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Abstract: Building Change Detection (BCD) is one of the core issues in earth observation and has
received extensive attention in recent years. With the rapid development of earth observation
technology, the data source of remote sensing change detection is continuously enriched, which
provides the possibility to describe the spatial details of the ground objects more finely and to
characterize the ground objects with multiple perspectives and levels. However, due to the different
physical mechanisms of multi-source remote sensing data, BCD based on heterogeneous data is a
challenge. Previous studies mostly focused on the BCD of homogeneous remote sensing data, while
the use of multi-source remote sensing data and considering multiple features to conduct 2D and
3D BCD research is sporadic. In this article, we propose a novel and general squeeze-and-excitation
W-Net, which is developed from U-Net and SE-Net. Its unique advantage is that it can not only be
used for BCD of homogeneous and heterogeneous remote sensing data respectively but also can
input both homogeneous and heterogeneous remote sensing data for 2D or 3D BCD by relying on
its bidirectional symmetric end-to-end network architecture. Moreover, from a unique perspective,
we use image features that are stable in performance and less affected by radiation differences and
temporal changes. We innovatively introduced the squeeze-and-excitation module to explicitly model
the interdependence between feature channels so that the response between the feature channels
is adaptively recalibrated to improve the information mining ability and detection accuracy of the
model. As far as we know, this is the first proposed network architecture that can simultaneously use
multi-source and multi-feature remote sensing data for 2D and 3D BCD. The experimental results in
two 2D data sets and two challenging 3D data sets demonstrate that the promising performances of
the squeeze-and-excitation W-Net outperform several traditional and state-of-the-art approaches.
Moreover, both visual and quantitative analyses of the experimental results demonstrate competitive
performance in the proposed network. This demonstrates that the proposed network and method
are practical, physically justified, and have great potential application value in large-scale 2D and 3D
BCD and qualitative and quantitative research.

Keywords: multi-source; multi-feature; W-Net; squeeze-and-excitation; 2D /3D building change detection

1. Introduction

Change detection is a process of qualitatively and quantitatively analyzing and de-
termining changes on the earth’s surface in different time dimensions. It is one of the
essential technologies in the field of remote sensing applications, and it has been widely
and deeply applied in the fields of land planning, urban changes, disaster monitoring,
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military, agriculture, and forestry [1,2]. Buildings are one of the most dynamic structures in
cities, and their changes can reflect the process of urbanization to a large extent. Accurate
and effective evaluation of building changes is a powerful means to obtain reliable urban
change information, and it is also an urgent need in some fields such as government
management, economic construction, and sociological research [3,4].

With the continuous development of remote sensing technology and computer tech-
nology, more and more satellite-borne and airborne sensors such as QuickBird, Worldview,
GaoFen, Sentinel, ZY, Pléiades, et al. are designed, manufactured, and put into operation.
In this case, massive and diverse remote sensing data are produced, which also enriches
the data sources of change detection [5]. The available data types for change detection have
expanded from the medium- and low-resolution optical remote sensing images to high
resolution or very high resolution (HR/VHR) optical remote sensing images, light detection
and ranging (LiDAR), or synthetic aperture radar (SAR) data. HR/VHR remote sensing
images contain richer spectral, texture, and shape features of ground objects, allowing a
detailed comparison of geographic objects in different periods. Furthermore, non-optical
image data such as LiDAR or SAR can provide observation information with different
ground physical mechanisms and solve the technical problem of optical sensors being
affected by weather conditions. It can also make up for the shortcoming, that is, HR/VHR
remote sensing images can provide a macro view of the earth observation, but it is difficult
to fully reflect the types and attributes of objects in the observation area [6]. Multi-source
remote sensing data such as HR/VHR remote sensing images, LIDAR, or SAR data can
provide rich information for the observed landscape through various physical and material
perspectives. If these data are used comprehensively and collaboratively, the data sources
of change detection will be significantly enriched, and the detection results can describe the
change information more accurately and comprehensively [7]. However, due to the diverse
sources of multi-source remote sensing data, it is difficult to compare and analyze these
heterogeneous data based on one method. Most of the current related research focuses
on the use of homogeneous remote sensing data for change detection [8-12]. Therefore,
in order to use remote sensing data for change detection more fully and effectively, it is
exigent to develop a change detection method that can comprehensively use multi-source
remote sensing data.

