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Abstract: The South China Karst, a United Nations Educational, Scientific and Cultural Organization
(UNESCO) natural heritage site, is one of the world’s most spectacular examples of humid tropical to
subtropical karst landscapes. The Libo cone karst in the southern Guizhou Province is considered
as the world reference site for these types of karst, forming a distinctive and beautiful landscape.
Geomorphic information and spatial distribution of cone karst is essential for conservation and
management for Libo heritage site. In this study, a deep learning (DL) method based on DeepLab V3+
network was proposed to document the cone karst landscape in Libo by multi-source data, including
optical remote sensing images and digital elevation model (DEM) data. The training samples were
generated by using Landsat remote sensing images and their combination with satellite derived
DEM data. Each group of training dataset contains 898 samples. The input module of DeepLab
V3+ network was improved to accept four-channel input data, i.e., combination of Landsat RGB
images and DEM data. Our results suggest that the mean intersection over union (MIoU) using the
four-channel data as training samples by a new DL-based pixel-level image segmentation approach
is the highest, which can reach 95.5%. The proposed method can accomplish automatic extraction
of cone karst landscape by self-learning of deep neural network, and therefore it can also provide a
powerful and automatic tool for documenting other type of geological landscapes worldwide.

Keywords: UNESCO natural heritage site; cone karst landscape; segmentation; deep learning;
multi-source remote sensing data

1. Introduction

Karst landscapes are general term for the surface and underground landforms formed
by the dissolution of water on soluble rocks. They are widely distributed in the world and
have a total area of 1.25 million km2 in China [1]. Mapping of a karst landscape generally
aims to record its location, distribution, type and development stage in an area [2]. The for-
mation of karst landscape is influenced by various factors, acting together or alone, such as
local lithology, geological structure, climate, precipitation and vegetation. Most of karst
areas have complex topography and geomorphic conditions, fragile ecological environment
and poor accessibility, which significantly restrict the development of regional land use,
urban planning, mineral survey, geological disaster prevention and control, ecological
environment protection and tourism resources management [3]. Therefore, extracting the
geomorphic information and spatial distribution of karst landscapes effectively is essential
and significant for land use planning, ecological environment protection, and management
for these heritage sites.

Currently, extraction of karst landscapes is traditionally conducted through field
investigations or interpretation using remote sensing images and digital elevation model
(DEM) data. Based on methods of visual interpretation [4,5], supervised classification [6],
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ratio calculation [7], decision tree and maximum likelihood estimation (MLE) [8] applied
to satellite remote sensing images, one can extract information of rocky desertification in
karst areas. By using DEM data, researchers can extract various terrain factors, such as
rivers [9,10], elevation [9,10], slope [4,11], aspect [4,11], for karst landform recognition.
These traditional methods not only consume a lot of time, cost and human resources,
but also their classification results of karst landscapes depend on experts’ knowledge and
the accuracy is approximately 80% [12]. Both optical remote sensing images and DEM data
were not jointly used for mapping karst landscapes [13,14].

Recently, deep learning (DL) has emerged as the state-of-the-art machine learning tech-
nique with a great capability of remote sensing image classification. Instead of depending
on manually-engineered shallow features, deep learning techniques automatically learn hi-
erarchical features (from low-level to high-level) from input data directly [15,16]. However,
due to the lack of training data, semantic segmentation based on deep learning is usually
used to recognize features with regular shape or distinct boundaries, such as buildings [17],
urban green space [18] and shorelines [19]. It is a big challenge for recognition of complex
landscapes. The karst landscape, as one typical complex landscape, the geometry and
texture information contained in remote sensing data and elevation information contained
in DEM data are all important factors for segmentation [13].

DeepLab model is a convolutional network for image semantic segmentation proposed
by Google in 2015 based on fully convolutional networks (FCNs) [20]. So far, it has four
versions, i.e., DeepLab V1 [21], DeepLab V2 [22], DeepLab V3 [23] and DeepLab V3+ [24].
The three main advantages of the DeepLab system are efficiency, accuracy and simplicity,
by mixing various new algorithms, such as conditional random fields (CRF) [25–27],
atrous convolution [28], atrous spatial pyramid pooling (ASPP) [29,30], spatial pyramid
pooling (SPP) [31] and encode-decoder structure, to the deep convolutional neural networks
(DCNNs). The latest version of DeepLab V3+ released in 2018 has a mean intersection over
union (MIoU) of 89% in the PASCAL visual object classes (VOC) [32] dataset. In this study,
we selected the DeepLab V3+ as the basic network model of training. However, a limitation
of applying the DeepLab model is it only allows to input one-channel or three-channel
data as training samples. If we need to use optical remote sensing images containing red,
green, and blue channels information and additionally the DEM data, there will be four
channels information, which is not accepted by the currently used DeepLab V3+ model.
In order to extract information of karst landscapes using jointly remote sensing and DEM
data for higher accuracy, the input layer of DeepLab V3+ model needs to be improved so
that the network could accept at least four-channel data.

