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Abstract: The identification of areas that are prone to landslides is essential in mitigating associated
risks. This is usually achieved using landslide susceptibility models, which estimate landslide
likelihood given local terrain conditions and the location of known past events. Detailed databases
covering different conditioning factors are paramount in producing reliable susceptibility maps.
However, thematic data from developing countries are scarce. As a result, susceptibility models
often rely on morphometric parameters that are derived from widely-available digital elevation
models. In most cases, simple parameters, such as slope, aspect, and curvature, computed using
a moving window of 3 × 3 pixels, are used. Recently, the use of window-based morphometric
indices as an additional input has increased. These rely on a user-defined observation window size.
In this contribution, we examine the influence of observation window size when using window-
based morphometric indices as core predictive variables for landslide susceptibility assessment. We
computed a variety of models that include morphometric indices that are calculated with different
window sizes, and compared the predictive capabilities and reliability of the resulting predictions.
All of the models are based on the random forest algorithm. The results improved significantly
when each window-based morphometric index was calculated with a different and meaningful
observation window (AUC-ROC of 0.89 and AUC-PR of 0.87). The sensitivity analysis highlights
both the highly-informative observation windows and the impact of their selection on the model
performance. We also stress the importance of evaluating landslide susceptibility results while using
different adapted metrics for predictive performance and reliability.

Keywords: landslide susceptibility model; morphometric indices; observation window; random
forest; Tajik-Tian Shan; reliability

1. Introduction

Susceptibility assessment is the first step in understanding the potential spatial occur-
rences of landslides in a region. Detailed databases of predictive variables are required for
modelling the probability of a given area to be affected by landslides [1]. Unfortunately,
large areas of the world are poorly monitored and in-situ information is scarce. These
challenges are partially mitigated by merging patchy local data with wide-coverage but
low-resolution information, e.g., precipitation information. However, the combination
of datasets with high and low resolution may lead to low-quality maps. Furthermore,
predictive variables often have a far better coverage and accuracy than existing landslide
catalogues, which are a mixture of high-resolution, poor-coverage, and low-resolution,
extensive-coverage studies. Finally, only few parameters reflect the landslide controlling
processes. All of these aspects challenge the computation of meaningful and reliable
landslide susceptibility models, especially in data-scarce environments.

A variety of morphometric indices have been proposed for tackling the problem
of data scarcity in remote but landslide-prone regions. They are extracted from digital
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elevation models (DEMs), which are now available in open-access databases with a nearly
global coverage and spatial resolution (pixel size) typically ranging from 12 m to 90 m ([2]
and references therein) . Variables describing the morphology of a landscape have proven
to be effective in predicting the spatial distribution of landslides [3] or their absence [4].
A literature review by Reichenbach et al. [2] showed that most of the researchers use
morphometric indices, like slope, aspect (direction of the slope), or curvature, because
they are easily computed in a GIS environment. These indices are calculated while using
a fixed observation window size, in general 3 × 3 pixels [5]. Such a resolution might
be adequate for assessing local slope conditions, but provides limited constraints on the
overall hypsometry or regional-scale surface processes, e.g., landscape erosion and river
incision [2].

The morphometric parameters used in tectonic geomorphology are often based on
larger observation windows—typically 1–5 km e.g., [6–9]. These “window-based” morpho-
metric indices proved useful in understanding the geomorphological setting of an area and
the interactions between erosion, tectonics, and climate e.g., [7–9]. Few attempts have been
made to include these indices as predictive factors in landslide susceptibility models. For
instance, Othman et al. [10] tested the use of different window-based morphometric indices,
such as the topographic position index and the hypsometric integral in Kurdistan (Irak).
Their results suggest that the addition of indices, computed with a window size of 1500 m
(100× 100 pixels for a DEM with 15 m resolution), improve the predictive capabilities of the
models. Furthermore, the hypsometric integral represents a better predictor variable than
slope or curvature [10]. More recently, Conforti and Ietto [11] illustrated the importance
of morphometric parameters, such as local relief for understanding the distribution of
landslides in tectonically active regions, such as southern Italy.

Some authors e.g., [7,9] argue for a cautious definition of the observation window
when using morphometric indices, as its size affects both the scale of the processes to be
monitored and the computation time. A meaningful moving window should be large
enough—ideally the width of one or two valleys—to encompass a significant portion
of the analyzed landscape, according to Andreani et al. [7]. Small windows tend to be
oversensitive to noise and local-scale variations in topography. On the other hand, the
ability of morphometric indices to characterize a landscape decreases significantly when
the observation window becomes too large [7].

Herein, we present a novel method for evaluating the usability of window-based mor-
phometric indices as proxies for areas prone to landslides. We introduce the computation of
window-based morphometric indices and highlight the importance of the selection of the
most-suitable window size. We show that the window-based morphometric indices have
significant advantages over the other available thematic datasets. To do so, we conduct
a sensitivity analysis to quantify the effects of the observation window size on landslide
susceptibility modeling. We first create a base model as benchmark for the state-of-the-
art predictive variables. Subsequently, we study how the use of either fixed observation
windows—a common approach in landslide susceptibility modeling—or scalable obser-
vation windows for the computation of morphometric indices influences the predictive
capabilities and reliability of the results. Finally, we discuss the evaluation metrics and
estimate the reliability of landslide susceptible maps in data-scarce environments.

2. Study Area

This study covers 63,663 km2 of the Tian Shan and northwestern Pamir of Tajikistan
(Figure 1). The landscape is dominated by substantial changes in altitude between the
Tian Shan, culminating at 5640 m, and the Fergana and Tajik basins with elevations above
380 m. The W-flowing Zeravshan river separates the Turkestan range in the north from
the Zeravshan range in the south along a deeply-incised valley. To the south, the Vakhsh
river separates the Gissar range from the Pamir. The Panj river deeply incised the Pamir
in the southeastern corner of the study area. Climate varies from semi-arid to arid in the
basins to temperate and continental in the mountains, whose elevation range straddle
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periglacial and glacial environments. The area coincides with the transition between the
atmospheric circulation systems of the Indian Summer Monsoon and the Westerlies [12].
Consequently, the distribution of winter and summer precipitation varies between the
Pamir and the southwestern Tian Shan [12], causing differences in the rate of erosion and
sediment transport. Most of the precipitation in the Pamir is recorded in winter, while the
southwestern Tian Shan also receives precipitation during summer [13].

Figure 1. Location of the study area (Tajik Tian Shan) and spatial distribution of known landslides from the Tian Shan
Geohazards Database [14] and this work.

East-striking Paleozoic sutures separate distinctive crustal blocks that tend to encom-
pass a particular mountain range [15,16] (Figure A1. Geology and structure). Following
Brookfield [15], the northern unit is the Turkistan-Alai flysch complex, a Silurian to Car-
boniferous sequence of alternating shales and quartz-rich sandstones, which transitions
upwards into a carbonate dominated sequence. The central terrane, which is known as
the Zeravshan subduction-accretion complex, consists of thin Cambrian to Ordovician
passive-margin clastics, being overlain by Silurian turbiditic shales and sandstones, and
Devonian carbonates. Lower Carboniferous cherts and turbiditic clastic rocks, interbedded
with mélange rocks derived from the Turkestan-Alai zone, overlie the Zeravshan complex
to the north; to the west, it is unconformably covered by Neogene sediments. The Zer-
avshan complex was intruded by Lower Devonian, Upper Carboniferous, and Permian
granitoids, forming the Gissar arc complex [15–17].

