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Abstract: Multispectral polarimetric light field imagery (MSPLFI) contains significant information
about a transparent object’s distribution over spectra, the inherent properties of its surface and its
directional movement, as well as intensity, which all together can distinguish its specular reflection.
Due to multispectral polarimetric signatures being limited to an object’s properties, specular pixel
detection of a transparent object is a difficult task because the object lacks its own texture. In this
work, we propose a two-fold approach for determining the specular reflection detection (SRD) and
the specular reflection inpainting (SRI) in a transparent object. Firstly, we capture and decode 18
different transparent objects with specularity signatures obtained using a light field (LF) camera.
In addition to our image acquisition system, we place different multispectral filters from visible
bands and polarimetric filters at different orientations to capture images from multisensory cues
containing MSPLFI features. Then, we propose a change detection algorithm for detecting specular
reflected pixels from different spectra. A Mahalanobis distance is calculated based on the mean and
the covariance of both polarized and unpolarized images of an object in this connection. Secondly,
an inpainting algorithm that captures pixel movements among sub-aperture images of the LF is
proposed. In this regard, a distance matrix for all the four connected neighboring pixels is computed
from the common pixel intensities of each color channel of both the polarized and the unpolarized
images. The most correlated pixel pattern is selected for the task of inpainting for each sub-aperture
image. This process is repeated for all the sub-aperture images to calculate the final SRI task. The
experimental results demonstrate that the proposed two-fold approach significantly improves the
accuracy of detection and the quality of inpainting. Furthermore, the proposed approach also
improves the SRD metrics (with mean F1-score, G-mean, and accuracy as 0.643, 0.656, and 0.981,
respectively) and SRI metrics (with mean structural similarity index (SSIM), peak signal-to-noise
ratio (PSNR), mean squared error (IMMSE), and mean absolute deviation (MAD) as 0.966, 0.735,
0.073, and 0.226, respectively) for all the sub-apertures of the 18 transparent objects in MSPLFI dataset
as compared with those obtained from the methods in the literature considered in this paper. Future
work will exploit the integration of machine learning for better SRD accuracy and SRI quality.

Keywords: specular reflection detection; specular reflection inpainting; transparent object; multi-
spectral polarimetric imagery; light field

1. Introduction

The emerging significance of specular reflection detection and inpainting (SRDI) has
been actively pursued in the computer vision community over the last few decades. The
presence of specular reflection creates potential difficulties for tasks such as detection,
segmentation, and matching, as it captures significant information about an object’s distri-
bution, shape, texture, and roughness features that cause discontinuity in its omnipresent,
object-determined diffuse part [1]. Once specular reflection is detected, it may be used to
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synthesize a scene [2] or to estimate lighting direction and surface roughness [3,4]. While
passing through the surface of a transparent object, some incoming lights are immediately
reflected back into the space and are called surface or specular reflections, and others
penetrate the surface and then reflect back into the air body or diffuse reflections [5]. Due
to a transparent object lacking its own texture, it is always a difficult and challenging task
to detect its specular reflections and inpainting [6]. The potential application of specular re-
flection detection and inpainting in transparent objects through multispectral polarimetric
light field imagery (MSPLFI) includes 3D shape reconstruction, detection and segmentation,
surface normal generation, and defect analysis.

By integrating advanced communication tools and techniques, multispectral polari-
metric imagery (MSPI) can extract an object’s meaningful information, such as surface
features, shapes, and roughness, in optical sensing images [7]. Potential applications of it
could investigate acquiring an imaging system that performs image denoising [8], image
dehazing [9], and semantic segmentation [10]. Multispectral imaging is a mode commonly
reported in the literature for enhancing color reproduction [11], illuminant estimation [12],
vegetation phenology [13,14], shadow detection [15], and background segmentation [16,17].
Additionally, although a multispectral cue is capable of generating information through
penetrating deeper into an object, it is sometimes infeasible for extracting the object’s
inherent features. Together with a polarimetric cue, where specific photoreceptors are used
for polarized light vision, MSPI is applied in applications such as specular and diffuse
separation [18], material classification [19], shape estimation [20], target detection [21–23],
anomaly detection [24], man-made object separation [25], and camouflaged object separa-
tion [26]. Recently, a light field (LF) cue has gained popularity in the graphics community
for detecting and segmenting some complex tasks, such as transparent object recogni-
tion [27], classification [28], and segmentation [29] from a background, by analyzing the
distortion features of a single shot captured by an LF camera. Each pixel in an LF image
is capable of having six degrees of freedom to extract the hidden information unable to
be captured by MSPI cues. The aim of the proposed research is to use the multisensory
cues of MSPLFI, which can effectively detect the specular reflection and the corresponding
suppression in a transparent object.

Firstly, it is necessary to separate specular reflection from diffuse reflection. Each pixel
in MSPLFI can be defined as the sum of specular and diffuse reflections following the
dichromatic reflection model [30] as

L(λ, ρ, L, θi, θr, g) = LSpec(λ, ρ, L, θi, θr, g) + LDi f f (λ, ρ, L, θi, θr, g), (1)

where Ls(λ, ρ, L, θi, θr, g) is the specular reflection, Ls(λ, ρ, L, θi, θr, g) the diffuse
reflection, λ the wavelength in the multispectral visible band (400 nm–700 nm), ρ the
orientation of the polarimetric filter (rotating at 0◦, 45◦, 90◦, 135◦), L the LF direction in
which the light rays are traveling in space, and θi, θr, g the geometric parameters indicating
incidence, viewing, and phase angles, respectively.

The individual components in Equation (1) can be further decomposed into two
parts, composition and magnitude, as in Equation (2). Composition is a relative spectral
power distribution (cSpec (surface reflection) or cDi f f (body reflection)) that depends on only
wavelength, polarization, and LF but is independent of geometry. Magnitude is a geometric
scale factor (ωSpec or ωDi f f ) which depends on only geometry and is independent of the
wavelength, polarization, and LF.

L(λ, ρ, L, θi, θr, g) = ωSpec(θi, θr, g)cSpec(λ, ρ, L) + ωDi f f (θi, θr, g)cDi f f (λ, ρ, L), (2)

As the appearance of a transparent object is highly biased by its background’s texture
and color, it is a challenging task to detect, segment, and suppress the specular reflections
on it. Through predicting multispectral changes per sub-aperture image in the LF, the
proposed research detects specular reflected pixels. In terms of inpainting, as it can be
predicted that a pixel in a LF image has six degrees of freedom and can appear within
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any surrounding four-connected pixels in a sub-aperture image, a pixel pattern with
maximum acceptability is selected to suppress an SRD pixel. Briefly, the proposed system
firstly describes the significance of the joint utilization of multisensory cues, then captures
an MSPLFI object dataset, proposes a two-fold algorithm for detecting and suppressing
specular reflections, evaluates both detection accuracy and suppression quality in terms
of statistical distinct metrics and, finally, compares performance with those of some other
methods in the existing literature.