Therefore, in this study we attempt to develop an automatic method to extract spatial
distribution of cone karst landscape by combining satellite remote sensing images and
DEM data based on the deep learning model DeepLab V3+ in order to improve landscape
classification accuracy and efficiency. The South China Karst, with an area of approximately
550,000 km2, as the world’s most spectacular example of humid tropical to sub-tropical
karst landscape, was named as a United Nations Educational, Scientific and Cultural
Organization (UNESCO) world natural heritage property in 2007 and 2014, respectively.
It includes seven karst clusters, namely, Shilin, Libo, Wulong, Guilin, Shibing, Jinfoshan,
and Huanjiang Karsts, which contain the most typical types of karst landforms, including
tower karst, pinnacle karst, cone karst and so on. We applied the developed method to
classify cone karst in Libo, which is a representative of tropical cone karst landscape in
the world.

Following the Introduction, detailed description of the Libo study area is presented in
Section 2. In Section 3, the developed methodology to extract cone karst landscape using
both satellite remote sensing images and DEM data based on the DeepLab V3+ model
is described. Then, the segmentation results of cone karst landscape in Libo using the
developed method are evaluated. To further highlight the advantage of using the DL
method to classify cone karst landscape, we also conducted the same experiment but using
the classical classification method, i.e., Support Vector Machine (SVM) and compared with
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the results achieved using the DeepLab V3+ model. In Section 5, we briefly discussed the
reason that combing both satellite remote sensing images with DEM data can significantly
improve accuracy of segmentation of cone karst landscape. The conclusions are drawn in
the last section.

2. Study Area

The Libo cone karst landscape, as one of South China Karst UNESCO heritage sites in
2007, is located in the southernmost part of Guizhou Province, with an area of 2431.8 km2

(107◦37’~108◦39’E, 25◦06’~25◦39’N). Due to influence of tectonic deformation during the
Cenozoic era, the terrain displays higher in west and lower in east, with an average
elevation of 747 m above sea level (m a.s.l). The topographic information of Libo area
derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer
Global Digital Elevation Model (ASTER GDEM) data is shown in Figure 1a. Figure 1b
shows the geographical location of study area.

Figure 1. (a) ASTER GDEM image showing the topographic features of Libo area. (b) An index map
showing the geographical location of study area. (c,d) Two images acquired by Unmanned Aerial
Vehicle (UAV) over the typical cone karst landscape in Libo heritage site.

It represents the world’s most spectacular cone karst landscape, which satisfies the
evaluation standards of Articles VII and VIII of the World Heritage and has extraordinary
aesthetic value and scientific research values [33,34].
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As product of erosion and collapse of carbonate rocks by water, karst landscapes have
different surface morphology at different developmental stages. The cone karst landscape
in Libo heritage site consists of cone-shaped peaks connected by pedestals and depressions,
dolines or canyons between cones, with an average slope of 45◦ and different heights [35],
as shown in Figure 1c,d.

Tectonically, Libo cone karst landscape belongs to the slotted fold belt in the southern
Yangtze Block. The folds are mainly extending NNE direction. Geological interpretations
show that they are composed of gentle synclines and narrow anticlines as shown in Figure 2,
which are typical wide-spaced folds. Particularly, the NWW and NNE-striking conjugate
joints and faults are also developed well in the Libo area (Figure 2). These folds, faults and
joints controlled the spatial distribution of the drainage system in the study area, and the
main river flows are mostly parallel with the structural trend, forming the unique landform
along the NNE-striking wide-spaced fold belts in Libo [36,37].

Figure 2. Structural features of the Libo area interpreted from DEM image.