The Tajik basin comprises up to 12 km-thick Triassic to Quaternary sedimentary rocks.
In the late Neogene (∼12 Ma), crustal shortening that was related to the India-Asia collision
led to the development of a fold-and-thrust belt [18]. The Neogene deposits consist of
siltstones, sandstones, and conglomerates, which include brecciated carbonate blocks that
were interpreted as rock-avalanches deposit [19].

In particular, the Cenozoic deposits are valuable paleoenviromental archives. They
have been prone to slope instability in historic times (e.g., landslide that is triggered
by the Khait earthquake [20]). Loess deposits are widespread in the Vakhsh valley and
the piedmonts of the Tian Shan and Pamir; their thickness exceeds 100–200 m. This
up to 2.4–2.0 Ma-old loess suggests prevalently arid and semi-arid environments for
Central Asia during the Pleistocene [21]. Non-vegetated moraine deposits were reported
by Zech et al. [22], reaching as far down as 2650 m in the Gissar range. Landslide deposits
are located in the Tian Shan valleys, giving evidence to geodynamic and/or climatic
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processes [23]. Active faults have been mapped in the area, for example, the Gissar-
Kokshall, North Gissar, Zeravshan, and Turkestan faults [24].

Landslides

We assembled a landslide catalogue, primarily based on the Tian Shan Geohazard
Database [14], and completed using satellite-imagery interpretation and fieldwork (Septem-
ber 2018). The catalogue contains 859 polygon-based landslides of variable type and
magnitude (Figure 1). Superficial mass movements, such as loess landslides, flows, rock-
slides, and rockfalls, dominate [14]. The area distribution ranges from 0.000176 km2 to ∼17
km2 with a mean of 0.24 km2 and a median of 0.04 km2.

The coupling of precipitation and tectonic activity (earthquakes) has triggered dis-
astrous landslides: a well-documented event is the 1949 Khait Earthquake (M7.4), which
provoked loess flows, rockslides, and cracks. Close to the epicenter in the Yaman valley,
hundreds of loess landslides coalesced in a massive flow with an estimated volume of
0.245 km3 that travelled up to 20 km on a slope of only 2◦. The cluster of landslides killed
approximately 4000 people that were located in 20 villages [20]. In the Khait valley, the
Khait rockslide moved saturated loess with a flow velocity of 30 m/s. Another disastrous
event occurred a few decades later south of Dushanbe. The Gissar earthquake (23 January
1989) triggered a series of loess flows that buried hundreds of houses and killed at least
200 persons [25].

Rockslide dams are particularly common in the Tian Shan, where they block rivers that
are located within the epicentral zone of earthquakes [23]. The Iskander lake (39◦05.1′ N,
68◦22.9′ E)—the largest water body in the area—is the product of a rockslide that is associ-
ated with the collapse of a mountain slope of Paleozoic sedimentary rocks (Figure 2). The
main rockslide body is currently incised by an up to 70 m-deep gorge with a waterfall at its
central part [26]. Breakage of river-damming landslides may trigger disasters. An example
of a successful prevention is the Aini dam, emplaced on 24 April 1964. The Zeravshan
valley was blocked by 0.2 km3 of debris upstream from Aini (39◦23′ N, 68◦32.5′ E) with
an up to 150 m-high and 1 km-long dam. An artificial trench across the dam prevented
overpressure and a potentially dam collapse [26]. We observed other dams, not reported in
the literature, during fieldwork. An example is the rockslide that blocked the Yagnob River
(39◦11′18.26′ ′ N, 68◦42′38.97′ ′ E, Figure 3). The dammed lake has been subsequently filled
with sediments, resulting in a flat-bottom valley upstream of the rockslide.

Figure 2. Iskander lake. (a) Google Earth view of the Iskander lake dammed by a rockslide. Black polygons correspond to
the landslide catalogue. (b) Field view of the Iskander lake dam. Rockslide crown highlighted by red arrows; paleolake
level, marked by yellow arrows, represent the maximum lake level before the dam incision commenced.
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Figure 3. Yagnob river. (a) Google Earth view of a rockslide in the Yagnob valley. The valley morphology changes from
flat-bottom upstream to V-shaped downstream. (b) Close view of the area upstream of the rockfall (background) with the
anastomosing river and remnants of lake deposits (foreground).

3. Methodology

Following the rationale behind most landslide susceptibility studies e.g., [1,3,10,27–34],
we apply an iterative process in order to identify the combination of variables that best
predict known landslide occurrences and, by inference, landslide susceptible locations. The
innovation of our approach is the application of a sensitivity analysis to select optimally-
scaled, window-based morphometric indices as key predictive variables, and to create a
reliable, highly-predictive landslide susceptibility map for scarce-data environments.

The methodology is as follows:

1. compilation and/or construction of several predictive variables from the information
of the study area;

2. set up of a random forest algorithm for the predictive variables and landslide cata-
logue characteristics;

3. sensitivity analysis to identify informative observation windows; and,
4. evaluation of results and reliability assessment.

3.1. Predictive Variables

We represent the conditions under which landslides occur by fifteen predictive vari-
ables. Five of them are freely available and they were compiled and partially reprocessed
by us. We derived (1) bedrock and (2) fault traces from the 1:200,000 geological maps [35]
and the Central Asia Fault Database [36]; climatic parameters, such as (3) mean annual
precipitation and (4) isothermality from Karger et al. [37]; (5) the normalized difference
vegetation index (NDVI) from merging and processing 13 Sentinel-2 scenes (20 m reso-
lution) from July and August 2017. We computed the remaining 10 predictive variables
from the SRTM (Shuttle Radar Topography Mission) 1-arc-sec digital elevation model
(DEM) [38]. Section 3.1.2 details these DEM-derived variables. We projected the DEM to
planar coordinates (WGS84/UTM42) and obtained a pixel resolution of 25 × 25 m.

3.1.1. Available Thematic Information

The geological map depicts the spatial distribution of rocks with different age and
composition. Lithology is a widely-used variable, since distinctive rock types and structures
respond differently to predisposing factors of landslides [39]. We grouped the geological
units in 17 classes based on age and rock type, and rasterized the geological classes to the
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DEM pixel size by coding each pixel value to the following: (1) Quaternary, (2) Neogene,
and (3) Paleogene sediments; (4) Cretaceous, (5) Upper-Middle Jurassic, (6) Lower Jurassic,
and (7) Triassic sedimentary rocks; (8) Permian igneous rocks; (9) Permian sedimentary
rocks; (10) Carboniferous granitoids; (11) Carboniferous volcanic rocks; (12) Carboniferous,
(13) Devonian, and (14) Silurian sedimentary rocks; (15) Cambrian metamorphic rocks;
(16) Paleozoic and (17) Precambrian granitoids. Similarly, we computed the Euclidean
distance between each pixel and the closest fault trace in order to create the distance to
fault predictive variable.

Based on the monthly precipitation and temperature data from 1979 to 2013, Karger
et al. [37] produced a series of bioclimatic variables of which we used mean annual precipi-
tation (mm/year) (short precipitation) and isothermality. Precipitation is a well-known
landslide triggering factor [40]. Isothermality quantifies the magnitude of the day-to-
night air temperature oscillation as compared to the summer-to-winter oscillation. Air
temperature accounts for potential snow accumulation and melting processes [41].

