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Abstract: In this short communication, we describe the shortcomings and pitfalls of a commonly
used method to detect ground materials that relies on setting thresholds for normalized difference
indices. We analyze this method critically and present some experimental results on the USGS and
ECOSTRESS spectral libraries and on real Sentinel-2 and Landsat-8 images. We demonstrate the risk
of commission errors and provide some suggestions to reduce it.

Keywords: normalized difference vegetation index; normalized difference water index; normalized
difference soil index

1. Introduction

Normalized difference indices (NDIs) are widely used in the field of remote sensing.
Well known examples include the normalized difference vegetation index (NDVI) [1], the
normalized difference water index (NDWI) [2,3] and the normalized difference soil index
(NDSI) [4]. There are several variants of these, and some scholars have pointed out the
functional equivalence among different types of indices [5,6]. Many studies directly apply
thresholds to NDIs to detect specific ground materials (e.g., vegetation, soil, water, build-up
areas) or use thresholds on NDIs as a preliminary step for future analysis [3,4,7–17]. This
short communication describes the shortcomings and risks of such a simple binary classifi-
cation method, especially when applying it in complex heterogeneous environments or
large areas.

2. Analysis

An NDI is generally designed as the ratio of the difference between reflectance values
in two bands and the sum of the same values:

NDI =
ρ1 − ρ2

ρ1 + ρ2
(1)

where ρ1 and ρ2 are the reflectance at two specific bands for the specific ground material.
For example, for NDVI, ρ1 and ρ2 denote the reflectance at the near-infrared (NIR) and
red bands, respectively. For NDWI, ρ1 and ρ2 denote the reflectance at the green and NIR
bands, respectively. A simple ratio index corresponding to an NDI is generally defined as:

RI =
ρ1

ρ2
(2)
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Many applications identify a specific material by applying a threshold to a calculated
NDI. For example, if a pixel has an NDVI value larger than a specified threshold, it will be
regarded as vegetation. Such simple binary classification methods have been widely used.
However, as NDI = (RI − 1)/(RI + 1), NDI > T is functionally equivalent to RI > T′,
where T is the specified threshold and T′ = (1 + T)/(1− T). Therefore, for a simple
binary classification, there is actually no difference between using T for NDI and using
T′ = (1 + T)/(1− T) for RI.

There are two shortcomings of NDIs. First, although the ratio definition can help to
reduce the effect of the solar zenith angle and can suppress topographic effects, the physical
reflectance magnitude is not taken into consideration. For example, the same NDWI value
can be obtained using both (ρgreen = 0.045, ρNIR = 0.03) and (ρgreen = 0.75, ρNIR = 0.5).
Water is nevertheless highly absorbent in NIR, and its reflectance in that spectrum is
physically small. In spectral libraries, most of the standard water spectra indeed show
reflectance values of less than 0.05 in NIR. Second, only two bands are involved in cal-
culating an NDI, disregarding the reflectance at other bands. As a specific ground ma-
terial generally demonstrates a characteristic reflectance curve, using only two bands
cannot sufficiently capture the characteristics of the spectral curve, and this will increase
the risk of misidentifying other materials as the material in question. For example, the
same NDVI value is obtained using both (ρNIR = 0.66, ρred = 0.25, ρblue = 0.26) and
(ρNIR = 0.66, ρred = 0.25, ρblue = 0.54). Nevertheless, vegetation is highly absorbent in
blue, and thus its reflectance in this spectrum is physically small. Therefore, the latter
spectral signature cannot be vegetation even though its NDVI value of 0.45 is larger than a
commonly used threshold for vegetation detection. Due to these two reasons, there is a
risk that many other materials may be misidentified by applying a threshold only on an
NDI, especially in complex heterogeneous environments or large areas.