Some traditional change detection methods, such as image difference [13], image
ratio [14], change vector analysis (CVA) [15], compressed CVA (C2VA) [16], robust CVA
(RCVA) [17], principal component analysis (PCA) [18], slow feature analysis (SFA) [19],
multivariate alteration detection (MAD) [20], depth belief network [21], etc.; almost all rely
solely on medium- and low-resolution remote sensing images or HR/VHR remote sensing
images, and analyze image change information through image algebra or image space
transformation to obtain change areas. Another important branch of change detection,
the classification-based change detection method, is to determine the change state and
change attributes of the research object by comparing the category labels of the object to be
detected after the image is independently classified [6,22]. In this kind of method, analysis
methods such as compound classification rule for minimum error [23], an ensemble of
nonparametric multitemporal classifiers [24], minimum error Bayes rule [25], and pattern
measurement [26], etc., are referenced and applied. Although they have achieved good
detection results, these methods only consider the non-linear correlation of the image data
level and need to weigh the association of complex training data. In general, the traditional
change detection methods: image algebra, image transformation, and classification-based
methods have failed to solve the technical difficulties of multi-source remote sensing data
fusion, parallelism, and complementarity. However, with the continuous improvement of
the spectral, spatial, and temporal resolution of remote sensing images, and the advantage
that SAR data is not affected by weather and other conditions, more and more research
is devoted to more refined and higher-dimensional change detection [7]. Furthermore,
traditional change detection methods generally only consider 2D image information, and
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are powerless when faced with a change detection task with a finer scale and higher
dimensional requirements (3D).

Buildings have unique geographic attributes and play an essential role in the pro-
cess of urbanization. The accurate depiction of their temporal and spatial dynamics is
an effective way to strengthen land resource management and ensure sustainable urban
development [27]. Therefore, BCD has always been a research hotspot in the field of
change detection. At present, the application of HR/VHR remote sensing images has been
popularized, which provides a reliable data source for change detection tasks, especially
for identifying detailed structures (buildings, etc.) on the ground. In addition, LiDAR
and SAR data have also received extensive attention in urban change detection. Related
researches have appeared one after another, such as extracting linear features from bitempo-
ral SAR images to detect changing pixels [28], using time series SAR images and combining
likelihood ratio testing and clustering identification methods to identify objects in urban
areas [29], fusing aerial imagery and LiDAR point cloud data, using height difference and
gray-scale similarity as change indicators, and integrating spectral and geometric features
to identify building targets [30]. However, most of these studies are only based on SAR
images, and some use optical remote sensing images as their auxiliary data, so the degree
of data fusion is low, and some methods cannot even be directly applied to optical images.
In addition, the degree of 3D change detection is relatively low, and there is almost no
suitable method capable of simultaneously performing 2D and 3D change detection.

In recent years, with the deepening of deep learning research, deep learning methods
have proven to be quite successful in various pattern recognition and remote sensing image
processing tasks [31-33]. As far as the processing of remote sensing images (HR/VHR re-
mote sensing images, SAR images) is concerned, the deep learning method is more capable
of capturing various spectral, spatial, and temporal features in the images, deeply mining
high-level semantic features and understanding abstract expressions in high-dimensional
features [6,11,34]. In the field of change detection research, various task-driven deep
neural networks and methods have been designed. In [35], a structured deep neural
network (DNN) was used to design a change detection method for multi-temporal SAR
images. In [36], a deep siamese convolutional network was designed, which can extract
features based on weight sharing convolution branches for change detection of aerial
images. In [37], the researchers considered the advantages of long-short-term memory
(LSTM) networks that are good at processing sequence data, and designed an end-to-end
recurrent neural network (RNN) to perform multispectral /hyperspectral image change
detection tasks. In addition, various combinations and variants of deep networks have
also been proposed to perform specific tasks. For example, a novel and universal deep
siamese convolutional multiple-layers recurrent neural network (SiamCRNN) was pro-
posed in [5], which combines the advantages of convolutional neural network (CNN) and
RNN. The three sub-networks of its overall structure have clear division of labor and are
well connected, which can achieve the purpose of extracting image features, mining change
information, and predicting change probability. In [6], a novel recurrent convolutional
neural network (ReCNN) structure was proposed, which combines CNN and RNN into an
end-to-end network for extracting rich spectral-spatial features and effectively analyzes
temporal dependence in bi-temporal images. In this network, it is possible to learn the joint
spectral-spatial-temporal feature representation in a unified framework to detect changes
in multispectral images. Although these new networks have shown excellent performance
according to their specific tasks, they use data in a single form or are not highly transferable.
They can only be used for one data source and cannot use multiple sources as input at the
same time. Moreover, few studies consider the internal relationship of input data, that is,
the interdependence between bands or characteristic channels.