The normalized difference vegetation index (NDVI) [42] allows for discriminating
between areas with vegetation, soil predominance, and rock exposure. The NDVI is the
transformation of the spectral signature of each pixel that is calculated by band math while
using Equation (1):

NDVI =
NIR − Red
NIR + Red

(1)

with NIR and Red being the Near Infra-red and Red bands, respectively. Negative values
correspond to spectral signatures from water bodies, snow, and ice. Positive values that
are below 0.3 respond to soils or areas with scarce vegetation, while higher values mostly
reflect vegetated areas.

3.1.2. DEM-Based Predictive Variables
Hydrological Indices

Hydrological processes directly affect slope stability and landslide occurrence [43].
Stream incision at the base of a slope profile, water runoff, and soil saturation represent
known triggering factors [40]. The drainage network and subsequent hydrological indices
are derived from the 1-arc-sec SRTM data. First, we computed the flow direction and
the contributing area for each pixels while using the D8 algorithm [44–46]. Subsequently,
we selected an area threshold of 50 km2 in order to discriminate principal rivers from
tributaries and generate the drainage network.

The topographic wetness index (TWI) describes the saturation potential of a given site
as a function of the upslope area and the local slope [47]:

TWI = ln
( a

tan b

)
(2)

where a is the local upslope area draining through a certain point, and b is the local slope
in radians. High TWI values highlight flat locations with large upslope areas, which are
expected to have relatively high water availability. Low TWI values correspond to steep
locations, which are expected to be better drained [48].

The distance from and elevation above main channels are commonly used in landslide
susceptibility assessment and references therein [2]. These two parameters are usually
computed by a proximity function that measures the Euclidean distance from the center of
a pixel on a channel to the center of its surrounding pixels. This Euclidean distance neglects
the influence of the flow paths and drainage divides. In order to obtain a more accurate
representation of the interactions between main rivers and the relief, we computed the
distance from a channel and the corresponding elevations thata are based on the extracted
flow paths, following the approach of Rennó et al. [49]. The resulting parameters are
consistent with slope profiles and catchment limits, and they allow for the identification
of areas of the landscape located in the same slope position with respect to the drainage
network, which defines the regional base-level.
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Simple Morphometric Indices

Slope is the most commonly applied morphometric index. It is calculated as the
maximum change in elevation over the distance between a cell and its eight neighbors.
Slope is directly related to the physical forces controlling the stability of rocks (retaining
and destabilizing forces) [50]. The slope angle influences the type of landslides occurring in
an area [51]. Aspect is another commonly applied index, which is defined as the downslope
orientation of the maximum rate of change from each cell to its neighbors. It is usually
interpreted as the slope direction and it is measured clockwise in degrees from North.
Aspect reveals patterns that are related to the orientation of the slope, generally being
controlled by local conditions [2], e.g., the particular tectonic/structural setting of the
Tian Shan.

Window-Based Morphometric Indices

Local relief describes the maximum difference in elevation within a given observation
window [52]. The topographic position index is defined as the difference between the
elevation h of a given pixel and the average elevation hmean of its neighboring pixels
within a given observation window [53]. Positive and negative values describe ridges and
valleys, respectively. This index provides an approach for subdividing landscapes into
morphological classes, as the topographic position within a slope profile is correlated to
many physical and biological processes, e.g., soil erosion and formation, and hydrological
balance [53–55]. Local relief and topographic position index both scale up with relief
amplitude.

Surface roughness can be described by several parameters ([56,57] and references
therein). In this study, we use the area ratio approach, which evaluates the similarity
between a topographic surface within a given area and a flat surface with the same extent
e.g., [6,58–60]. The ratio is close to 1 for flat areas and it increases rapidly as the topographic
surface becomes irregular. The method used to approximate the area of the topographic
surface is adapted from the GRASS-R algorithm of Grohmann [59]. First, a slope map is
produced while using the neighborhood algorithm included in ArcGIS [5]. Subsequently,
the topographic surface ST is approximated for each pixel using Equation (3):

ST = res ×
√

res2 + (tan(α) × res)2 (3)

where res is the DEM resolution in meters and α is the pixel slope in degrees. The flat area
SF is defined for each pixel by SF = res× res. The surface roughness is then obtained by
summing the pixel values of ST and SF within a moving window and by dividing the sum
of the ST pixels by the sum of the SF pixels.

The hypsometric integral, which is also known as the elevation relief ratio, shows the
distribution of landmass volume with respect to a basal reference plane [61,62]. According
to Pike and Wilson [63], the hypsometric integral can be approximated with Equation (4):

HI =
hmean − hmin
hmax − hmin

(4)

with hmean, hmin, and hmax being the mean, minimum, and maximum elevations in a given
observation window, respectively.

The surface index combines the elevations from the DEM with the computed maps of
the hypsometric integral and surface roughness. This index allows for discriminating ele-
vated areas with low relief amplitude from areas with a more rugged topography e.g., [7,9].
In order to compute this index, rasters of elevations, the hypsometric integral, and the
surface roughness are normalized by their respective minimum and maximum values to
obtain pixels values between 0 and 1. We then combined the newly created rasters using
Equation (5):

SI = (hn × HIn) − SRn (5)
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with hn, HIn, and SRn being the normalized elevations, the hypsometric integral, and the
surface roughness values, respectively. Positive surface index values correspond to elevated
surfaces with low relief amplitude, while negative values highlight rugged landscapes.
Surface index values that are close to zero correspond to low amplitude surfaces with an
average elevation close to the regional base level.

3.2. Set Up of the Random Forest Algorithm for Landslide Susceptibility Assessment

Comparative studies have suggested machine learning algorithms as highly-predictive
performance approaches for assessing landslides susceptibility e.g., [64,65]. Among the
more commonly used machine learning algorithms (i.e., logistic regression, support vec-
tor machines, classification and regression trees [2]), the random forest algorithm (short
“random forest”) performed the best in the identification of areas prone to landslides [66].
Random forest [67] is based on the combination of decision trees (a type of supervised
machine learning algorithm where the data is continuously split according to a certain
parameter. A single tree can be explained by two entities, namely decision nodes and
leaves. The leaves are the decisions or the final outcomes and the decision nodes are where
the data is split) , such that each tree depends on the values of an independently-sampled
random vector. The results of the forest are the mode or the mean prediction of those
individual trees [67].

We selected the random forest algorithm to assess landslide susceptibility, and imple-
mented it as a supervised technique to solve a binary classification problem. The input
dataset consists of a group of selected predictive variables that are labelled “landslide” for
the location of landslide scarps registered in the landslide catalogue, and “non-landslide”
for a location without registered landslides. We balance the inherent imbalance condition of
the landslide occurrence by randomly selecting the same number of non-landslide locations
as landslide scarps, such that 50% of the input features are labelled as landslides and 50%
are not. We randomly split the input dataset into training (75%) and test (25%) sets. The
training set fits the random forest algorithm, and the test set evaluates the results.

The random forest hyperparameters control the structure of each individual tree,
as well as the structure and size of the whole forest [68]. An appropriate selection of
hyperparameters is crucial in avoiding bias and overfitting. Optimal values are situation
dependent: we optimized the hyperparameters listed in Table 1 while using a cross-
validation approach that ranks how well the algorithm performed using a predefined set of
parameters [69]. We selected the set of parameters with the best score for each combination
of predictive variables, i.e., the landslide susceptibility model. The number of trees in
the forest (100 trees) and the maximum number of levels in each decision tree (maximum
depth) stayed fixed.