3. Experiments

In the literature, NDIs have generally been proposed for the Landsat series of satellites.
They were derived by observing and analyzing a set of spectra of different ground materials
that were collected in a few study areas. Their characteristics have been validated locally.
With the development of large spectral libraries in recent years, such as the USGS spectral
library [18] and ECOSTRESS [19], standard spectral datasets have become available to re-
examine the effects and risks of these indices. In addition, remote sensing cloud platforms
such as Google Earth Engine now provide global images to evaluate NDIs at a large spatial
scale. In our experiments, we validated the NDI approach first with spectral libraries and
then with Landsat-8 and Sentinel-2 images, which are two of the most widely used medium
spatial resolution multispectral sensors. We validated NDIs for three main land cover
classes: vegetation (NDVI), water (NDWI) and soil (NDSI). These NDIs are defined as:

NDVI =
ρNIR − ρred
ρNIR + ρred

(3)

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(4)

NDSI =
ρMIR − ρNIR

ρMIR + ρNIR
(5)

The same validation procedure can be performed for variants of these indices and
for some other indices that have been proposed for other ground materials. We used the
threshold values of 0.3 for NDVI, and 0 for NDWI and NDSI, which are commonly used or
suggested in the literature [2,3,9,20,21]. In addition, we used other threshold values ranging
from 0 to 0.4 in order to demonstrate changes in performance. Due to space constraints, a
selection of our main results is presented in this short technical note, while the other results
are provided in the Supplementary Materials.
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3.1. Results on Spectral Libraries

We first validated NDVI, NDWI and NDSI using the USGS and the ECOSTRESS
spectral libraries. Because NDIs were generally proposed for the Landsat satellites or
similar medium resolution multispectral sensors, we used the speclib07 libraries that are
resampled to broad-band Landsat-8 and Sentinel-2. We used the central wavelengths of
Landsat-8 bands for the ECOSTRESS spectral library and the speclib07 library convolved
to ASD standard resolution to compute corresponding narrow-band NDIs. Specifically, the
central wavelengths of 480 nm, 560 nm, 655 nm, 865 nm and 1610 nm were used for the
blue, green, red, NIR and MIR bands, respectively.

Regarding recall performance, most of the vegetation, water and soil spectra can be
successfully identified with the corresponding NDVI, NDWI and NDSI. For example, in
the ECOSTRESS library, 537 out of 544 vegetation spectra were successfully identified using
NDVI with a threshold value of 0.3, 40 out of 41 soil spectra were successfully identified
by NDSI with a threshold value of 0, and all 6 water spectra were successfully identified
by NDWI with a threshold value of 0 (Table 1). When the threshold values for an NDI are
increased, the recall decreases. For example, when the threshold value was increased to 0.2
for NDSI, only 16 out of 41 soil spectra in the ECOSTRESS library were identified, and only
33 out of 175 soil spectra in the speclib07 Landsat-8 spectral library were identified. In the
ECOSTRESS library, none of the water spectra were identified when the threshold value
was increased above 0.1, and only 11 out of 22 liquid spectra were identified by NDWI in
the speclib07 Landsat-8 spectral library when a threshold value of 0.1 was used. Please
refer to Tables S1–S12 for detailed numerical results.

Table 1. Number of spectra identified as specified materials with different normalized difference
indices (NDIs) using various threshold values on the ECOSTRESS spectral library.

Material Number Water (NDWI > 0) Vegetation (NDVI > 0.3) Soil (NDSI > 0)

Manmade 45 9 4 34

Mineral 857 243 9 557

NPV 52 0 26 37

Rock 380 106 2 252

Soil 41 0 7 40

Vegetation 544 0 537 5

Water 6 6 0 0

Recall 1.00 0.99 0.98

Precision 0.02 0.92 0.04

Although the recall (omission error) is generally acceptable for an NDI with an appro-
priate threshold, we observed that the precision (commission error) is not as high as one
generally expects. For example, in the speclib07 Landsat-8 spectral library, 250 (out of 886)
mineral spectra, 56 (out of 142) organic spectra and 40 (out of 278) artificial materials were
misidentified as water by NDWI (Table 2). In contrast to the general expectation that land
cover classes other than vegetation have low NDVI values, there are 49 artificial material
spectra, 1 liquid spectrum, 16 mineral spectra, 7 organic spectra and 3 soil spectra that were
misidentified by NDVI in the speclib07 Landsat-8 spectral library. These non-vegetation
materials have a higher reflectance in the NIR band than in the red band (see Table S3 and
Figures S1–S3).
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Table 2. Number of spectra that are identified as specified materials with different NDIs using
various threshold values on the USGS spectral library (spectra resampled to Landsat-8 bands).