Landsat 8 optical remote sensing image presented in Figure 3a displays the landscapes,
vegetation and drainage system in Libo area. Figure 3a shows that Libo landscape is mainly
vegetation-covered cone karst, distributed at interval in the EW direction. The most typical
vegetation-covered cone karst landscapes are developed in the Maolan site (i.e., the area
marked by a white dashed-line rectangle in Figure 3a and the corresponding sub-image
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presented in Figure 3b). Besides, it also includes some carbonate hilly landforms covered by
vegetation (mainly distribute in the northeastern region), as well as bare rocks and urban
areas (marked by red dashed-line rectangles in Figure 3a). The Libo cone karst landscape
has obviously controlled by the conjugate joints with distinct texture features. Due to
the connection of the karst base, they appear as irregular light and dark spots on remote
sensing images [38], looking like peanut shells as seen on the enlarged remote sensing
image (Figure 3b).
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3. Methodology

In this study, a segmentation method using both remote sensing and DEM data based
on the DeepLab V3+ model was proposed to extract and map the cone karst landscape in
Libo. The processing flow of the proposed method is shown in Figure 4.

Figure 4. The processing flow of the proposed method to segment cone karst landscape based on the DeepLab V3+ model.

First, all remote sensing data and DEM data were preprocessed, including data
import, layer stacking, cropping, stretch of DEM and the generation of slope. Secondly,
we combined remote sensing data and elevation data from the same area by two ways:
(1) replacing one of the RGB channels of remote sensing data with elevation or slope data to
generate a new three-channel data; (2) generating a fused data with four channels of RGB
and DEM. Thirdly, the label files of these training datasets were generated by the program
of LabelMe in Linux system. Finally, an adjusted DeepLab V3+ model which can accept
inputs of the four channels fused data with spectral, geometric as well as topographic
information was used to achieve automatic extraction of cone karst landscape.

3.1. Training Datasets

The optical remote sensing images of Landsat 5, 7 (the bands arrangement is: R-4-Near
Infrared band, G-3-Red band, B-2-Green band), and Landsat 8 (the bands arrangement is:
R-5-Near Infrared band, G-4-Red band, B-3-Green band) were used as the training datasets.
These images are Level 1T data products with spatial resolution of 30 m, which have
undergone systematic radiometric calibration and geometric correction by United States
Geological Survey (USGS). We collected a total of 86 scenes of Landsat image data with
cloud cover less than 1%, acquired from July to September to generate the training datasets.
During this period, the area is covered by vegetation, which is beneficial to distinguish
cone karst landscape from urban area over Libo County, Guizhou Province and Huanjiang
County (Figure 2), where having similar cone karst landscape with Libo [39] to generate
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the training datasets. Additionally, the ASTER GDEM data with a spatial resolution of
30 m were also used to integrate with Landsat images.

3.2. Data Processing
3.2.1. Data Preprocessing

As illustrated in Figure 4, the preprocessing of Landsat images is mainly layer stacking
using the Environment for Visualizing Images (ENVI) software. For processing of the
ASTER GDEM data, we firstly mosaic 25 original DEM data covering the whole area where
the Landsat images were acquired, and then they were re-projected, so that they can be
registered with the remote sensing images. Finally, the slope information was calculated
based on the DEM data.

3.2.2. Generation of Training Samples
Basic Training Samples

All the collected Landsat RGB images were divided to sub-images with a size of
500 × 500 pixels. We then selected sub-images presenting cone karst landscape (as positive
samples) and non-karst landscape (as negative samples). Eventually, we obtained 898 sub-
images which were further labeled for training the network (one such example is shown
in Figure 5a). The sub-sets of the co-registered DEM data and calculated slope data
corresponding to the Landsat sub-images were consequently extracted, as examples shown
in in Figure 5b,c. Finally, three sets of basic training samples (each set has 898 training
samples) were generated.

Figure 5. Examples of ten sets training samples generated in this study and the corresponding labeled result. (a) An example
of optical remote sensing image training samples; (b) An example of DEM data training samples; (c) An example of slope
data training samples; (d–i) Examples of three-channel fusion training samples; (j) An example of four-channels RGB-D
training samples.

Due to special surface morphology and elevation information of cone karst landscape,
we considered to fuse remote sensing images with the corresponding DEM data and DEM-
originated slope data to generate additional training samples. The merged data contains
both spectral, geometric and elevation or slope information of cone karst landscape. To test
performances of different combinations of spectral and elevation data for classification of
cone karst landscape, we made two types of fusion sample data, i.e., one is three-channel
fusion data and another is four-channel RGB-DEM (abbreviated RGB-D hereafter) data.