Table 1. Random forest hyperparameter tuning.

Hyperparameter Definition

max_features Number of features considered for splitting a node.
min_sample_split Minimum number of observations in any given node in order to split the node.
min_sample_leaf Minimum number of samples that should be present in the leaf node after splitting a node.

Measures of variable importance have been suggested in the literature as support for
random forest’s result interpretation, i.e., counting the number of times that each variable is
selected by all individual trees, Gini importance, or permutation accuracy importance [70].
The random forest variable importance identifies the influence of a predictive variable in
the model results and the information that is gained from it. The Gini importance or mean
decrease impurity (MDI) [67] is defined as the total decrease in node impurity brought
by each predictor variable [71]. It measures the likelihood of incorrect classification of a
randomly chosen element [72]. We selected the MDI importance as the support tool for the
sensitivity analysis and the selection of highly informative observation windows.
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We implemented the random forest algorithm while using a python environment.
We relied on scikit-learn, an open-source library, which includes a wide range of tools for
machine-learning classification [71].

3.3. Sensitivity Analysis to Identify Highly Informative Observation Windows

Base model—in a first stage, we created two slightly different reference susceptibility
models (hereafter referred as “base model 1 and 2”). The first one (base model 1) includes
the state-of-the-art predictive variables, i.e., available thematic information, the simple
morphometric indices and the TWI. The second one (base model 2) includes the state-
of-the-art predictive variables and the distance from the channel and elevation above
channel. We used the best-resulting model as a benchmark for the evaluation metrics of the
landslide susceptibility models in an area where information is scarce because it includes
the minimum predictive variables that are used to describe landslide occurrences.

Fixed observation window—in a second stage, we tested the response of the landslide
susceptibility modeling to the window-based morphometric indices: local relief, surface
roughness, hypsometric integral, surface index, and topographic position index as a unique
source of information. We selected window sizes of ∼300 m (11 pixels), ∼1000 m, ∼5000 m,
∼10,000 m and ∼15,000 m (600 pixels) to compute all of the window-based morphometric
indices. This resulted in five landslide susceptibility models; each includes morphometric
indices with a fixed and unique window size. The range of trial observation windows was
guided by the fact that most of these indices provide limited additional information with
respect to slope for windows smaller than 11 pixels and the observation that the width of
the major valleys does not exceed 15 km in the Tian Shan.

Independent observation window—the use of a fix observation window for several
indices is a common approach in both landslide susceptibility [2] and tectonic geomor-
phology, e.g., [7–9]. This leads to identify patterns in the landscape at a reference scale.
However, our goal is to identify which observation window provides meaningful informa-
tion with respect to a landslide susceptibility model. Thus, we took the possibility that the
optimal window may differ for each index into account. Additionally, we need to consider
the fact that landscape representation may differ with the observation window size. For
instance, the same pixel may be located on top of a ridge inside a small moving window
and positioned at the bottom of a valley within a larger window size. Hence, a combination
of windows for the same index may be useful for fully characterizing the landscape. First,
we created a MDI importance ranking, which includes a variety of observation window
sizes for each window-based morphometric index. Subsequently, we used the MDI impor-
tance ranking to produce two models: a model that includes (1) the single most important
observation window, i.e., the observation window with the highest MDI mean importance
for each window-based morphometric index and (2) multiple highly-important observation
windows. We set a threshold of 75% on the normalized MDI importance ranking to each
window-based morphometric index to select the range of observation windows with a
strong impact on the result.

3.4. Evaluation Metrics

We evaluated the predictive capabilities of each combination of variables, i.e., the
landslide susceptibility model, by the area under the receiver operator curve (AUC-ROC)
and area under the precision-recall curve (AUC-PRC). AUC-ROC and AUC-PRC are cutoff-
independent performance methods that are more advantageous than accuracy statistics,
because a defined cutoff value is not required for its calculation. Consequently, the evalua-
tion can be assessed over the entire range of cutoff values ([73] and references therein). Both
of the metrics are based on cross-tabulation tables, containing the proportion of positive
data that are correctly (True Positive rate) or incorrectly (False Positive rate) classified. The
receiver operator curve (ROC) is a measure of the goodness of the model prediction. It is
a plot of the True Positive rate against the False Positive rate. The precision-recall curve
(PRC) measures the performance of the model on the interest class (landslides) by plotting
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the True Positive rate against the Positive predicted values (proportion of positive results
that are true positive). The PRC is rarely used in landslide susceptibility evaluation, but it
is highly recommended in cases where there is a strong unbalance in the data [74].

Decision-makers demand trustful landslide susceptibility models. Reliability is de-
fined as the extent to which a model yields the same results on repeated trials. For a given
model, changes in the training dataset modify the probability that is assigned to each pixel;
as a consequence, the landslide susceptibility map and associated predictive capabilities
differ. We ran 50 iterations of each susceptibility model based on a random selection of
the input dataset to characterize those discrepancies. At each iteration, we estimated the
AUC-ROC and AUC-PR, the MDI importance ranking of the predictive variables, and
the resulting landslide susceptibility spatial distribution. We used the average metrics,
i.e., mean AUC-ROC, mean AUC-PRC, and MDI mean importance ranking, in order to
perform the sensitivity analysis. Additionally, we propose a third evaluation metric to
estimates reliability. It is based on the spatial distribution of the standard deviation to the
mean landslide susceptibility at each location. The reliability metric is a support map that
characterizes how strong the change of the results is due to changes in the landslides that
are used to train the model.

4. Results
4.1. Predictive Variable

The compiled and created predictive variables aim to cover the most commonly
used thematic groups in landslide susceptibility assessment studies [2]. Table 2 presents
those thematic groups and summarizes the predictive variables and their significance.
Appendix A shows the the maps of the predictive variables.

Table 2. Datasets and interpreted relevance.

Thematic Group Predictive Variable Significance

Geology Geology Rock type association
Distance to fault Effects of seismicity and fragility on surface materials

Climatic Mean annual precipitation Soil saturation and rainfall trigger
Isothermality Seasonal temperature influence on rock fragility and

snow melting

Landcover Normalized Difference vegetation
index

Slope instabilities in relation to presence or absence of
vegetation

Hydrology
Elevation above channel Influence of gradient and potential energy
Distance to channel Influence of river erosion and deposition
Topographic wetness index Potential saturation

Geomorphology

Slope Potential energy to mobilize material
Aspect Effects of sun/wind exposition and favorable surfaces

for sliding
Local relief River incision
Topographic position index Separation of ridges, valley bottoms, and flats
Surface roughness Erosion
Hypsometric integral Characterization of degree of landscape erosion and

geomorphological evolution
Surface Index Discrimination between erosional and steady-state land-

scapes
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4.2. Sensitivity Analysis to Identify Informative Observation Windows
4.2.1. Base Models

Base model-1 results in acceptable predictive capabilities that were evaluated with
a mean AUC-ROC of 0.75 and a mean AUC-PRC of 0.72 (Figure 4). The MDI mean
importance suggests that both slope and geology take an important role in the predictions,
while NDVI and TWI appear to be less important. The predictive capabilities of base
model-2, which includes distance and elevation from channel, are higher (AUC-ROC of
0.79 and AUC-PRC of 0.78). Thus, both of these new predictive variables appear to be
important and improve the model. Base model-2 is used hereafter as a benchmark for the
evaluation metrics.