Material Number Water (NDWI > 0) Vegetation (NDVI > 0.3) Soil (NDSI > 0)

Artificial 278 40 49 142
Coatings 12 0 0 12
Liquids 22 15 1 0

Minerals 886 250 16 615
Organic 142 56 7 15

Soils 175 21 3 118
Vegetation 285 2 212 123

Recall 0.68 0.74 0.67
Precision 0.04 0.74 0.12

We also observed that there are some materials that were simultaneously identified
by more than one NDI. For example, in the ECOSTRESS spectral library, there are 47 rock
spectra and 8 manmade spectra that were both identified as water and soil (see Table S13).
For the speclib07 Landsat-8 spectral library, there are 183 mineral spectra, 14 artificial
material spectra and 15 soil spectra that were identified as water and soil simultaneously
(see Table S15). More detailed results are included in the Supplementary Materials.

3.2. Results on Spaceborne Remote Sensing Images

In the experiments that we conducted on measured Landsat-8 and Sentinel-2 satellite
images, we also observed that there is an obvious commission error for some NDIs. For
example, Figure 1a shows an extract of the Sentinel-2 image shown in Figure S8, which
covers the Beijing area, China. The blue colored rooftops that can be seen in this area
were mostly misidentified as both vegetation and soil using NDVI and NDSI (Figure 1b).
However, they are manmade materials and should be classified as impervious surfaces in
some urban land cover typologies. Figure 1c shows a high-resolution image of this area on
Google Earth. The corresponding Landsat-8 image (Figure 1d) shows that some of these
blue rooftop materials were also misidentified as both vegetation and soil. Visually, the
number of misidentifications on the Landsat-8 image appears to be less than that on the
Sentinel-2 image. As Landsat-8 has a coarser spatial resolution than Sentinel-2, the impact
of the mixed pixel phenomenon is higher in Landsat-8 images, and this could lead to a
stronger modification of the spectral characteristics of mixed pixels, making them more
distinct from pure pixels. More results on Landsat-8 and Sentinel-2 images in other areas
globally are included in the Supplementary Materials (see Figures S8–S16).
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Figure 1. (a) True-color (red–green–blue) composite of Sentinel-2 image; (b) pixels that were both identified as vegetation
and soil in (a); (c) true-color (red–green–blue) composite of Google Earth image; (d) true-color (red–green–blue) composite
of Landsat-8 image; (e) pixels that were both identified as vegetation and soil in (d). Note that all the images in this figure
are zoomed to be the same size for an easy comparison.

Shadow has a negative effect on NDIs in real-world applications, especially in urban
and high mountain areas. For example, Figure 2a shows a Sentinel-2 image of Manhattan,
New York. Because there are many dense tall buildings in this Central Business District
area, shadows are omnipresent in the scene. Figure 2b shows the pixels that were identified
as both soil and water using NDSI and NDWI. After careful visual examination of high-
resolution images on Google Earth, soil and water are very rare in these shaded areas, and
most of these should be classified as impervious surfaces and vegetation.