The main contribution of this research is two-fold. Firstly, an SRD algorithm that
predicts changes in MSPLFI by calculating mean (µ) and covariance (Σ) of each sub-aperture
index of the LF to predict specular reflections through applying the Mahalanobis distance is
proposed. Then, the predicted changes in unpolarized and polarized images are averaged,
and a threshold is applied to obtain a final SRD pixel mask (SRD-PM). However, due to the
absence of publicly available multisensory 6D datasets to evaluate the performance of the
proposed research, we firstly built an image acquisition system to capture an MSPLFI object
dataset. Secondly, an SRI algorithm which extends the final SRD-PM in an immediately
neighboring pixel using the RGB channels of both polarized and unpolarized sub-apertures
in the LF is proposed. For a pixel in the SRD-PM, all the four-connected neighboring pixel
patterns per sub-apertures of the LF, excluding those already in the SRD-PM, are carefully
selected and a distance matrix is computed based on their intensities. Finally, the pixel
pattern with the minimum distance is chosen for the task of inpainting. The performances
of these approaches are evaluated and compared using a private MSPLFI object dataset to
demonstrate the significance of this research.

This paper is organized as follows. In Section 2, the background to SRD and SRI is
fully described. In Section 3, the details of the private MSPLFI dataset, including image
acquisition setup, multisensory cues, and pixels’ degrees of freedom, are analyzed. In Sec-
tion 4, a complete two-fold SRDI framework and corresponding algorithms are presented
with proper mathematical and logical explanations. In Section 5, the performances of the
proposed SRD and SRI algorithms are evaluated by distinct statistical metrics. Addition-
ally, detection accuracy and suppression quality of the proposed SRDI are visualized and
compared with those of existing approaches. Finally, concluding remarks and suggested
future directions are provided in Section 6.

2. Related Works

SRD techniques usually assume that the intensities of specular pixels vary from those
of diffuse ones in multiple spectra as

P(x, y, c, λ, ρ| i) =

{
1 i f d

(
I(x, y, c, λ, ρ| i), S(x, y, c, λ, ρ| i)

)
> τG

0 otherwise
, (3)

where τG is a global threshold, P(x, y, c, λ, ρ| i) the final SRD-PM at pixel (x, y) of a fused
spectrum (λ) at a polarimetric orientation (ρ) in sub-aperture index i of the LF (L), d the
distance between the pixel of the predicted specular pixel (S) and that of the fused image
in spectrum λ(I) at orientation ρ. In this section, a brief review of the literature related to
SRDI techniques for multisensory cues of MSPLFI is provided.

2.1. Specular Reflection Detection (SRD)

Recent works on SRD are categorized in two major ways, single and multiple image-
based, where the latter depends on specific conditions such as lighting direction and
viewpoint. Based on a single-textured color image, Tan [31] iteratively shifts the maximum
chromaticity of each pixel between two neighboring ones. An iteration stops when the
chromaticity difference satisfies a certain threshold value and generates a specular-free
(SF) image. The final SF image ensures a similar geometrical distribution even though it
contains only diffuse reflections. However, for a large image with more specularity, this
techique may lead to erroneous diffuse reflections with excessive and inaccurate removal
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as well as higher computational complexity. Subtracting the minimum color channel value
from each channel, Yoon [32] obtains an SF two-band image. Capturing images from a
dynamic light source, Sato [33] integrates the dichromatic reflection model for separation
by analyzing color signatures in many images captured by a moving light source. A series
of linear basis functions are introduced by Lin [34], and the lighting direction is changed to
decompose the reflection components.

The modified SF (MSF) technique introduced by Shen [35] ensures robustness to the
influence of noise on chromaticity. It subtracts the minimum RGB value from an input
image and works in an iterative manner by selecting a predefiend offset value using the
least-squares criterion. Nguyen [36] proposes an MSF method that integrates tensor voting
to obtain the dominant color and distribution of diffuse reflections in a region. To improve
the separation performance, Yamamoto [37] applies a high-emphasis filter on individual
reflection components to separate them [35]. However, all these methods suffer from
artifacts and inaccuracy if the brightness of the input image is high.

Recent literature on SRD reveals that the specular reflection of an object’s area has
a stronger polarization signature than its diffuse reflection. Placing a polarization filter
in front of an imaging sensor, Nayar [18] proposes separating the specular reflection
components from an object’s surface with heavy textures. Considering the textures and
the surface colors of neighboring pixels, many authors [31,38,39] could separate specular
reflections through neighboring pixel patterns. Applying a bilateral filter with coefficients,
Yang [39] proposes an extension of Tan’s [31] method in which the diffuse chromaticity is
maximized. Although it provides faster separation and better accuracy, it still suffers from
some problems for separating specular reflections in a transparent object. Akashi [40] also
employs the dichromatic reflection model to separate specular reflections in single images
based on sparse non-negative matrix factorization (NMF) composed of only non-negative
values regulated by parameters such as sparse regularization, pixel color, and convergence.
Although this method demonstrates better separation accuracy than those of Tan [31]
and Yang [39], inaccurate parameter settings may lead to artifacts in the separation of
specular reflections.

An SUV color space for separating specular and diffuse reflections from S and UV
channels, respectively, of a single image or image sequence in an iterative manner is
proposed by Mallick [38]. However, discontinuities in the surface color may lead to
erroneous detection of secular reflections. In [41], Arnold applies image segmentation
based on non-linear filtering and thresholding to separate specular and diffuse reflections in
medical imaging. Saint [42] proposes increasing the gap between two reflection components
and then applying a non-linear filter to isolate spike components in an image histogram.
In [43], Meslouhi integrates the dichromatic reflection model to detect specular reflections.
In our research, we use multisensory cues to detect specular reflections by predicting
changes among multiband data.

2.2. Specular Reflection Inpainting (SRI)

SRI refers to restoring an SRD pixel pattern with semantically and visually believable
content through analyzing neighboring pixel patterns. Recent works in the literature on SRI
depend mainly on patch-based similarity, with similar patch- or diffusion-based inpainting
proposed to fill an SRD pixel pattern by spreading color intensities from its background to
its holes [8,9,44,45]. Traditional inpainting approaches apply an interpolation technique
on the surrounding pixels to restore an SRD pixel pattern [46,47]. Based on temporal
information in an endoscopic video image sequence, Vogt [48] proposes a well-inpainting
method. Cao [49] develops an inpainting technique for averaging the pixels in a sliding
rectangular window and later replacing it with an SRD pixel. Although this method is
simple and relatively fast to compute, it lacks robustness due to varying window sizes
based on the SRD’s connected pixels. In [50], an average intensity of a contour is calculated
to replace the SRD pixels by author Oh but may lead to strong gradients.
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In [41], Arnold proposes a two-level inpainting technique which replaces SRD pix-
els with the centroid color within a certain distance and applies a Gaussian kernel for
smoothing using a binary weight mask. Although the inpainting quality is better than
those of other methods, it may produce some artifacts and blur for large spectral areas
by integrating a partial differential equation with gradient thresholding. In [51], Yang
proposes a convex model for suppressing the reflection from a single input image. In [52],
Criminisi describes an image inpainting method in which an affected region is filled by
some exemplars. As these techniques may produce artifacts and fail to suppress large
reflection areas, our proposed method reconstructs the specular reflected pixels through
analyzing their four-connected neighbors in the sub-apertures of the 4D-LF.

3. Analysis of MSPLFI Transparent Object Dataset

Regarding SRD and SRI, the proposed research uses multisensory cues through cap-
turing different objects in MSPLFI, each of which is defined as a function of 6D as

L6D = L(u, v, s, t, λ, ρ), (4)

where (u, v) is the image plane referring to an image’s spatial dimensions, (s, t) the
viewpoint plane referring to the direction in which the light rays are traveling in space, λ
the wavelength in the multispectral visible band (400 nm–700 nm), and ρ the orientation of
the polarimetric filter (rotating at 0◦, 45◦, 90◦, 135◦).