4.2.2. Fixed Observation Window

The sensitivity analysis of landslide susceptibility models that include the window-
based morphometric indices with a fix observation window reveals the impact of the
window size on the predictive capabilities. We registered a decrease as compared to the
based model-2 in the evaluation metrics when the smallest possible observation window
(300 m) is used (AUC-ROC of 0.76 and AUC-PRC of 0.69). Successively larger window sizes
gradually improved the evaluation metrics. The best performance model was obtained for
a observation window size of 5000 m, which surpasses both of the base models by more
than 0.1 units in the evaluation metrics (AUC-ROC of 0.89 and AUC-PRC of 0.88). On the
contrary, window-based morphometric indices with large observation windows (10,000 m
and 15,000 m) resulted in lower performance (AUC-ROC of 0.83 and AUC-PRC of 0.80;
AUC-ROC of 0.84; and, AUC-PRC of 0.81), but it still showed better metrics than the base
models (Figure 5).

Figure 4. Landslide susceptibility base models. Base model-1 includes the state-of-the-art predictive variables. Base model-2
includes the state-of-the-art predictive variables and the hydrological indices. (a) Mean decrease impurity (MDI) mean
importance for the predictive variables included in the models. (b) Evaluation metrics: mean area under the receiver
operator curve (AUC-ROC) and mean area under the precision-recall curve (AUC-PRC) from 50 iterations of the same
model using random selection of the training samples.

4.2.3. Independent Observation Window

Figure 6a shows the normalized importance ranking, which includes a variety of
observation window sizes for each window-based morphometric index. Highly-important
window sizes differ for each index and the whole range of proposed scales. Both the local
relief and surface index capture relationships with the landslide catalogue at a regional
observation window size of 12,775 m. Observation windows of 4275 m and 4775 m are most
significant for surface roughness, for which window sizes that are within a buffer of at most
600 m remain important—with slightly higher values for sizes that are local representations
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of the landscape. The hypsometric integral calculated with small observation windows is
an unfavorable representation; observations windows larger than 6775 m and smaller than
8775 m are recommended. The surface index with an observation window of 7275 m yields
a slight increase in importance, but it drops for smaller window sizes. Topographic position
indices calculated with observation windows in the range of 2275 m and 3275 m strongly
relate landscape characteristics to landslide occurrence. For the topographic position index,
the larger the observation window, the smaller its importance.

Figure 5. Fixed observation window landslide susceptibility models. Each model includes the window-based morphometric
indices: local relief, surface roughness, hypsometric integral, surface index, and topographic position index computed at a
fix and unique observation window. We selected fixed observation windows size of ∼300 m, ∼1000 m, ∼5000 m, ∼10,000 m
and ∼15,000 m. (a) MDI mean importance for the predictive variables included in the models. (b) Evaluation metrics: mean
area under the receiver operator curve (AUC-ROC) and mean area under the precision-recall curve (AUC-PRC) from 50
iterations of the same model while using random selection of the training samples.

The combination of (1) the single, most important, independent observation window,
and (2) multiple, independent observation windows for each morphometric index resulted
in highly predictive landslide susceptibility models (AUC-ROC of 0.89 and AUC-PRC of
0.86; AUC-ROC of 0.89; and, AUC-PRC of 0.87, respectively). Both of the models (Figure 6c)
are comparable in AUC-ROC to the model that uses window-based morphometric indices
computed at a fixed 5000 m observation window, but they differ in AUC-PRC.

4.3. Landslide Susceptibility Map and Reliability

We created and evaluated several landslide susceptibility models. The difference
between the evaluation metrics mean AUC-ROC and mean AUC-PRC decreases with the
increase of the predictive power, but it never reaches an equal value (Figures 4–6). The
AUC-PRC is consistently lower than the AUC-ROC, but both are useful in identifying
informative observation windows.

A landslide susceptibility map displays the spatial distribution of the probability of the
occurrence of a landslide. Figure 7 shows the landslide susceptibility maps from the best
performing landslide susceptibility models. The models are those that use: (a) slope, aspect,
geology, distance to fault, NDVI, precipitation, isothermality, TWI, distance from channel,
and elevation above channel, i.e., the base model-2, (b) only window-based morphometric
indices with a fixed observation window, and (c) only window-based morphometric
indices with multiple and independent observation windows. Low landslide susceptibility
(susceptibility < 50%) occurs in low relief areas, i.e., the Fergana and Tajik basins, and the
area between the Vakhsh and Panj river. Highly-susceptibility (susceptibility > 50%) differs
from one model to the other.
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The base model-2 predicts a homogeneous distribution of the landslide susceptibility
(Figure 7a, left column). Most of the mountainous areas have a probability of 40% to
60%. Highly susceptible areas (susceptibility >50%) appear as strips along specific valleys,
e.g., south of the Zeravshan river; they tend to be located on middle slope positions, but
locally span entire ridges, e.g., along the northwest-facing piedmont of the Tian Shan.
The model that includes window-based morphometric indices with a fixed observation
window at 5000 m displays high probabilities that cluster in patches, being surrounded
by intermediate probabilities (Figure 7b, left column). This has higher resolution, i.e., it
reveals more detail than the one that was obtained from the base model-2. Differently, the
spatial distribution of areas prone to landslides from the model that uses a combination
of multiple and independent observation windows (Figure 7c, left column) highlights
regional extensive, but specific, areas with high susceptibility; they include valleys, slopes,
piedmonts, and erosional fronts.

Figure 6. MDI importance ranking, which includes a variety of observation window sizes for each window-based morpho-
metric index and landslide susceptibility models that include the window-based morphometric indices calculated with
highly-informative, independent observation windows. The first model includes the single, most important window size for
each window-based morphometric index. The second model includes the window-based morphometric index calculated
with multiple, highly-important, independent observation windows. To select a range of observation windows with a
strong impact on the results, we set a threshold of 75% on the normalized MDI importance ranking. (a) Normalized MDI
mean importance ranking of each morphometric index. (b) MDI mean importance for the predictive variables that were
included in the models. (c) Evaluation metrics: mean area under the receiver operator curve (AUC-ROC) and mean area
under the precision-recall curve (AUC-PRC) from 50 iterations of the same model while using a random selection of the
training samples.

The reliability map highlight locations with a strong dependency on the training
data. Similar to the distribution of landslide susceptibility, low reliable areas (standard
deviation > 5 units) comprise strips in the base model-2 (Figure 7a, right column); those
strips spatially coincide with highly-susceptible locations. The model that uses window-
based morphometric indices with a fix observation window of 5000 m outlines the crests
and the upper and middle slope positions of the Tian Shan as weakly reliable (Figure 7b,
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right column); the bottom of the valleys, with low landslide susceptibility, are evaluated as
being reliable. The model that includes multiple and independent observation windows
for each window-based morphometric index yields the most reliable results. Only a few
highly-susceptible areas, which are located at crests and upper slopes position, evaluate
with high standard deviation values. Landslide susceptibility results on piedmonts have
particularly low reliability; this is worrisome, as Tajikistan’s capital city is located on a
piedmont (Figure 7c, right column).