Cloud cover is another negative factor for using an NDI in real-world applications.
We observed that clouds are often misidentified as liquid water by NDWI. For example,
Figure 3a shows a Sentinel-2 scene in the Himalayas. Note that this scene had the least
cloud cover among all available Sentinel-2 Level-2A images in this area. Figure 3b shows
the pixels that were identified as water. Some clouds and glaciers were misidentified as
liquid water by NDWI. Figure S17 shows another scene that covers the same area but with
much more cloud cover.
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4. Discussion

From the experimental results on spectral libraries presented above, we can deduce
that the omission error is not high when an appropriate threshold value is used for an NDI.
In contrast, the risk of commission error is generally high for an NDI. The low omission
error (or high recall) is due to the fact that an NDI generally uses the two bands that
represent the maximum and minimum reflectance values of a certain land cover type.
Among all possible ratio combinations of any two bands, the value of ρmax/ρmin is the
most sensitive, where ρmax and ρmin represent the maximum and minimum reflectance
bands. It should be noted that using a higher threshold value can decrease the commission
error, but the omission error will increase at the same time.

Putting a threshold on an NDI is equal to an orthographic projection for n-dimensional
spectral data (n > 2 denotes the number of available bands) into a two-dimensional space
that is spanned by the two used bands and using a linear decision boundary that passes
through the origin to separate the specified material from the other ground materials.
For example, Figure 4 shows the scatter plot of all the spectra in USGS spectral library.
Non-water and water spectra are plotted as small black dots and large green dots, respec-
tively. It can be seen that the threshold value (NDWI = 0), which corresponds to the slope
of the blue line in Figure 4, plays the function of a linear decision boundary. All of the
spectra above the line will be regarded as water, and the other spectra below the line will
be regarded as non-water. Using a linear decision boundary that passes the origin in a
two-dimensional space to separate a material of interest from the other materials could be
too strict to avoid commission errors in complex heterogeneous environments. Designing
an indicator that uses non-linear decision boundaries is a way to improve performance of
an NDI. For example, Figure 5 shows an elliptical decision boundary for the water spectra
in USGS spectral library. Compared with the linear decision boundary of NDWI = 0, the
water detection precision increases from 0.03 to 0.54 while achieving the identical 100%
recall by using this elliptical decision boundary. Figure S18 shows another example of
a parabolic decision boundary for these spectra. Taking all available bands into consid-
eration should be considered as another way to improve the commission error. Some
researchers have proposed to include a tasseled cap transformation in the design, which
uses a sensor-dependent linear combination of all available bands [22]. For large-scale
areas, however, a content-dependent transformation such as principal component analysis
is not recommended because of regional differences.
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Setting a physically meaningful magnitude threshold on specified absorbent bands is
another feasible improvement. It can effectively remove other materials. Chen et al. used a
reflectance magnitude threshold on the SWIR band for water detection and successfully
decreased the commission error [23]. Dozier used two reflectance magnitude thresholds
on the Landsat TM1 and TM5 bands in addition to a normalized difference snow index
in order to distinguish snow from clouds and shaded areas [24]. In Figure 4, most of the
non-water spectra that are above the decision line are successfully removed after setting
a threshold value of 0.05 on the SWIR band. Only the spectra that are both above the
blue line and on the left of the yellow vertical line will be regarded as water. We believe
that similar physically based magnitude threshold values on specific bands could also be
derived for other NDIs. For example, in both the USGS and ECOSTRESS spectral libraries,
almost all the vegetation spectra have a reflectance magnitude lower than 0.25 in the blue
band (see Figures S4 and S5). As vegetation has a characteristic high reflectance in the
NIR band, setting a threshold on NIR (e.g., ρNIR > T) seems intuitive. However, due to
the effect of shadows, the range of the reflectance magnitude of vegetation in the NIR
band is generally large. For example, the NIR reflectance magnitude of vegetation directly
exposed to sunlight could be larger than 0.6 while the reflectance of shaded vegetation
could be smaller than 0.05. Therefore, setting a threshold on strong absorption bands is
more meaningful than on strong reflection bands.

Using inequality constraints can help to capture spectral curve characteristics. Chen
et al. used several inequality judgment conditions (e.g., ρVIS > ρSWIR, which denotes
(ρred > ρSWIR)&(ρgreen > ρSWIR)&(ρblue > ρSWIR)) for water detection and achieved



Remote Sens. 2021, 13, 450 8 of 10

good results [23]. Similarly, one could use ρVIS < ρNIR for vegetation in addition to only
putting a threshold value on NDVI. These intuitive inequality conditions can describe the
relative magnitude differences between two characteristic bands rather well, and they are
parameter-free.