In this section, acquisition of the MSPLFI object dataset and then its use for detecting
and suppressing specular reflections in a transparent object are described.

3.1. Experimental Setup

As there is no dataset available for the evaluation of SRDI in a transparent object that
integrates multiple cues of MSPLFI, Figure 1 illustrates our setup for image acquisition to
generate a problem-specific object dataset in a constrained environment with a plenoptic
camera, Lytro Illum, used to capture all the LF images. We place different band filters in
front of the camera to capture multispectral images and a linear polarization filter rotating
at 0◦, 45◦, 90◦, and 135◦ to manually obtain different polarimetric images with two light
sources used to obtain accurate spectral reflections. The lighting is similar for different
objects, and we retain the same background for them, which completely matches most of
the objects in most of the area with the purpose of creating a complex environment from
which to segment a whole object. One of the light sources is located beside the camera
lens at 45◦ angle and another is located on the top object’s location. The energy levels of
multiple spectra are not similar; however, individual cues contain a useable amount of
information when capturing MSPLFI.
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3.2. MSPLFI Transparent Object Dataset

In Figure 2, the median specular reflections of the sub-aperture images of 18 transpar-
ent objects (O#1–O#18) captured through MSPLFI are presented with their corresponding
labels. To evaluate the performance of the image inpainting technique, some balls are
placed inside object O#1.
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We consider five different shots for each spectrum of each object. Of them, one
corresponds to the unpolarized version of the image captured without using a polarization
filter and the other four to four different polarization filter orientations (0◦, 45◦, 90◦, and
135◦) using a linear polarizer. We consider multiple spectra in the visible range (400 nm–
700 nm) to obtain images in the multispectral environment. Figure 3 shows the center
sub-aperture images of object O#8 in multiple color bands of violet, blue, green, yellow,
orange, red, pink, and RGB in polarized and unpolarized versions. As can be seen, due
to the nature of polarization, on average, 50% of the photons get blocked while passing
through a lossless polarizer at different orientations.

The LF images are 4D data obtained from different viewpoints, with each image
presented as a sub-aperture plane (s, t) with its tangent direction (u, v). In our experiments,
we consider 11 × 11 sub-aperture images, including their center viewpoints, with their
spatial representations denoted by (u, v). Figure 4 shows the 4D-LF images of object O#8
in the violet color band, with the center viewpoint image at the cross-section of the S and
the T lines denoted as the (6,6) position in the hyperplane (s, t, u, v).
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3.3. Degrees of Freedom

Figure 5 presents an example of object O#1’s scene flow among its sub-aperture images
and their relative directions. In Figure 5a, the arrow indicates that all the viewpoint images’
motion flows to the center viewpoint image and, in Figure 5b, each pixel has six degrees
of freedom in the LF images, with the region of interest (ROI) regarding the scene flow
indicated by a yellow rectangle. In Figure 5c, the pixel displacements are shown with their
corresponding intensity flow plots, which confirm that the intensity of the ROI varies in
different viewpoints.
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4. Proposed Two-fold SRDI Framework

In this section, the proposed two-fold SRDI framework based on the distinctive
features of MSPLFI cues is discussed and presented in Figure 6. Firstly, a 6D dataset of
different transparent objects is captured, and then Reed-Xiaoli (RX) detector [53] is applied
to obtain the actual specular reflection of an object through predicting changes among
multiband. Secondly, a pixel neighborhood-based inpainting method for suppressing this
reflection is proposed.
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4.1. Specular Reflection Detection (SRD)

The proposed system detects specular reflected pixels in transparent objects through
predictions of multiband changes. Firstly, a raw lenslet (.LFR) image is decoded into a 4D
(s, t, u, v) LF one, where (s, t) denotes the image’s position in the hyperplane and (u, v)
its spatial region. The MSPLF imagery was captured by the Lytro Illum camera, which can
capture 15 × 15 sub-apertures per shot. However, due to the main lens of the camera being
circular, vignetting occurs at its edge. Hence, only the inner 11 × 11 sub-apertures are
retained. It could be argued that few more sub-apertures at the top, the bottom, the left, and
the right could be as good—if not better—than the corner sub-apertures kept in the 11 × 11
array, but excluding them keeps them in a square array for simplicity. As our main purpose
is to detect and suppress specularity in a transparent object, we maximize an object’s area
with a minimum surrounding background. In order to compute the specular reflections
in unpolarized images, we convert all the multiband unpolarized 4D LF ones into their
corresponding grayscale ones. For each sub-aperture index, we store the individual band
images in a column vector, with their mean (µ) and covariance (Σ) calculated for the
Mahalanobis distance as √

(x− µ)T Σ−1 (x− µ), (5)

The 2D distance matrix represents the changes among the multiband images per sub-
aperture index, which is also observed as specular reflection. We also predict the maximum
specularity in unpolarized 4D images. In order to draw specular reflections in polarized
images, we firstly calculate the Stokes parameters (S0−S2) [54], which describe the linear
polarization characteristics using a three-element vector (S), as shown in Equation (6),
where S0 represents the total intensity of light, S1 the difference between the horizontal
and vertical polarizations, and S2 the difference between the linear +45◦ and –45◦ ones.
The I00 , I450 , I900 , and I1350 are the different input images for the system at polarized angles
of 00, 450, 900, and 1350, respectively.

S =

 S0
S1
S2

 =

 I00 + I900

I00 − I900

I450 − I1350

, (6)

The degree of linear polarization (DoLP) is a measure of the proportion of the linear
polarized light relative to the light’s total intensity, and the angle of linear polarization
(AoLP) is the orientation of the major axis of the polarization ellipse, which represents
the polarizing angle where the intensity should be the strongest. They are derived from
the Stokes vector according to Equations (7) and (8), respectively. To calculate the lin-
ear polarized image, firstly, the polarimetric components are concatenated, as shown in
Equation (9). Then, a concatenated image is generated in the hue, saturation, value (HSV)
color space and converted to the RGB color space, as in Equation (10), where LP stands for
linear polarization.

DoLP =
Ipol

Itot
=

√
S2

1 + S2
2

S0
, (7)

AoLP =
1
2

tan−1
(

S2

S1

)
, (8)

hsv = ((AoLP + π/2)/π) (DoLP× 2) S0, (9)

LP = RGB (hsv), (10)

For each sub-aperture index of DoLP and LP, we store individual band images in
a separate column vector. Then, a similar procedure (unpolarized specular detection)
is followed to calculate the maximum specularity in the LP and the DoLP 4D imagery.
The average of three specularities (RX − NP, RX − LP, RX − DoLP) shows the overall
predicted specularity in an object of MSPLFI, with a threshold (Otsu’s method and in the
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range (0–1)) applied to obtain the SRD pixels in binary form. The complete process for
detecting specular pixels in a transparent object is described in Algorithm 1.