Figure 7. Mean landslide susceptibility and reliability maps from the best performing models classified by the sensitivity
analysis. (a) Base model-2 that includes slope, aspect, geology, distance to fault, NDVI, precipitation, isothermality, TWI,
distance from channel and elevation above channel as source of information. (b) Model that includes the window-based
morphometric indices calculated with an observation window fixed at 5000 m. (c) Model that includes the window-based
morphometric indices that are calculated with multiple and independent observation windows. Left: mean landslide
susceptibility map from 50 iterations of the same model. Right: standard deviation to the mean landslide susceptibility from
50 iterations of the same model.
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5. Discussion
5.1. General Observations

Landslide susceptibility models often rely on morphometric parameters that are de-
rived from digital elevation models. Their use is based on the assumption that topography
reflects landslide causative factors. Our results suggest that models using morphometric
indices as the only source of information provide highly-predictive and reliable landslide
susceptibility models in data-poor environments; this is in line with previous studies [3,11].
However, considerations regarding the physical meaning of the morphometric indices and
the optimal size of the observation windows need to be addressed.

Several authors used proximity indices to relate landslides with rivers and faults –>
([2] and references therein). Our results suggested that a proximity calculation that is based
on the flow path for hydrological indices (elevation above channel and distance form chan-
nel; included in base model-2) is adequately linking geomorphological and hydrological
processes that are related to local soil water conditions [49,75]. Consequently, the predictive
capability is considerably increased in the extended base model-2 in comparison to base
model-1 (Figure 4).

The sensitivity analysis reveals a strong effect of the observation window on the
predictive capabilities of landslide susceptibility models when using window-based mor-
phometric indices. Small observation windows (∼300 m, ∼1000 m) do not provide addi-
tional information that is beyond that already implemented in the base models and, thus,
they have comparable AUC-ROC and AUC-PR. Slope-like landscape representation and
characteristics are obtained for window-based morphometric indices with small observa-
tion windows. Large observation windows (∼15,000 m) increase the evaluation metrics
compared to the base models, but the improvement might be related to a generalization
of the landscape characteristics. Large observation windows promote the separation of
low elevation and flat areas (e.g., the Fergana and Tajik basins) with low landslide suscep-
tibility from elevated and rugged areas where landslides are common. The use of large
observation windows facilitates the computational solution by simplifying the problem,
but these solutions may not represent the detailed relationships between the conditioning
factors and landslide occurrence, required for a reliable landslide susceptibility assessment.
A fix observation window of ∼5000 m improved the predicting capabilities of the models
most. This is in line with existing studies –> ([76] and references therein), which suggest
the use of variables at mesoscales to predict landslide occurrences.

The landslide susceptibility models that use either a fix observation window or a
combination of independent observation windows are comparable in their predictive capa-
bilities, but they strongly differ in their landslide susceptibility distribution and reliability.
The uneven spatial distribution of these two highly-predictive models (Figure 7b,c) reflects
the need of adapted evaluation metrics and in-depth studies on the role of scale on the
quality of the landslide susceptibility maps. Areas classified as highly susceptible (sus-
ceptibility > 50%) by the model with an observation window fixed at 5000 m are spatially
limited and describe only parts of the documented landslides. Additionally, the high
fluctuation in the standard deviation highlights the strong dependency of the landslide
susceptibility results on the training data. The landslide susceptibility distribution and
standard deviation both indicate the lack of robustness of the results when the relationship
between the landscape characteristics and the landslide occurrence is only determined at a
single scale. Our preferred explanation is that the constant-scale models provide a limited
representation of the high variability in the landslides of the study area. In contrast, the
use of multiple, scalable, and independent observation windows describes the specific
landslide characteristics that are implicit in the variety of landslide types and areal extent,
while preserving a general description of the landslide distribution. As a consequence of
the more complete representation of the factors that causes landslides at different scales,
the spatial distribution of the landslide susceptibility only slightly fluctuates with changes
in the training data, evidencing the robustness and reliability of the approach.
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Landslide catalogues are usually biased towards areas with known high landslide
susceptibility. The construction of our landslide catalogue combined studies that were
carried out at different scales; thus, some areas are better represented than others in terms
of number and areal extent of the landslides. Our methodology reduces this bias, due to
the identification of meaningful scales, i.e., observation windows, for individual window-
based morphometric indices. A model that includes different observation windows for
each window-based morphometric index highlights scales at which each index plays a
relevant role in the landslide distribution (Figure 6a). The drawback of computing several
indices with diverse observation windows is mitigated by the optimization and automation
of the window-based morphometric indices calculation.

The usage of the mean decrease impurity (MDI) as the general indicator of feature
importance has been discussed in literature e.g., [67,70,77,78]. Some empirical studies,
e.g., [70,79], indicated that the MDI approach leads to a systematic preference of features
with many categories, e.g., geology, soil-type, and land-use. This is an important limitation
when studies involve variable data types or categorical variables [39]. In our analysis that
is based on numerical features, the MDI proved to be robust and consistent for ranking the
predictive variables. Aspect, isothermality, and topographic wetness index obtained a low
MDI importance in all of the tested models, while the topographic position index, local
relief, elevation above channel, and geology attained high MDI importance (Figures 4–6).

Regional-scale landslide susceptibility was assessed by Havenith et al. [75] for the
Tajik and Kyrgyz Tian Shan and by Saponaro et al. [80] for the Uzbek Tian Shan. Both of the
studies aimed to include active tectonics as a predictive variable. Saponaro et al. [80] used a
landslide susceptibility index approach and added seismic intensity, which was calculated
at country scale, to the commonly-used predictive variables of slope, aspect, curvature,
geology, and distance to faults. Havenith et al. [75]’s database consists of landslide and
earthquake catalogues, both being combined in a landslide factor approach, in order to
estimate landslide susceptibility. Our study is the first attempt to use a machine learning
technique to assess landslide susceptibility in the Tian Shan. As the existing studies, we
included the effects of active deformation by selecting the morphometric indices used
in tectonic geomorphology to infer the interactions between surface deformation and
landscapes.

To be able to compare the landslide susceptibility maps that were created by the
different approaches, we set up a model that represents the areas characterized as highly
susceptible in two previous studies [27,75]. Our base model-2 (Figure 7a) actually yields
similar results to those of Havenith et al. [75]; their and our approach highlight highly-
susceptible areas in the Zeravshan and Vakhsh valleys (Figure 7a).

5.2. Contribution of Predicting Variables to the Landslide Susceptibility Models

Geology and distance to faults are important factors. The Cretaceous, Jurassic, Triassic,
Carboniferous, Devonian, and Silurian (meta-)sedimentary rocks, comprising conglom-
erates, sandstones, dolomites, clays, and siltstones, feature more landslides (Appendix B.
Landslide density) than the igneous rocks. Our field observations support the analytical
results. The proximity to faults is commonly used to infer the degree of rock brecciation. A
distance of up to 10,000 m influences the landslide occurrence in the southwestern Tian
Shan (Appendix B. Landslide density). Current seismicity outlines the major active faults
that bound the Tian Shan but is weak along the faults within the Tian Shan e.g., [81]. Thus,
the proximity to fault is likely not an appropriate way to relate landslides to seismicity. De-
spite the high relevance of geological information in the landslide susceptibility assessment,
highly predictive models were not obtained while using these datasets. Several studies
suggested a statistically-significant relationship between morphometric indices and rock re-
sistance or the erosional pattern of specific lithologies for a given area, e.g., [9,82]. Likewise,
the usefulness of morphometric indices in tectonic geomorphology studies has widely been
documented, e.g., [7–9]. Our results suggest that window-based morphometric indices can
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be used to identify landscape characteristics that are associated with lithological changes
or tectonic activity, and they may replace sparse or imprecise geological information.