A threshold value of 0 is generally used or suggested for some NDIs, such as NDWI.
From the NDI definition of (1), it can be seen that using this value is equal to simply
implementing the inequality condition of ρ1 < ρ2, because the denominator ρ1 + ρ2 is
always positive as it is the sum of two physical reflectance values. Some content-dependent
automatic thresholding methods have been proposed in the literature, but some of them,
such as Otsu’s method [25], only perform well if the image histogram has a bimodal
distribution. As the general aim of using an NDI with a threshold is to quickly detect a
specific ground material in a large area, a computationally fast and content-independent
threshold method is preferable in many applications.

It is also noteworthy that there is a difference between material detection and quality
evaluation. An NDI can be used to evaluate the quality of some ground materials, such
as using NDVI to assess canopy characteristics, e.g., leaf area and biomass. For quality
evaluation, the presence of the material in question is usually known, and one generally
intends to use a feature that is sensitive to the change of reflectance at specific bands in
order to indicate the difference from a state that is deemed normal. However, for material
detection at large spatial scales, the analyst generally does not know whether the materials
of interest are present, or how many there are, or where they are. Therefore, one generally
intends to use a feature that is insensitive or robust to the change of reflectance in order to
detect all types of materials in question (including both normal and abnormal ones). As we
have discussed above, an NDI is generally designed as a sensitive indicator; therefore, the
risk of commission error is always present when applying it for detection. Although in this
communication we are only concerned with the detection problem, NDI values (without
thresholding) can still be used to indicate the quality of the materials involved, to derive
biophysical properties or be used as a derived feature for classification in addition to the
original spectral reflectance signals.

There are three phenomena that should be taken into consideration when using an
NDI, especially in complex heterogeneous environments or large areas. The first one is
the mixed pixel phenomenon. Mixed pixels are always present in a scene, especially in
medium or low spatial resolution images. In addition, some ground materials could have
an intimate mixture with each other, e.g., soils covered by sparse grasses or shrubs. In
general, the commission error is more obvious in high spatial resolution images than in
medium and low spatial resolution images. Shadow is also a noteworthy phenomenon. It
can be cast by tall buildings, tall mountains, trees or clouds. It reduces the difference in
reflectance magnitude between different bands and thus reduces the signal to noise ratio of
the recorded reflectance signal. It can, therefore, cause many misidentifications [26]. The
negative impact of shadows on accuracy is also higher on high spatial resolution images,
as shade can be modeled more easily in images with a coarser resolution. Clouds also have
a negative impact, and although cloud-free images are always preferred, they are simply
unavailable in some areas.

Although we only evaluated three NDIs for three main ground classes (water, soil,
vegetation) in our experiments, we believe that the same conclusions can be drawn for
other land cover types and for indices that were specifically proposed for other ground
materials, such as the normalized difference snow index [24,27] or vegetation index built-
up index [28]. Some results on such indices are included in the Supplementary Materials.
They also show relatively high commission errors.

5. Conclusions

The aim of this short technical communication was not to criticize the use of NDIs,
which have been widely and successfully used in innumerable applications. Rather, its
sole purpose was to draw attention to the pitfalls when thresholds are applied to such
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indices in order to detect ground materials. There is a high risk of misidentifying many
land cover types, especially in complex environments or extensive areas. Although the
reported error may be small in some specific study areas, a slight over-estimation could be
present in some reported results in the literature. With the advent of remote sensing cloud
platforms, fast large-scale monitoring (even at continental and global scale) using simple
and efficient algorithms is increasingly being preferred. We believe, however, that the risk
of over-estimation should not be rashly ignored. As the remote sensing community has
become larger and more multidisciplinary, we hope this paper can act as a warning for
those new researchers who might be planning on using NDIs in their studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/3/450/s1.