Algorithm 1. SRD in Transparent Object

Input: MSPLFI Object Dataset
Output: SRD Pixel in Binary
1: for all lenslet (.LFR) image do
2: Decode raw lenslet (.LFR) multiband polarized and unpolarized images into 4D (s, t, u, v) LF images
3: Remove and clip unwanted images and pixels
4: end for
5: for all sub-aperture image do
6: for all multiband do
7: Calculate DoLP, LP as in Equations (7)–(10)
8: if type (L(u, v, s, t, λ, ρ) = “unpolarized” then
9: Convert multiband image into corresponding grayscale

Store multiband grayscale image as column vector
10: else if type (L(u, v, s, t, λ, ρ) = “polarized” then
11: Store multiband image as column vector
12: end if
13: end for
14: Calculate mean (µ) and covariance (Σ) per sub-aperture index of LF
15: Calculate Mahalanobis distance as in Equation (5)
16: Reshape distance vector as 2D image which represents SRD per sub-aperture image
17: end for
18: Calculate maximum changes/specularities observed in all sub-aperture indexes for object type “RX−NP”
19: repeat steps 5–18 for object type = “RX−DoLP” and object type= “RX− LP”
20: Calculate mean (µ) specularity of object type: RX−NP, RX−DoLP and RX− LP
21: Apply threshold (τ) to binarize SRD pixels

4.2. Specular Reflection Inpainting (SRI)

In this research, the SRD pixels are suppressed through analyzing the distances among
four connected neighboring pixels. Firstly, four different regions in an image are identified,
as shown in Figure 7. Algorithm 1 predicts region A as an SRD pixel but, for better
inpainting quality, both regions A and B are considered specular reflected pixels. It is to
be noted that region B contains the pixel patterns (color channels) that are the immediate
neighbors of region A. Then, all the connected regions are identified and labeled for the
task of inpainting. The complete process for inpainting the detected specular pixels in
transparent object is described in Algorithm 2.

Algorithm 2. SRI in Transparent Object

Input: MSPLFI Object Dataset, SRD-PM
Output: SRD Pixel Inpainting in RGB
1: Strengthen SRD-PM (output from Algorithm 1) by labeling all neighboring pixels as SRD ones
2: Compute connected components and label them
3: Calculate baseline image per sub-aperture index by taking minimum pixel intensities of both polarized and
unpolarized images

in RGB channels
4: for all common sub-aperture images do
5: for all labels do
6: for all pixel patterns (P(x,y,c | i)) in SRD-PM do
7: if labels (SRD-PMs) exist then
8: Compute distances (d(j,k | x, y )) among 4-connected neighbors not in SRD-PM in each channel, as in

Equation (11), and store them in 2D-matrix (dM(nrow,ncol)), as in Equation (12)
9: Winning pixel pattern is index (IDX) of pixel pattern corresponding to column-wise minimum sum of

dM(nrow,ncol), as in Equations (13) and (14) for inpainting of specular reflections
10: end if
11: end for
12: end for
13: end for
14: repeat steps 4 to 13 to calculate maximum specular reflection in suppressed image of transparent object from already

suppressed sub-apertures
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A baseline image per sub-aperture index is computed by taking the minimum pixel
intensities in both polarized and unpolarized RGB channels. The aim is to suppress
the specular reflected areas in the image, with the distance between two pixel-patterns
calculated by

d(j,k | x,y) =

√
∑

c=R,G,B

(
P(x, y, c, j| i) − P(x, y, c, k| i)

)2
, (11)

where P(x, y, c, j | i) and P(x, y, c, k | i) are the two four-connected neighbors of the pixel pattern
(P(x, y, c | i)) in sub-aperture index i and d(j,k | x,y) the distance between the two pixel patterns
corresponding to P(x, y, c | i) in sub-aperture index i. A 2D matrix [55] of the distances among
the pixel patterns is calculated by Equation (12). The pattern corresponding to the lowest
column-wise sum of the distances is selected as the winning one (P(x, y, c, IDX| i)) for the
task of SRI in Equations (13) and (14).

dM(nrow,ncol) =


d(j−4,k−4 | x,y) . . . d(j+4,k−4 | x,y)

... d(j,k | x,y)
...

d(j−4,k+4 | x,y) . . . d(j+4,k+4 | x,y)

 (12)

IDX =
argmin

k ∑ dM(nrow, k) (13)

P(x, y, c| i) = P(x, y, c, IDX| i) (14)

5. Experimental Results

In this section, performance evaluations and comparisons of the proposed two-fold
SRDI and other approaches using different metrics for specular pixel detection and inpaint-
ing are discussed. Additionally, analyses of their computational times are conducted.

5.1. Selection of Performance Evaluation Metric

Both SRD and SRI are evaluated by commonly used statistical evaluation metrics for
quantifying detection accuracy and inpainting quality.

5.1.1. Selection of SRD Metric

The SRD method is evaluated at the pixel level of a binarized scene in which the
pixels related to the specular and the diffuse reflections are white and black, respectively.
Its performance can be divided into four pixel-wise classification results: true positive
(Tp), which means a correctly detected diffuse pixel; false positive (Fp), that is, a specular
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reflected pixel incorrectly detected as a diffuse reflected one; true negative (Tn), which
indicates a correctly detected pixel with specularity; and false negative (Fn), that is, a diffuse
reflected pixel incorrectly detected as a specular reflected one. The binary classification
metrics used are precision, recall or sensitivity, F1-score, specificity, geometric-mean (G-
mean), and accuracy. Precision is the number of diffuse reflected pixels detected that
are actually diffuse reflected ones, while recall is the number of diffuse reflected pixels
detected from the actual diffuse reflected ones (recall and sensitivity are similar). The
F1-score (a boundary F1 measure) is the harmonic mean of precision and recall values,
which measures how closely the predicted boundary of an object matches its ground-truth
and is an overall indicator of the performance of binary segmentation. Specificity (a Tn
fraction) is the proportion of actual negatives predicted as negatives, sensitivity (a Tp
fraction) the proportion of actual positives predicted as positives, G-mean the root of the
product of specificity and sensitivity, and accuracy the proportion of true results obtained,
either Tn or Tp. The mathematical evaluation measures of the aforementioned metrics are
shown in Equations (15) to (20) [17,56].

Precision (PR) =
Tp

Tp + Fp
, (15)

Recall (RC) or Sensitivity (SN) =
Tp

Tp + Fn
, (16)

F1− Score (F1S) = 2× Precision× Recall
Precision + Recall

, (17)

Speci f icity (SP) =
Tn

Tn + Fp
, (18)

Geometric−Mean (GM) =
√

Speci f icity× Sensitivity, (19)

Accuracy (AC) =
Tp + Tn

Tp + Fn + Tn + Fp
, (20)

5.1.2. Selection of Inpainting Quality Metric

Currently, the quality of a fused image can be quantitively evaluated using the met-
rics [57] structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), mean squared
error (IMMSE), and mean absolute deviation (MAD). The SSIM is an assessment index of
the image quality based on computations of luminance, contrast, and structural compo-
nents of the reference and the reconstructed images, with the overall index a multiplicative
combination of these three components. The PSNR block computes the PSNR between
the reference and the suppressed images in decibels (dB), with higher values of SSIM and
PSNR indicating better quality of the reconstructed or the suppressed image. The IMMSE
computes the average squared error between the reference and the reconstructed images,
while MAD indicates the sum of the absolute differences between the pixel values of these
images divided by the total number of pixels, which is used to measure the standard error
of the reconstructed image. Lower values of IMMSE and MAD indicate better quality of the
reconstructed image. Considering two images (x and y), the aforementioned mathematical
evaluation metrics are shown in Equations (21) to (24).