Three-Channel Fusion Training Samples

By replacing one of the red, green, and blue channels of the Landsat remote sensing
images with the co-registered DEM or slope data, we obtained six sets new three-channel
training samples. For instance, by replacing the red channel (NIR band) information in the
training sample shown in Figure 5a using the elevation data, a new training sample was
generated, which is called D32, as shown in Figure 5d. Similarly, by replacing the green
(red band) or blue (green band) channel information in the Landsat images using either the
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elevation or slope data, more training samples were generated, as shown in Figure 5e–i,
respectively.

Four-Channels RGB-D Training Samples

In this type of training samples, the DEM data was combined with the Landsat RGB im-
ages and consequently, we obtained four-channel training samples, i.e., red, green, and blue
channels of remote sensing information and elevation information. The corresponding
example is shown in Figure 5j.

Finally, a total of ten sets of training samples, which are expressed as: 432, DEM,
Slope, D32, 4D2, 43D, S32, 4S2, 43S, 432D, were produced. Next, we outlined the edges of
cone karst landscape of these images based on the program of LabelMe in Linux system.
The right panel of Figure 5 shows the labelled result corresponding to the example of
training sample. In the label image, the white part is cone karst landscape, and the black
part is non-karst area.

3.3. DeepLab V3+ Model

DeepLab V3+ model is an advanced deep learning model for image semantic segmen-
tation, with the goal of assigning semantic tags to each pixel in the input image. DeepLab
V3+ applies Xception model for the semantic segmentation and the depth-wise separable
convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a
faster and stronger encoder-decoder network [24].

The used DeepLab V3+ network architecture is shown in Figure 6, which has the same
kernel function size, stride, activation function of the convolutional layer, pooling layer,
and deconvolution layer as the one proposed by Chen et al. [24].

Figure 6. Network structure of the DeepLab V3+ model used in this study.
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DeepLab V3+ model contains rich semantic information from the encoder module,
while the detailed object boundaries are recovered by the simple yet effective decoder
module, in order to achieve the purpose of improving the accuracy of segmentation.
The difference is that we adjusted the input layer of DeepLab V3+ model so that the
network could accept both the three-channel and four-channel samples shown in the left
panel of Figure 5.

4. Segmentation Results of Cone Karst Landscape
4.1. Training Details of DeepLab V3+ Network

Training process of the DeepLab V3+ is based on the Tensorflow framework and the
Python 3.7 in the Ubuntu environment. Technical specifications of hardware environment
and software parameters of the training network are listed in Table 1. The numbers of
training and test samples are 754 and 144, respectively.

Table 1. Technical specification of hardware and software used in this study for training of the
DeepLab V3+ network.

Hardware

CPU Intel i7

RAM 8GB

Display Card NVIDIA TITAN XP

Display Memory 12GB

Hard Disk 2TB

Software

Code Language Python 2.7

Train Framework Tensorflow

Train Network DeepLab V3+

Sample Label Labelme

Train Times 40000

The datasets are modeled on the PASCAL VOC 2012 [32]. The original images are
placed in the JEPGImages folder, while the label images are put in the SegmentationClass
folder. In the Main folder, there are two text files: train.txt and test.txt, that respectively
store the names of the training data and test data.

4.2. Segmentation Results

The MIoU is a general standard for evaluating the accuracy of deep neural network
segmentation, which means the ratio of the intersection and union of the ground truth
value set and the predicted value set. The MIoUs of the ten sets of samples (described
Section 3.2) used for training the DeepLab V3+ network are listed in Table 2.

Table 2. MIoUs of different samples used for training the DeepLab V3+ network.

Sets MIoU

432 92.10%
DEM 88.78%
Slope 59.15%
D32 91.92%
4D2 91.72%
43D 93.96%
S32 91.62%
4S2 92.86%
43S 92.39%

432D 95.53%
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Table 2 shows that the slope data used as training data has the lowest MIoU value,
followed by only using the DEM data. This suggests that only elevation or slope data,
though which is a key factor of cone karst landscape, is not sufficient to classify them
without considering cone geometry. Among the seven sets of three-channel data, the train-
ing accuracy of 43D (i.e., combination of Landsat NIR, Red bands and DEM data) is the
highest. A plausible reason is that the wavelength of green band is shorter than that of near
infrared band and red band in remote sensing image, so it is affected by the atmosphere
more. By replacing the green band of the Landsat data by the DEM data, the influence
of atmosphere on remote sensing image is reduced while the elevation information is
also included, therefore, the segmentation accuracy is higher than the results using other
three-channel training samples. The MIoU of the four-channel training data (i.e., 432D) is
the highest, which can reach 95.53%. This result indicates that the fusion of remote sensing
and DEM data is effective to improve the recognition accuracy of cone karst landscape.