The role of the slope angle has been widely discussed in the literature on landslide
susceptibility assessment, e.g., [3,29,51,83]. Slope angle controls the balance between
retaining and destabilizing forces [50]. Nevertheless, whether to use slope angle or other
DEM derivative for regional analysis of landscape processes is open to discussion [2]. The
main limitation of slope lies in its observation window size: 3 × 3 pixels. This window
adequately assesses local processes, but provides a limited understanding of large-scale
processes. For instance, Carrara et al. [29] excluded slope angle from their landslide
susceptibility analysis in the Tescio basin of Italy, where landslides preferentially occur
along low-angle slopes. Our results show the importance of slope on the Base model-
1, which is based on the most common predictive variables described in the literature,
e.g., [2,51]. Our results acquaint the importance of having DEM derivatives that capture
entire slope profiles and not only local slope [2]; however, the slope is useful in the absence
of any better variable.

MDI values that are associated to aspect are consistently low for the base mod-
els (Figure 4. Landslides are predominantly located on NE-, SE-, and SW-facing slopes
(Appendix B. Landslide density). These slope orientations are very common, because the
relief of the southwestern Tian Shan is dominated by E-trending valleys, which, in turn, are
controlled by the orientation of geological and structural features (i.e., lithological contacts,
bedding, foliation, faults, and folds). Thus, aspect provides little additional information
regarding the location of landslides.

The areas that are prone to water accumulation represented by the TWI are rather
homogeneously distributed within each of the main physiographic domains, i.e., the
ranges of the Tian Shan, and the Fergana and Tajik basins (Figure A4. Hydrological indices).
This may be the cause for its low significance as a predicting variable within our models
(Figure 4).

The range of NDVI values describes well the vegetation changes that are imposed by
climate, topographic height, and aspect. Yet, this parameter has no discriminating power
in this study. Apart from the often irrigated valley bottoms, vegetation is sparse, due to the
arid conditions in this mountainous region. Additionally, many slopes are screes covered,
which prevents the fixation of vegetation and, thus, the protective effect of deeply-rooted
plants is limited.

The contribution of the precipitation (mean annual precipitation) and the isothermality
to the landslide susceptibility models is low. While weather conditions influence slope
stability, the used datasets are likely not representative for the climatic conditions that
cause landslides in the Tian Shan. First, precipitation and isothermality were computed
as a mean of the data covering 1979–2013, while some of the landslides in our catalogue
have been emplaced hundredsm, if not thousands, of years earlier. Second, the use of
precipitation and isothermality do not account for extreme events, which likely trigger
most mass movements. For instance, the 2012 outburst of the Teztor glacial lake complex
(northern Kyrgyzstan) was caused by intense precipitation and rapid increase in the air
temperatures in the days preceding the event [84]. This resulted in an increase in water
volume over a short time and triggered the outburst flood and related debris flows. Finally,
the relationship between precipitation and surface runoff is convoluted by the fact that
most of the precipitation in the Tian Shan occurs as snow or is stored in glaciers, which act
as a buffer for runoff [13,85].

Among the highly-important predictive variables are those that are closely related
to the vertical component of the landscape, i.e., topographic position index, elevation
above channel, and local relief, followed by geology and distance to faults. They roughly
represent the main conditioning factor in the morphology of the Tian Shan, namely rapid
erosion due to active tectonics and a change in river base levels.

This contribution indicates that, among all of the highly-predictive landslide suscepti-
bility models, only a few were able to identify the source of landslides with either a small
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or a large areal extent. Figure 8 shows an area that is located at the western piedmont of
the southwestern Tian Shan. This area is classified as highly susceptible (landslide suscep-
tibility > 50) by all models. This concurs with the presence of landslides covering a wide
range of areal extent. The best models, i.e., (a) base model-2, the model with (b) a fix 5000 m
observation window size, and (c) the combination of multiple independent observation
windows, identified the source of the rockslide that dammed Iskander lake. However,
the cluster of landslides located in the northwest of this area was only identified by the
model that includes multiple, independent observation windows for each window-based
morphometric index. The collection of variable scales used to calculate the morphometric
indices allows for depicting the landslide characteristics inherited in the different areal
extents of landslides, therefore improving their identification and prediction.

Figure 8. Mean landslide susceptibility map in an area located at the western piedmont of the southwestern Tian Shan,
south the Zeravshan river. This area contains landslides with variable size. Solid line and white filling: Landslide polygon.
Black filling: Landslide scarp. The landslide susceptibility models are trained and evaluated on the landslide scarp. (a) Base
model-2 that includes slope, aspect, geology, distance to fault, NDVI, precipitation, isothermality, TWI, distance from
channel, and elevation above channel as source of information. (b) Model that includes the window-based morphometric
indices calculated with an observation window fixed at 5000 m. (c) Model that includes the window-based morphometric
indices calculated with multiple and independent observation windows.
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5.3. Evaluation Metrics

The evaluation metrics AUC-ROC and AUC-PRC provide valuable guidance for un-
derstanding the importance of a particular observation window for the model predictive
capabilities. They are sensible enough to identify meaningful observation windows and
their best combination. However, the high-performance models display distinctly different
landslide susceptibility distributions. Previous studies reported the need of a different
scheme in order to evaluate landslide susceptibility models e.g., [73,86], and questioned
the usability of the ROC as a reliable tool to compare landslide susceptibility results [87].
We admit the limitations of the evaluation metrics ROC and PRC and adopted a simple
yet meaningful additional metric: the standard deviation from the mean landslide suscep-
tibility. The standard deviation susceptibility maps (Figure 7, right column) support the
selection of highly-predictive models by the estimation of their reliability. Landslide sus-
ceptibility maps with high standard deviation values are less reliable, because the landslide
susceptibility distribution strongly depends on the selection of the training data. The spa-
tial distribution of the standard deviation helps to evaluate the reliability of the landslide
susceptibility degree at areas of interest, thus supporting decision makers. The time and
computational power needed to create enough models is a drawback of this approach, but
optimization and parallelization of the workflows reduce the computation time.

5.4. Portability and Reproducibility

Although our methodological approach is tailored to the data from the southwestern
Tian Shan, the concept of utilizing indices that are commonly used for tectonic geomorphol-
ogy can be adapted to other mountainous regions. The ease of access to digital elevation
data makes this approach relevant to areas with limited thematic data because from these
widely-available data, different proxies for landslide conditioning factors can be derived
and tested. Window-based morphometric indices are a rich source of information for
tackling the problem of data scarcity in landslide susceptibility modeling. Our methodol-
ogy includes data-driven guidance to (1) identify highly-informative predictive variables
from the available datasets and (2) select highly-informative observation window sizes to
compute window-based morphometric indices as multi-scale predictive variables.

6. Conclusions

The prediction of areas prone to landslides and, thus, the planning for mitigation
measures rely on accurate landslide susceptibility maps. Their formulation requires an
understanding of the causative/predisposing factors and their spatial distribution, but
detailed databases are often lacking at the appropriate country scale or are scarce for
mountainous areas. We propose a portable methodology that is based on the utilization
of DEM-based morphometric indices and the identification of the optimal observation
window size for their calculation. We obtained significant improvements in the predictive
capabilities when these indices are included.