SSIM(x, y) =
[
l(x, y)α]·[c(x, y)β

]
·
[
s(x, y)γ], (21)

where,

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
c(x, y) =

2σxσy + C2

σ2
x + σ2

y + C2
s(x, y) =

σxy + C3

σxσy + C3
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where µx, µy, σx, σy and σxy are local means, standard deviations, and cross-covariances of
images x and y.

PSNR(x, y) = 10.log10

(
MAX2

I
IMMSE(x, y)

)
, (22)

where MAX denotes the range of the image (x or y) datatype

IMMSE(x, y) =
1
n

n

∑
i=1

(xi − yi)
2, (23)

MAD (x, y) =
1
n

n

∑
i=1
|(xi − yi)|, (24)

5.2. Generation of Ground Truth

To evaluate the performance of the proposed two-fold SRDI, we generate two different
ground truths for each object, as shown in Figure 8. The SRD and the SRI ones are created
manually by an expert, with the maximum possible specular reflected area in the MSPLFI
object dataset covered. Figure 8 shows the two-way SRD ground truth generation, where a
pixel with an intensity above a threshold (Otsu’s method and in the range (0–1)) level is
considered a specular reflected pixel. The final column in Figure 13 presents the objects’
SRD binary ground truths, with black and white pixels indicating their diffuse and specular
reflected pixels, respectively. The final column in Figure 18 shows the objects’ SRI ground
truths. Due to the real scene in the MSPLFI object dataset, some pixels in an object may
exhibit amounts of both specular and diffuse reflections but, to measure the performance in
terms of quantity and enable further comparisons, each pixel is classified manually as either
specular or diffuse reflected, and the ground truth is re-named as the quasi-ground truth.
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5.3. Performance Evaluation of SRD
5.3.1. Analysis of SRD Rate

Figure 9 shows the SRD rates in terms of the SRD metrics of precision, recall, F1-score,
G-mean, and accuracy for nine sample objects both separately (Figure 9) and together for
all objects (O#1–O#18) (Figure 10) using the proposed method. For each object, a total of
121 sub-aperture images are used to measure its specularity and box plots to statistically
analyze our experiments. Figure 9 exhibits the SRD metric values obtained for nine sample
objects separately. Remaining objects are presented in Appendix A (Figure A1). Accuracy
has a higher median value than the F1-score and the G-mean for all the objects, with
O#9 and O#3 having superior median values of 0.804, 0.832, and 0.996, and 0.874, 0.882,
and 0.991 for F1-score, G-mean, and accuracy, respectively, compared with those of the
other objects.

Similarly, Figure 10 shows the combined SRD rates for 121 sub-aperture + 1 maximum
images× 18 objects = 2196 images. Accuracy has a better overall median and 75th percentile
values for all the objects combined (0.981 and 0.992, respectively) compared to the F1-score
(0.643 and 0.770, respectively) and the G-mean (0.656 and 0.752, respectively).
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Ak. [40] 
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Figure 10. Evaluation results for SRD performances of proposed method for 122 specular reflected
images (121 sub-aperture + 1 maximum) × 18 objects = 2196 images for all objects (O#1–O#18)
combined using different SRD metrics.

5.3.2. Comparison of SRD Rates of Proposed Method and Those in Literature

It is worth mentioning that the performances of the existing SRD methods considered
are not exactly comparable, as each reports its accuracy for a specific image set using
different contexts. Moreover, the accuracy values obtained from them and the color-
mapping techniques used for segmentation may vary.
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In Table 1, the performances of SRD in terms of different evaluation metrics for the
proposed and other methods are compared for the 18 individual objects. For visualization
purposes, short forms of the authors’ names are written in the first column, that is, Ak.,
Sn., Yn., Ym., Ar., St., and Ms. refer to Akashi, Shen, Yang, Yamamoto, Arnold, Saint, and
Meslouhi, respectively. The SRD metric values in the object index columns correspond to
the maiden specular image among the sub-aperture ones. The final column (overall mean
?SA)) corresponds to the mean ± SD values of the 121 sub-aperture + 1 maximum images
× 18 objects = 2196 images together.

Table 1. Performance evaluation of different methods in terms of various SRD metrics for 18 objects (O#1–O#18) in MSPLFI
object dataset and overall means (all sub-aperture images in 4D LF).

Methods Metrics
Object Index (Maximum SRD) Overall

Mean (SA)O#1 O#2 O#3 O#4 O#5 O#6 O#7 O#8 O#9 O#10 O#11 O#12 O#13 O#14 O#15 O#16 O#17 O#18

Ak. [40]

Precision 0.178 0.348 0.686 0.445 0.600 0.354 0.460 0.382 0.655 0.519 0.240 0.311 0.336 0.124 0.522 0.542 0.504 0.123 0.362 ± 0.24
Recall 0.628 0.629 0.662 0.427 0.514 0.345 0.426 0.417 0.771 0.536 0.598 0.866 0.658 0.622 0.466 0.727 0.328 0.747 0.512 ± 0.14

F1-Score 0.277 0.448 0.673 0.436 0.554 0.350 0.443 0.398 0.708 0.528 0.342 0.457 0.445 0.207 0.493 0.621 0.398 0.211 0.377 ± 0.16
G-Mean 0.769 0.781 0.810 0.644 0.710 0.578 0.644 0.634 0.874 0.722 0.749 0.917 0.795 0.754 0.676 0.835 0.567 0.834 0.689 ± 0.10
Accuracy 0.935 0.962 0.981 0.943 0.957 0.939 0.946 0.939 0.986 0.948 0.928 0.970 0.951 0.910 0.960 0.944 0.940 0.929 0.926 ± 0.05

Sn. [35]

Precision 0.220 0.610 0.759 0.509 0.613 0.437 0.527 0.477 0.602 0.579 0.462 0.447 0.574 0.388 0.590 0.642 0.622 0.505 0.655 ± 0.15
Recall 0.667 0.590 0.639 0.392 0.493 0.301 0.411 0.335 0.831 0.546 0.513 0.848 0.457 0.474 0.476 0.647 0.275 0.599 0.483 ± 0.15

F1-Score 0.330 0.600 0.694 0.443 0.546 0.357 0.462 0.393 0.698 0.562 0.486 0.586 0.509 0.426 0.527 0.644 0.381 0.548 0.527 ± 0.13
G-Mean 0.797 0.764 0.797 0.620 0.696 0.543 0.635 0.573 0.906 0.730 0.709 0.913 0.672 0.683 0.685 0.794 0.522 0.771 0.681 ± 0.11
Accuracy 0.946 0.981 0.983 0.949 0.958 0.948 0.952 0.950 0.984 0.954 0.966 0.983 0.974 0.976 0.964 0.955 0.946 0.988 0.969 ± 0.01

Yn. [1]

Precision 0.220 0.396 0.603 0.402 0.476 0.269 0.382 0.364 0.595 0.438 0.274 0.224 0.288 0.166 0.416 0.494 0.448 0.156 0.433 ± 0.19
Recall 0.817 0.638 0.673 0.457 0.562 0.430 0.442 0.475 0.831 0.571 0.630 0.884 0.671 0.652 0.484 0.758 0.383 0.754 0.529 ± 0.16

