an RGB image, three result maps obtained by different models, and a ground truth map of a sample area.
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Figure 5. Visualization results of the road area occluded by trees: Each row in (a–e) contains an RGB
image, a segmentation result map of the proposed method, and a ground truth map of a sample area.
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Figure 6. Error analysis of the proposed model. White pixels denote the road area that is detected
correctly (TP), red pixels denote the background area which is detected as roads (FP), and green
pixels denote the road area which is detected as background (FN). For each row in (a–e), it contains
an optic image, and two result maps of a sample region.
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However, for some short blurred roads and long occlusions, our proposed method
detects these areas well. Another problem is that DCRF may remove several correct
predictions which have low confidence levels.

When the road is occluded by trees, in a normal FCN, the occluded road pixels receive
information from their neighboring pixels. However, the neighboring pixels all belong to
trees, so these pixels may be classified as non-road areas. Comparatively, in ICN, contextual
information propagates slice-by-slice, so the useful contextual information accumulates.
The occluded road pixel can gradually receive information from distant road pixels, and it
is more likely to be detected as the road pixel. The DCRF adds the direction of the road
as an energy term, which favors the assignment of the same label to pixels with similar
directions. Therefore, the ICN and DCRF are particularly suitable for linear structures.
Further work can be carried out to examine the possibility of applying our proposed model
to detect other objects with long continuous shape structures.

4. Conclusions

This study presents a method for road extraction from remote sensing images based
on an inner convolution integrated encoder-decoder network and directional conditional
random fields. Firstly, we proposed an inner convolutional network and applied it to the top
hidden layer of the encoder-decoder network. The inner convolutional network enhances
the ability of the network to embed the linear features and to learn the specific semantic
information of roads, thus improving the accuracy and connectivity of the extracted road
network. Secondly, on the basis of the fully connected CRF, we designed a directional
CRF as a post-processing approach to improve the quality of the extracted results. The
experiments on the Massachusetts road dataset showed that the proposed method can
effectively improve the quality of road extraction, especially in the face of occlusion. The
proposed method achieved an F1-score of 84.6%, which is about 5% higher than the F1-
score of “state-of-the-art” competitors. Moreover, our approach is robust for extracting
roads under occlusions.

As the proposed approach is a pixel-based segmentation method, we cannot obtain
the topology of the road directly. In the future, we will investigate constructing a vector
map of roads by predicting the nodes and direction and length of roads, which is more
useful in GIS applications.
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DCRF Directional Conditional Random Fields
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