Two typical regions were selected in the test dataset to compare the segmentation
results based on different training samples, as presented in Figure 7a,b, respectively. The left
panel in the two figures presents ground truth images, and the right part is the segmentation
results using ten different training datasets. The red and black in the segmentation images
are the cone karst landscape and non-karst landscape classified by DeepLab V3+ model,
respectively.

Figure 7. Demonstration of segmentation results of (a) A case presenting discrete distribution of cone karst landscape using
ten different training datasets and (b) A case presenting variable boundary of cone karst using ten different training datasets.
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Although most of the cone karst landscapes are connected by bases, there are still
a few scattered cone peaks. The case in Figure 7a shows classification result for discrete
distribution area of cone karst landscape (as marked by the red rectangle) based on the pro-
posed method. Comparing the segmentation results using the different ten sets of training
samples, 432, 43D, S32, 43S and 432D have similar recognition effects and perform well;
DEM, Slope, 4D2 and 4S2 have missing some areas; D32 has misclassification phenomenon.

Figure 7b presents an example to demonstrate segmentation result for the boundary
recognition of the cone karst landscape (as the area marked by the red rectangle). 432D per-
forms the best; 432, 4D2, 43D and 43S have the similar recognition effects and perform well;
DEM, Slope, S32 and 4S2 have missing some points; D32 has misclassification phenomenon.

4.3. Comparison of the Segmentation Results by SVM and DeepLab V3+

SVM is a general machine learning method based on the Statistical Learning Theory
(SLT) proposed by Vapnik in 1963 [40]. The aim of the SVM for classification is to determine
a hyper plane that optimally separates two classes. An optimum hyper plane is determined
using train data sets and its generalization ability is verified using test data sets [41].
By realizing the idea of structural risk minimization (SRM), SVM overcame the problems
of overfitting and nonlinear in traditional machine learning methods. Additionally, it can
effectively deal with the high-dimensional data problem with the help of kernel function,
generally aggregated into four groups: linear, polynomial, radial basis function (RBF) and
sigmoid kernels [41], so SVM has strong nonlinear disposition ability and generalization
performance [42,43]. The SVM method used in this study was implemented by ENVI,
the kernel function was chosen RBF.

Figure 8a,b show the segmentation results by using SVM and DeepLab V3+, respec-
tively. The green area displays the cone karst landscape. The marked red rectangles
highlight those distinct different segmentation results between these two methods. In fact,
the segmentation result by using the DeepLab V3+ network is quite different from that
achieved using the SVM, though SVM is also a good two-class classifier. The results show
that the two methods are quite different in recognizing carbonate hilly landscape which
has the same vegetation cover with cone karst landscape (as the areas marked by the red
rectangles in Figure 8). But the relief contrast of the carbonate hilly landscape is not as
obvious as the cone karst landscape, as the area marked by the red rectangle in Figure 3a.
As can be seen from Figure 8, the DeepLab V3+ model can successfully distinguish the cone
karst landscape from the carbonate hilly landscape, while the SVM method misclassifies
the carbonate hilly landscape into cone karst landscape.

A field investigation was carried out in early November 2020 to verify the segmen-
tation results based on satellite remote sensing data and numbers of field photographs.
The field investigation photograph shown in Figure 9a was acquired over the Dong-
duo village belonging to the Maolan site, corresponding to the location A marked in
Figure 8, which is classified cone karst by both SVM and DeepLab V3+ network. In con-
trast, the photo in Figure 9b was acquired over Jiarong town (location B marked in Figure 8)
shows a carbonate hilly landscape. The segmentation result using DeepLab V3+ correctly
classify it to non-karst landscape whereas the SVM misclassifies the area. The comparison
of segmentation results using different machine learning methods and the verification by
field investigations further suggest that the DL-based method is powerful for classifying
cone karst from remote sensing data.
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Figure 8. Segmentation results of cone karst in Libo using (a) SVM model and (b) DeepLab
V3+ model.