Landslides form part of a complex system, including, but not limited to, chemical
weathering, soil saturation, river erosion, precipitation, and earthquakes. We suggest that
window-based morphometric indices that are calculated with a variety of independent
observation windows improve landslide susceptibility maps, because they are able to
capture many of the geomorphological processes associated with landslides. Window-
based morphometric indices with multiple, meaningful, and independent observation
windows reveal high susceptible areas, where a low number of landslides has been mapped,
e.g., due to an incomplete record.

Policymakers and communities require properly validated and tested landslide sus-
ceptibility models in order to make decisions; thus, it is important that uncertainties in these
models are captured and properly communicated. The ROC and PRC evaluation metrics
show robustness and usability to select the observation window size for the window-based
morphometric indices, but they have limitations in assessing the quality and reliability of
the landslide susceptibility maps. We present the standard deviation of the mean landslide
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susceptibility as a simple yet powerful approach for representing uncertainties and linking
them to the landslide susceptibility maps.

Hence, while landslide susceptibility assessment still presents challenges, we demon-
strate the potential of morphometric indices to improve prediction accuracy in remote and
information poor areas. The presented approach can be implemented in other regions with
an available landslide catalogue and a digital elevation model.
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Appendix A. Datasets

Figure A1. Geology and structure.
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Figure A2. Climatic indices.

Figure A3. Land cover.
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Figure A4. Hydrological indices.



Remote Sens. 2021, 13, 451 24 of 30

Figure A5. Simple morphometric indices.



Remote Sens. 2021, 13, 451 25 of 30

Figure A6. Cont.
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Figure A6. Window-based morphometric indices calculated with their most important observation window, i.e., Local
relief: 12,775 m; surface roughness: 4775 m; hypsometric integral: 7775 m; surface index: 12,775 m; topographic position
index: 2775 m.

Appendix B. Landslide Density

We used the normalized landslide density proposed by [75] as an exploratory tool to
better understand the relationship between the available information in the study area and
the landslide catalogue. It is a common practice to analyze predictive variables classified
on intervals determined by expert knowledge [2]. This is intuitive but subjective. To
overcome the subjectivity in the discretization of the variables, we divided the continuous
predictive variables, e.g., slope, aspect, and distance from fault, into 59 equal intervals. As
a result, we obtain a smooth normalized landslide density distribution by the computation
with equation Equation (A1). For the geology—the only categorical variable used in this
contribution—the same equation was used.

LandslideDensityclass =
NLandslidesclass

NLandslides
× NPixels

NPixelsclass
(A1)
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with NLandslidesclass, NLandslides, NPixels, and NPixelsclass, being the number of land-
slide pixels in the class, total number of landslide pixels, total number of pixels in the
predictive variable, and number of pixels in the class, respectively.

A class with a normalized landslide density of 1 indicates an average landslide density
for the predictive variable class. Lower values represent a landslide density below average,
while values above 1 indicate a landslide density above average.

Figure A7. Landslide density

References
1. Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale.

Geomorphology 2005, 72, 272–299. [CrossRef]
2. Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models.

Earth Sci. Rev. 2018, 180, 60–91. [CrossRef]

http://doi.org/10.1016/j.geomorph.2005.06.002
http://dx.doi.org/10.1016/j.earscirev.2018.03.001


Remote Sens. 2021, 13, 451 28 of 30

3. Fabbri, A.G.; Chung, C.J.F.; Cendrero, A.; Remondo, J. Is prediction of future landslides possible with a GIS? Nat. Hazards 2003,
30, 487–503. [CrossRef]

4. Marchesini, I.; Ardizzone, F.; Alvioli, M.; Rossi, M.; Guzzetti, F. Non-susceptible landslide areas in Italy and in the Mediterranean
region. Nat. Hazards Earth Syst. Sci. 2014, 14, 2215–2231. [CrossRef]

5. Burrough, P.A.; McDonnell, R.; McDonnell, R.A.; Lloyd, C.D.Principles of Geographical Information Systems; Oxford University
Press: Oxford, UK, 2015.

6. Shahzad, F.; Gloaguen, R. TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 2: Surface dynamics and basin
analysis. Comput. Geosci. 2011, 37, 261–271. [CrossRef]

7. Andreani, L.; Stanek, K.; Gloaguen, R.; Krentz, O.; Domínguez-González, L. DEM-based analysis of interactions between tectonics
and landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic). Remote. Sens. 2014, 6, 7971–8001.
[CrossRef]

8. Domínguez-González, L.; Andreani, L.; Stanek, K.; Gloaguen, R. Geomorpho-tectonic evolution of the Jamaican restraining bend.
Geomorphology 2015, 228, 320–334. [CrossRef]

9. Andreani, L.; Gloaguen, R. Geomorphic analysis of transient landscapes in the Sierra Madre de Chiapas and Maya Mountains
(northern Central America): implications for the North American–Caribbean–Cocos plate boundary. Earth Surf. Dyn. 2016,
4, 71–102. [CrossRef]

10. Othman, A.A.; Gloaguen, R.; Andreani, L.; Rahnama, M. Improving landslide susceptibility mapping using morphometric
features in the Mawat area, Kurdistan Region, NE Iraq: Comparison of different statistical models. Geomorphology 2018,
319, 147–160. [CrossRef]

11. Conforti, M.; Ietto, F. Influence of tectonics and morphometric features on the landslide distribution: A case study from the
Mesima Basin (Calabria, South Italy). J. Earth Sci. 2020, 31, 393–409. [CrossRef]

12. Aizen, E.M.; Aizen, V.B.; Melack, J.M.; Nakamura, T.; Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes
of Asia. Int. J. Climatol. J. R. Meteorol. Soc. 2001, 21, 535–556. [CrossRef]

13. Pohl, E.; Gloaguen, R.; Seiler, R. Remote sensing-based assessment of the variability of winter and summer precipitation in
the Pamirs and their effects on hydrology and hazards using harmonic time series analysis. Remote. Sens. 2015, 7, 9727–9752.
[CrossRef]

14. Havenith, H.B.; Strom, A.; Torgoev, I.; Torgoev, A.; Lamair, L.; Ischuk, A.; Abdrakhmatov, K. Tien Shan geohazards database:
Earthquakes and landslides. Geomorphology 2015, 249, 16–31. [CrossRef]

15. Brookfield, M. Geological development and Phanerozoic crustal accretion in the western segment of the southern Tien Shan
(Kyrgyzstan, Uzbekistan and Tajikistan). Tectonophysics 2000, 328, 1–14. [CrossRef]

16. Worthington, J.R.; Kapp, P.; Minaev, V.; Chapman, J.B.; Mazdab, F.K.; Ducea, M.N.; Oimahmadov, I.; Gadoev, M. Birth, life, and
demise of the Andean–syn-collisional Gissar arc: Late Paleozoic tectono-magmatic-metamorphic evolution of the southwestern
Tian Shan, Tajikistan. Tectonics 2017, 36, 1861–1912. [CrossRef]

17. Käßner, A.; Ratschbacher, L.; Jonckheere, R.; Enkelmann, E.; Khan, J.; Sonntag, B.L.; Gloaguen, R.; Gadoev, M.; Oimahmadov, I.
Cenozoic intracontinental deformation and exhumation at the northwestern tip of the India-Asia collision—southwestern Tian
Shan, Tajikistan, and Kyrgyzstan. Tectonics 2016, 35, 2171–2194. [CrossRef]
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