Author Contributions: Conceptualization, F.C. and T.V.d.V.; methodology, F.C., T.V.d.V. and D.R.;
software, F.C. and H.Z.; validation, H.Z.; resources, J.C.; writing—original draft preparation, F.C.,
T.V.d.V. and D.R.; writing—review and editing, F.C., T.V.d.V. and D.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China
under Grant 2017YFC0821900.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec.

Publ. 1974, 351, 309.
2. McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J.

Remote Sens. 1996, 17, 1425–1432. [CrossRef]
3. Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery.

Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]
4. Rogers, A.S.; Kearney, M. Reducing Signature Variability in Unmixing Coastal Marsh Thematic Mapper Scenes Using Spectral

Indices. Int. J. Remote Sens. 2004, 25, 2317–2335. [CrossRef]
5. Crippen, R.E. Calculating the Vegetation Index Faster. Remote Sens. Environ. 1990, 34, 71–73. [CrossRef]
6. Perry, C.R., Jr.; Lautenschlager, L.F. Functional Equivalence of Spectral Vegetation Indices. Remote Sens. Environ. 1984, 14,

169–182. [CrossRef]
7. Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban Tree Species Mapping Using Hyperspectral and Lidar Data Fusion. Remote Sens.

Environ. 2014, 148, 70–83. [CrossRef]
8. Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E. Quantifying Forest Canopy Traits: Imaging Spectroscopy versus Field

Survey. Remote Sens. Environ. 2015, 158, 15–27. [CrossRef]
9. Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-Up Index in Automatically Mapping Urban Areas from TM Imagery.

Int. J. Remote Sens. 2003, 24, 583–594. [CrossRef]
10. Liu, D.; Chen, N.; Zhang, X.; Wang, C.; Du, W. Annual Large-Scale Urban Land Mapping Based on Landsat Time Series in Google

Earth Engine and OpenStreetMap Data: A Case Study in the Middle Yangtze River Basin. ISPRS J. Photogramm. Remote Sens.
2020, 159, 337–351. [CrossRef]

11. Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-Resolution Urban Land Mapping in China from Sentinel 1A/2 Imagery Based on
Google Earth Engine. Remote Sens. 2019, 11, 752. [CrossRef]

12. Xia, Z.; Guo, X.; Chen, R. Automatic Extraction of Aquaculture Ponds Based on Google Earth Engine. Ocean Coast Manag. 2020,
198, 105348. [CrossRef]

13. Yang, X.; Chen, Y.; Wang, J. Combined Use of Sentinel-2 and Landsat 8 to Monitor Water Surface Area Dynamics Using Google
Earth Engine. Remote Sens. Lett. 2020, 11, 687–696. [CrossRef]

14. de Vries, J.; van Maanen, B.; Ruessink, G.; Verweij, P.A.; de Jong, S.M. Unmixing Water and Mud: Characterizing Diffuse
Boundaries of Subtidal Mud Banks from Individual Satellite Observations. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102252. [CrossRef]

15. Ren, H.; Liu, R.; Qin, Q.; Fan, W.; Yu, L.; Du, C. Mapping Finer-Resolution Land Surface Emissivity Using Landsat Images in
China. J. Geophys. Res. Atmos. 2017, 122, 6764–6781. [CrossRef]

16. Neinavaz, E.; Skidmore, A.K.; Darvishzadeh, R. Effects of Prediction Accuracy of the Proportion of Vegetation Cover on Land
Surface Emissivity and Temperature Using the NDVI Threshold Method. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101984. [CrossRef]