F1-Score 0.346 0.488 0.636 0.428 0.515 0.331 0.410 0.413 0.694 0.496 0.382 0.358 0.403 0.265 0.447 0.598 0.413 0.258 0.446 ± 0.14
G-Mean 0.877 0.789 0.815 0.664 0.737 0.636 0.652 0.675 0.906 0.739 0.772 0.919 0.798 0.782 0.686 0.848 0.609 0.845 0.707 ± 0.11
Accuracy 0.939 0.968 0.977 0.937 0.946 0.917 0.936 0.935 0.984 0.937 0.936 0.954 0.941 0.931 0.950 0.936 0.934 0.945 0.953 ± 0.02

Ym. [37]

Precision 0.199 0.409 0.657 0.435 0.531 0.282 0.302 0.357 0.631 0.406 0.243 0.222 0.296 0.122 0.403 0.364 0.513 0.143 0.307 ± 0.23
Recall 0.645 0.634 0.665 0.435 0.547 0.384 0.456 0.458 0.778 0.565 0.646 0.875 0.680 0.647 0.492 0.791 0.328 0.755 0.559 ± 0.15

F1-Score 0.304 0.497 0.661 0.435 0.539 0.325 0.363 0.401 0.697 0.472 0.353 0.355 0.412 0.205 0.443 0.499 0.400 0.240 0.346 ± 0.17
G-Mean 0.782 0.787 0.811 0.649 0.730 0.604 0.656 0.663 0.877 0.734 0.777 0.914 0.804 0.767 0.691 0.847 0.567 0.843 0.709 ± 0.10
Accuracy 0.941 0.969 0.980 0.942 0.952 0.924 0.920 0.934 0.985 0.932 0.925 0.954 0.942 0.905 0.948 0.900 0.940 0.939 0.908 ± 0.06

Ar. [41]

Precision 0.189 0.520 0.463 0.471 0.529 0.258 0.436 0.383 0.410 0.468 0.308 0.191 0.287 0.178 0.366 0.496 0.413 0.255 0.561 ± 0.12
Recall 0.594 0.587 0.668 0.394 0.391 0.351 0.422 0.449 0.763 0.526 0.609 0.877 0.353 0.281 0.467 0.727 0.371 0.447 0.434 ± 0.16

F1-Score 0.287 0.552 0.547 0.429 0.450 0.298 0.428 0.414 0.534 0.495 0.409 0.314 0.317 0.218 0.410 0.590 0.391 0.325 0.466 ± 0.10
G-Mean 0.750 0.761 0.808 0.620 0.619 0.577 0.640 0.658 0.863 0.713 0.763 0.910 0.586 0.524 0.671 0.831 0.598 0.663 0.644 ± 0.12
Accuracy 0.941 0.977 0.967 0.946 0.951 0.921 0.943 0.939 0.971 0.942 0.945 0.944 0.955 0.962 0.944 0.936 0.930 0.976 0.966 ± 0.01

St. [42]

Precision 0.461 0.679 0.680 0.597 0.692 0.344 0.609 0.392 0.586 0.616 0.340 0.237 0.491 0.360 0.421 0.631 0.487 0.193 0.702 ± 0.12
Recall 0.592 0.535 0.637 0.357 0.502 0.321 0.400 0.381 0.771 0.462 0.558 0.876 0.457 0.394 0.495 0.567 0.315 0.724 0.422 ± 0.15

F1-Score 0.518 0.598 0.658 0.447 0.582 0.332 0.483 0.387 0.666 0.528 0.423 0.373 0.473 0.376 0.455 0.597 0.383 0.305 0.507 ± 0.11
G-Mean 0.764 0.729 0.795 0.593 0.704 0.558 0.628 0.608 0.873 0.674 0.734 0.916 0.671 0.624 0.693 0.744 0.555 0.834 0.637 ± 0.12
Accuracy 0.978 0.983 0.980 0.954 0.963 0.939 0.957 0.942 0.983 0.955 0.952 0.957 0.970 0.975 0.950 0.952 0.938 0.958 0.971 ± 0.01

Ms. [43]

Precision 0.646 0.878 0.914 0.876 0.765 0.592 0.754 0.585 0.847 0.702 0.557 0.557 0.556 0.348 0.692 0.657 0.729 0.660 0.868 ± 0.09
Recall 0.580 0.367 0.502 0.248 0.485 0.212 0.393 0.307 0.568 0.445 0.507 0.831 0.489 0.572 0.366 0.627 0.240 0.338 0.283 ± 0.11

F1-Score 0.611 0.518 0.648 0.387 0.593 0.312 0.517 0.403 0.680 0.545 0.530 0.667 0.520 0.433 0.479 0.642 0.361 0.447 0.412 ± 0.13
G-Mean 0.759 0.606 0.708 0.498 0.694 0.459 0.625 0.551 0.753 0.664 0.707 0.907 0.695 0.748 0.603 0.783 0.489 0.581 0.520 ± 0.11
Accuracy 0.985 0.983 0.984 0.959 0.966 0.956 0.963 0.956 0.988 0.960 0.972 0.988 0.973 0.971 0.967 0.956 0.949 0.989 0.971 ± 0.01

Proposed

Precision 0.630 0.666 0.728 0.622 0.668 0.643 0.798 0.563 0.756 0.678 0.485 0.624 0.470 0.422 0.665 0.658 0.719 0.614 0.776 ± 0.10
Recall 0.630 0.585 0.737 0.798 0.946 0.281 0.767 0.452 0.808 0.613 0.526 0.720 0.554 0.718 0.553 0.784 0.320 0.578 0.444 ± 0.15

F1-Score 0.630 0.623 0.732 0.699 0.783 0.391 0.782 0.501 0.781 0.644 0.504 0.668 0.509 0.531 0.604 0.715 0.442 0.596 0.546 ± 0.13
G-Mean 0.791 0.762 0.855 0.881 0.960 0.528 0.871 0.666 0.896 0.777 0.718 0.846 0.737 0.839 0.739 0.873 0.563 0.759 0.654 ± 0.11
Accuracy 0.985 0.983 0.984 0.965 0.973 0.958 0.978 0.957 0.990 0.963 0.967 0.990 0.968 0.976 0.970 0.961 0.951 0.990 0.974 ± 0.01

As can be seen, the overall mean SRD different metric values are higher for the
proposed method than the studies discussed in this paper, as shown in the final column
in Table 1. Additionally, considering all the sub-aperture images of the 18 distinct objects,
mean F1-score, G-mean, and accuracy values for the proposed method are 0.546 ± 0.13,
0.654 ± 0.11 and 0.974 ± 0.01, respectively. In Figure 11, the SRD metric values for the
18 individual objects (O#1–O#18) and their maximum specular reflections obtained from
different methods are compared. As can be seen, the proposed method achieves superior
median values for the F1-score, G-mean and accuracy of 0.662, 0.816 and 0.971, respectively.
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Figure 11. Evaluation results for SRD performances of different methods for maximum specular reflected images of 18
objects in terms of precision, recall, F1-score, G-mean and accuracy.

In Figure 12, the SRD metric values for 121 sub-aperture + 1 maximum images × 18
objects = 2196 images with their specular reflections obtained by different methods are
presented. As can be seen, the proposed method has superior median values for F1-score,
G-mean, and accuracy of 0.643, 0.676, and 0.981, respectively, to those of the others.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 30 
 

 

Figure 11. Evaluation results for SRD performances of different methods for maximum specular reflected images of 18 
objects in terms of precision, recall, F1-score, G-mean and accuracy. 