Figure 9. Field photographs showing the typical geomorphic landscapes in the Libo. (a) Cone karst landscape observed at
Dongduo village, Maolan area; (b) Carbonate hilly landscape observed near Jiarong town.
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5. Discussion

How to extract automatically and effectively the geomorphic landscapes with the
irregular geometric features from remote sensing data is a tough problem. Cone karst land-
scape is an important part of UNESCO Natural Heritage South China Karst. Its mapping
from space, particularly in terms of geomorphic information and spatial distribution is of
great importance for scientific conservation, management and eco-tourism development
for heritage site. Satellite remote sensing images and field investigations show that geo-
morphic landscapes in Libo are quite complicated (Figure 9). In addition to the dominant
cone karst landscape, the low mountains and carbonate hilly landforms as well as town
and farmland also exist in Libo heritage site. Particularly, the cone karst landscape and
carbonate hilly landscape are both covered with vegetation and therefore their spectral
features are similar in optical remote sensing images. This increases difficulties of visual
inspection of cone karst landscape and also reduces accuracy of classification using only
remote sensing images based on a certain machine learning method. However, the relief
contrasts of these two landscapes are different. The relief contrast of cone karst landscape
is between 100 m to 250 m, while the relief contrast of carbonate hilly landform is mostly
between 50 m to 100 m as we measured from the images.

Therefore, to better classify the cone karst and non-karst landscape in Libo, we com-
bine optical remote sensing images containing the spectral and geometric information with
the DEM data including the topographic information to generate a four-channel training
samples for DeepLab V3+ network. However, DeepLab V3+ network can only accept
either one-channel or three-channel data as input, to accomplish four-channel data used as
training samples, we adjusted the input module of DeepLab V3+ network. MIoU of the
segmentation result achieved using the four-channel training samples (i.e., 432D data) is of
95.53%, which is higher than that using remote sensing image data (i.e., 432 with MIoU of
92.10%) alone. Even replacing the green band in general Landsat RGB data by the DEM
data, the segmentation can also achieve a higher accuracy of 93.96% than only RGB data
used as training samples. These results indicate the additional DEM information used for
training the DeepLab V3+ is particularly effective to recognize the cone karst landscape
in Libo.

Compared with the SVM method, the segmentation effect of DeepLab V3+ model
is more accurate for the recognition of the cone karst landscape and the carbonate hilly
landform with the same input data (Figure 8).

Additionally, the distribution of the cone karst landscape recognized by DeepLab
V3+ model is consistent with the position of anticlines presented in Figure 2. But the
syncline areas are easy to converge with the surface and ground water because of the low
terrain, which aggravates the erosion of the syncline axis. So that the cone karst landscape
cannot develop and preserve well. However, the faults and tensile joints or fractures
are well developed along the anticline structures, which are conducive to the infiltration
and erosion of surface water into the depth, thereby promoting the development of cone
karst landscape.

The optimal accuracy of DeepLab V3+ model can reach 95%, which is much higher
than 80% of the traditional interpretation method [12], which suggests that deep neural
network model can be applied to extract automatically the geomorphic information and
spatial distribution of cone karst landscape effectively.

6. Conclusions

In this study, we newly developed a method based on deep neural network model
to extract automatically and effectively landscape information of cone karst using both
optical satellite remote sensing data and DEM data. The main conclusions are as follows:

1. An improved DeepLab V3+ network has been proposed to carry out semantic seg-
mentation using multi-source remote sensing images. A set of machine learning
samples of cone karst landscape and a set of four-channel data were further obtained
from the fusion of optical remote sensing image and DEM data. The input module



Remote Sens. 2021, 13, 441 14 of 16

of DeepLab V3+ model was adjusted so that the network can accept multi-channels
(four channels or more) data.

2. It is found that the segmentation results using different combinations of four-channel
data (i.e., 432D) has the highest accuracy of 95.53% in terms of MIoU. The second
highest accuracy is that three-channel training data of 43D because the green band of
Landsat data was replaced by the DEM data, which can largely reduce the atmospheric
influence on Landsat image. Thus, the segmentation accuracy is higher than the results
using other three-channel training samples.

3. Compared with the SVM method, the major advantage of segmentation results from
the DeepLab V3+ model is that the deep neural network structure can effectively
distinguish the cone karst and carbonate hilly landscapes through multiple deep
convolution layers and pooling layers as verified by the field observation and UAV in-
vestigations.

In general, this study demonstrates that the deep learning-based pixel-level image
segmentation method of automatic recognition of cone karst landscape can effectively
solve the problems of low efficiency and low precision in recognition and classification of
irregular and complex geological landforms using remote sensing image, which provides a
powerful method for mapping the worldwide cone karst landforms.
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