17. Coulter, L.L.; Stow, D.A.; Tsai, Y.; Ibanez, N.; Shih, H.; Kerr, A.; Benza, M.; Weeks, J.R.; Mensah, F. Classification and Assessment
of Land Cover and Land Use Change in Southern Ghana Using Dense Stacks of Landsat 7 ETM+ Imagery. Remote Sens. Environ.
2016, 184, 396–409. [CrossRef]

https://www.mdpi.com/2072-4292/13/3/450/s1
https://www.mdpi.com/2072-4292/13/3/450/s1
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1080/01431160600589179
http://doi.org/10.1080/01431160310001618103
http://doi.org/10.1016/0034-4257(90)90085-Z
http://doi.org/10.1016/0034-4257(84)90013-0
http://doi.org/10.1016/j.rse.2014.03.018
http://doi.org/10.1016/j.rse.2014.11.011
http://doi.org/10.1080/01431160304987
http://doi.org/10.1016/j.isprsjprs.2019.11.021
http://doi.org/10.3390/rs11070752
http://doi.org/10.1016/j.ocecoaman.2020.105348
http://doi.org/10.1080/2150704X.2020.1757780
http://doi.org/10.1016/j.jag.2020.102252
http://doi.org/10.1002/2017JD026910
http://doi.org/10.1016/j.jag.2019.101984
http://doi.org/10.1016/j.rse.2016.07.016


Remote Sens. 2021, 13, 450 10 of 10

18. Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll,
R.L.; et al. USGS Spectral Library Version 7. Tech. Rep. US Geol. Surv. 2017. [CrossRef]

19. Meerdink, S.K.; Hook, S.J.; Abbott, E.A.; Roberts, D.A. The ECOSTRESS Spectral Library 1.0. Remote Sens. Environ. 2019, 230,
111196. [CrossRef]

20. Pravalie, R.; Sîrodoev, I.; Peptenatu, D. Detecting Climate Change Effects on Forest Ecosystems in Southwestern Romania Using
Landsat TM NDVI Data. J. Geogr. Sci. 2014, 24, 815–832. [CrossRef]

21. Yu, W.; Zhou, W.; Qian, Y.; Yan, J. A New Approach for Land Cover Classification and Change Analysis: Integrating Backdating
and An Object based Method. Remote Sens. Environ. 2016, 177, 37–47. [CrossRef]

22. Deng, Y.; Wu, C.; Li, M.; Chen, R. RNDSI: A Ratio Normalized Difference Soil Index for Remote Sensing of Urban/Suburban
Environments. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 40–48. [CrossRef]

23. Chen, F.; Chen, X.; Van de Voorde, T.; Roberts, D.A.; Jiang, H.; Xu, W. Open Water Detection in Urban Environments Using High
Spatial Resolution Remote Sensing Imagery. Remote Sens. Environ. 2020, 242, 111706. [CrossRef]

24. Dozier, J. Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [CrossRef]
25. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
26. Dare, P.M. Shadow Analysis in High-Resolution Satellite Imagery of Urban Areas. Photogramm. Eng. Remote Sens. 2005, 71,

169–177. [CrossRef]
27. Sidjak, R.W.; Wheate, R.D. Glacier Mapping of the Illecillewaet Icefield, British Columbia, Canada, Using Landsat TM and Digital

Elevation Data. Int. J. Remote Sens. 1999, 20, 273–284. [CrossRef]
28. Stathakis, D.; Perakis, K.; Savin, I. Efficient Segmentation of Urban Areas by the VIBI. Int. J. Remote Sens. 2012, 33, 6361–6377. [CrossRef]

http://doi.org/10.3133/ds1035
http://doi.org/10.1016/j.rse.2019.05.015
http://doi.org/10.1007/s11442-014-1122-2
http://doi.org/10.1016/j.rse.2016.02.030
http://doi.org/10.1016/j.jag.2015.02.010
http://doi.org/10.1016/j.rse.2020.111706
http://doi.org/10.1016/0034-4257(89)90101-6
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.14358/PERS.71.2.169
http://doi.org/10.1080/014311699213442
http://doi.org/10.1080/01431161.2012.687842

	Introduction 
	Analysis 
	Experiments 
	Results on Spectral Libraries 
	Results on Spaceborne Remote Sensing Images 

	Discussion 
	Conclusions 
	References