In Figure 12, the SRD metric values for 121 sub-aperture + 1 maximum images × 18 
objects = 2196 images with their specular reflections obtained by different methods are 
presented. As can be seen, the proposed method has superior median values for F1-score, 
G-mean, and accuracy of 0.643, 0.676, and 0.981, respectively, to those of the others. 

 
Figure 12. Evaluation results for SRD performances of different methods for 121 sub-aperture + 1 maximum images × 18 
objects = 2196 images with specular reflections in terms of precision, recall, F1-score, G-mean, and accuracy. 

5.3.3. Visualization of SRD Rates of Different Methods 
In Figure 13, the SRD accuracies obtained by different methods for the maximum 

specular reflected images of sample objects in the MSPLFI object dataset are presented. As 
can be seen, the proposed approach reports fewer SRD errors than the others. Remaining 
objects are presented in Appendix Section (Figure A2). 

  

Figure 12. Evaluation results for SRD performances of different methods for 121 sub-aperture + 1 maximum images × 18
objects = 2196 images with specular reflections in terms of precision, recall, F1-score, G-mean, and accuracy.

5.3.3. Visualization of SRD Rates of Different Methods

In Figure 13, the SRD accuracies obtained by different methods for the maximum
specular reflected images of sample objects in the MSPLFI object dataset are presented. As
can be seen, the proposed approach reports fewer SRD errors than the others. Remaining
objects are presented in Appendix A (Figure A2).
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5.4. Performance Evaluation of SRI
5.4.1. Analysis of SRI Quality

The SRI qualities in terms of the normalized SRI metrics SSIM, PSNR, IMMSE, and
MAD for the nine sample objects using the proposed method are presented separately
in Figure 14 and then together for all objects (O#1–O#18) in Figure 15. For each object,
a total of 121 sub-aperture + 1 maximum images are considered to measure its SRI and
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box plots used to statistically analyze our experiments. It is to be noted that a suppressed
image with high SSIM and PSNR values and low IMMSE and MAD ones is close to the
quasi-ground truth. Figure 14 shows that the SSIM has a higher median value than the
PSNR but the IMMSE a lower one than the MAD for all the objects while object O#1 has
superior median values of 0.966, 0.820, 0.038, and 0.131 for SSIM, PSNR, IMMSE, and MAD,
respectively, to those of the other objects. Remaining objects are presented in Appendix B
(Figure A3). Similarly, Figure 15 shows the normalized SRI qualities of (121 Sub-aperture
+ 1 maximum) × 18 Objects = 2196 images together. The SSIM has better overall median
and 75th percentile values for all the objects combined (0.966 and 0.980, respectively) than
the PSNR (0.735 and 0.778, respectively) and the IMMSE better overall median and 75th
percentile values for all the objects (0.073 and 0.118, respectively) than the MAD (0.226 and
0.273, respectively).
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5.4.2. Comparison of SRI Rates of Proposed Method and Those in Literature

It is worth mentioning that the performances of the existing SRI methods are not
exactly comparable, as each reports its accuracy for a specific image set in a different context.
Additionally, the quality obtained by the methods and the color-mapping techniques used
for inpainting may vary.

In Table 2, the performances of SRI in the proposed and other methods for the 18
individual objects are compared using different evaluation metrics. For visualization, short
forms of the authors’ names written in the first column as Ar., Yg., Cr., St., Ak., Sn., and
Ym. refer to Arnold, Yang, Criminisi, Saint, Akashi, Shen, and Yamamoto, respectively.
The SRI metric values in the object index columns correspond to the maiden image of the
121 sub-aperture specular reflected suppressed ones. The final column (overall mean (SA))
corresponds to the mean ± SD values of the 121 sub-aperture + 1 maximum images × 18
objects = 2196 images together. As can be seen, the SRI metric values are significantly better
for the proposed method than for the others considered, as shown in the final column
in Table 2. For all the sub-aperture images of the 18 distinct objects, the mean SSIM,
PSNR, IMMSE, and MAD values obtained from the proposed method are 0.956 ± 0.02,
24.51 ± 2.11, 257.6 ± 119, and 8.427 ± 2.51, respectively.

Table 2. Performance evaluations of different methods using different SRI metrics for 18 objects (O#1–O#18) and overall
mean (all sub-aperture images in 4D LF) in MSPLFI object dataset.

Methods Metrics
Object Index (Maximum SRI) Overall

Mean (SA)O#1 O#2 O#3 O#4 O#5 O#6 O#7 O#8 O#9 O#10 O#11 O#12 O#13 O#14 O#15 O#16 O#17 O#18

Ar. [41]

SSIM 0.942 0.967 0.966 0.965 0.940 0.961 0.940 0.959 0.965 0.929 0.940 0.946 0.968 0.958 0.925 0.943 0.963 0.955 0.941 ± 0.02
PSNR 21.25 20.42 21.26 20.96 19.99 20.95 19.22 20.25 20.74 19.03 18.33 18.53 20.83 18.58 18.42 19.56 20.98 19.65 19.80 ± 0.99

IMMSE 487.6 590.1 486.2 520.9 651.4 522.7 778.0 613.9 548.7 813.4 954.8 911.5 537.6 901.9 935.8 720.2 519.3 705.4 698.9 ± 162
MAD 12.53 16.20 16.26 15.26 13.49 14.89 19.94 15.12 15.79 18.51 18.87 19.80 12.74 17.97 19.63 18.27 13.55 15.52 16.46 ± 2.36

Yg. [51]

SSIM 0.887 0.956 0.943 0.951 0.926 0.951 0.910 0.952 0.954 0.922 0.944 0.943 0.960 0.948 0.911 0.915 0.958 0.957 0.926 ± 0.02
PSNR 18.31 19.74 20.16 21.42 18.44 20.53 19.29 20.12 20.43 18.72 18.95 19.06 21.36 18.98 17.68 18.78 22.01 20.45 19.53 ± 1.14

IMMSE 958.6 690.6 626.5 468.5 931.3 574.9 766.7 632.8 589.2 872.9 828.4 807.7 475.5 822.3 1110 861.8 408.9 586.0 749.8 ± 190
MAD 18.05 16.36 17.15 13.68 16.01 14.88 19.06 14.88 15.52 18.68 17.16 18.36 11.26 16.34 20.98 19.36 11.58 13.77 16.48 ± 2.58

Cr. [52]

SSIM 0.956 0.968 0.964 0.948 0.924 0.963 0.922 0.961 0.965 0.927 0.944 0.947 0.962 0.956 0.925 0.940 0.962 0.955 0.935 ± 0.02
PSNR 22.50 20.60 21.40 20.48 19.52 21.31 19.06 20.64 20.84 19.16 18.68 18.90 20.97 18.63 18.60 19.65 21.23 19.74 19.89 ± 1.04

IMMSE 365.8 566.9 471.8 582.8 726.3 480.6 807.4 561.7 536.1 789.5 881.6 838.4 519.9 891.1 897.0 704.5 489.6 690.5 685.5 ± 161
MAD 11.41 15.90 16.09 16.04 14.36 14.31 20.33 14.56 15.69 18.23 18.12 19.08 12.45 17.78 19.25 18.03 13.24 15.34 16.27 ± 2.36

St. [42]

SSIM 0.956 0.968 0.967 0.966 0.945 0.967 0.943 0.966 0.966 0.933 0.948 0.952 0.970 0.957 0.929 0.939 0.967 0.957 0.941 ± 0.02
PSNR 22.49 20.59 21.41 21.11 20.07 21.30 19.54 20.61 20.88 19.23 18.60 18.90 21.10 18.66 18.54 19.83 21.42 19.70 20.01 ± 1.05

IMMSE 366.4 567.2 469.7 504.1 639.7 482.0 722.3 565.5 531.5 776.6 896.9 837.2 505.1 886.4 910.4 676.7 469.1 696.4 667.6 ± 162
MAD 11.54 15.89 16.06 14.91 13.39 14.35 19.04 14.68 15.59 18.13 18.32 19.00 12.29 17.73 19.41 17.48 12.99 15.40 16.04 ± 2.31

Ak. [40]

SSIM 0.918 0.979 0.938 0.941 0.913 0.928 0.900 0.929 0.943 0.899 0.907 0.912 0.942 0.933 0.889 0.914 0.931 0.928 0.899 ± 0.03
PSNR 19.36 24.30 18.49 18.93 17.00 17.89 16.82 17.17 18.41 16.27 15.49 16.00 17.80 16.09 15.84 16.48 17.89 17.29 17.08 ± 1.12

IMMSE 753.7 241.5 921.2 831.6 1296 1057 1351 1248 936.8 1536 1838 1631 1080 1598 1694 1464 1057 1215 1315 ± 334
MAD 16.45 6.36 21.45 18.77 19.43 21.19 25.70 21.51 19.96 25.54 26.17 26.52 17.80 23.90 26.31 25.87 19.20 20.28 22.23 ± 3.24

Sn. [35]

SSIM 0.936 0.961 0.957 0.952 0.923 0.959 0.922 0.956 0.951 0.917 0.937 0.941 0.964 0.952 0.915 0.934 0.961 0.954 0.929 ± 0.02
PSNR 19.32 19.99 20.78 19.94 18.23 20.78 18.17 19.97 19.13 17.73 18.09 18.42 20.41 18.23 17.80 19.09 21.01 19.57 19.06 ± 1.05

IMMSE 760.9 652.2 543.6 659.6 976.7 543.1 992.1 654.8 795.4 1101 1009 934.8 591.4 976.5 1079 802.5 515.3 717.4 830.7 ± 197
MAD 14.60 16.80 16.93 16.37 15.95 15.05 21.35 15.56 17.49 20.55 19.31 20.04 13.20 18.55 20.66 18.99 13.48 15.61 17.43 ± 2.43

Ym. [37]

SSIM 0.906 0.952 0.945 0.949 0.917 0.934 0.897 0.933 0.950 0.894 0.911 0.912 0.938 0.920 0.890 0.880 0.944 0.938 0.902 ± 0.03
PSNR 18.37 18.83 19.11 19.46 17.72 18.69 16.37 17.72 19.11 16.01 15.97 16.23 17.87 15.57 15.86 14.84 19.34 18.20 17.27 ± 1.44

IMMSE 946.5 852.3 798.1 737.0 1100 879.5 1500 1098 797.6 1631 1643 1550 1061 1804 1686 2134 756.5 985.2 1289 ± 439
MAD 17.89 18.57 19.20 17.36 17.35 18.92 25.95 19.38 17.99 25.54 23.94 25.24 16.79 24.04 25.59 29.90 15.81 18.03 21.27 ± 4.11

Proposed

SSIM 0.992 0.990 0.989 0.972 0.941 0.984 0.961 0.973 0.991 0.947 0.964 0.977 0.978 0.982 0.950 0.953 0.983 0.983 0.956 ± 0.02
PSNR 33.43 26.16 29.24 22.79 22.26 29.85 25.60 25.06 29.27 23.84 22.76 24.62 26.52 24.91 21.76 22.37 27.64 25.36 24.51 ± 2.11

IMMSE 29.54 157.4 77.50 341.9 386.7 67.34 179.2 202.9 76.95 268.6 344.8 224.2 145.1 209.9 433.9 376.7 112.1 189.2 257.6 ± 119
MAD 1.172 7.903 5.205 7.680 8.536 4.529 8.723 8.277 4.959 10.07 11.07 8.888 5.257 7.880 13.26 12.97 5.545 7.665 8.427 ± 2.51

SSIM: structural similarity index; PSNR: peak signal-to-noise ratio; IMMSE: mean squared error; MAD: mean absolute deviation.

In Figure 16, comparisons of the SRI metric values of individual methods in terms of
SSIM, PSNR, IMMSE, and MAD of 18 individual objects (O#1–O#18) with their maiden
specular inpainting is presented. It can be seen that the proposed method has superior
median values for SSIM and PSNR of 0.985 and 0.754 and the lowest median values for
IMMSE and MAD of 0.063 and 0.217, respectively.
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Figure 17 shows the SRI metric values of individual methods in terms of SSIM, PSNR,
IMMSE, and MAD of 121 sub-aperture + 1 maiden images × 18 objects = 2196 images. As
can be seen, the proposed method has superior median values for SSIM and PSNR of 0.966
and 0.735, respectively, and the lowest median values for IMMSE and MAD of 0.073 and
0.226, respectively, compared with those of the other methods.
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5.4.3. Visualization of SRI Quality Assessment

Figure 18 presents the SRI qualities obtained by different methods for the maiden
specular reflected images of sample scenes in the MSPLFI object dataset. Remaining
objects are presented in Appendix B (Figure A4). As can be seen, the proposed approach
demonstrates better SRI quality than the others.
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6. Conclusions

In this paper, a two-fold SRDI framework is proposed. As transparent objects lack
their own textures, combining multisensory imagery cues improves their levels of specular
detection and inpainting. Based on the private MSPLFI object dataset, the proposed
SRD and SRI algorithms demonstrate better detection accuracy and suppression quality,
respectively, than other techniques. In SRD, predictions of multiband changes in the sub-
apertures in both polarized and unpolarized images are calculated and combined to obtain
the overall specularity in transparent objects. In SRI, firstly, a distance matrix based on four-
connected neighboring pixel patterns is calculated, and then the most similar one is selected
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to replace the specular pixel. The proposed algorithms predict better detection accuracy
and inpainting quality in terms of F1-score, G-mean, accuracy, SSIM, PSNR, IMMSE, and
MAD than other techniques reported in this paper. The experimental results illustrate
the validity and the efficiency of the proposed method based on diverse performance
evaluation metrics. They also demonstrate that it significantly improves the SRD metrics
(with mean F1-score, G-mean, and accuracy 0.643, 0.656, and 0.981, respectively) and
SRI ones (with the mean SSIM, PSNR, IMMSE, and MAD 0.966, 0.735, 0.073, and 0.226,
respectively) for 18 transparent objects, each with 121 sub-apertures, in MSPLFI compared
with those in the existing literature referenced in this paper.

As an extension of this work, we will investigate a machine learning technique for
feature extraction and learning and testing of SRD and SRI performances on the MSPLFI
object dataset. As it is known that a transparent object contains the same texture as its
background, developing an automatic algorithm for segmenting it from its background in
multisensory imagery will also be explored.
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Evaluation results for SRD performances of proposed method for 122 specular re-
flected images (121 sub-apertures + 1 maximum) of 9 sample objects separately using
different SRD metrics.
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