A fully convolutional network (FCN) has been successfully applied to the end-to-end
semantic segmentation of optical remote sensing images [38], showing the flexibility of its
structure and the superiority of feature combination strategy. Moreover, with the unique
advantages of taking into account local and global information, segmenting images of any
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size, and achieving pixel-level labeling, it has achieved better results than traditional CNN
in remote sensing image classification [39,40] and change detection [41-44]. U-Net [45,46],
developed from FCN, has proved to have better performance than FCN. It is used in many
tasks in the field of remote sensing, such as image classification, change detection, and
object extraction (buildings, water bodies, roads, etc.). In many studies, various network
variants based on FCN or U-Net have been proposed. These networks have achieved
corresponding functions according to specific research content and have received certain
results. For example, the authors in [47] used a region-based FCN (R-FCN), which was
combined with the ResNet-101 network to try to determine the center pixel of the object
before segmenting the image. Related research in [48,49], the introduction of the residual
module into U-Net brought about an improvement in model performance and efficient
information dissemination. Although these types of networks overcome the shortcomings
of single segmentation scale and low information dissemination that exist in FCN or U-Net
to a certain extent, they have not considered combining multiple data as input. A variety of
features derived from remote sensing data tend to show characteristics such as stable nature,
little impact by radiation differences, and not easily affected by remote sensing image time
phase changes [3]. Using spatial or spectral features to detect changes in the state of objects
or regions has become a hot spot for researchers. In addition, the phenomenon of “the
same object with the different spectrum, the same spectrum of different matter” appears in
large numbers in HR/VHR remote sensing images, making it more difficult to detect small
and complex objects such as buildings or roads in cities. Emerging deep learning methods
have the potential to extract features of individual buildings in complex scenes. However,
the feature extraction method of deep learning represented by convolution operation only
extracts the abstract features of the original image through the continuous deepening of
the number of convolution layers and do not consider the use of useful derivative features
of the ground objects [3,27]. Various feature information derived from the original image,
such as color, texture, shape, et al., can also be used as input to the network to participate
in the process of information mining and abstraction. As far as we know, many existing
networks fail to take multiple features as input to participate in task execution.

In this article, based on U-Net, we designed a new type of bilateral end-to-end W
network. It can simultaneously input multi-source/multi-feature homogeneous and hetero-
geneous data and consider the internal relationship of input data through the squeeze-and-
excitation strategy. We named it squeeze-and-excitation W-Net. Although there have been
related studies on network transformation based on U-Net [50,51], as far as we know, we
are the first to transform U-Net into a more valuable network. It has two-sided input and
single-output, independent weights on both sides can take into account the data on both
sides (homogeneous and heterogeneous data) and can be used for change detection tasks in
the field of remote sensing. The main contributions of this article are concluded as follows:

(1) The proposed squeeze-and-excitation W-Net is a powerful and universal network
structure, which can learn the abstract features contained in homogeneous and het-
erogeneous data through a structured symmetric system.

(2) The form of two-sided input not only satisfies the input of multi-source data but also
is suitable for multiple features derived from multi-source data. We innovatively
introduced the squeeze-and-excitation module as a strategy for explicit modeling of
the interdependence between channels, which makes the network more directional
and can recalibrate the feature channels, emphasize essential features, and suppress
secondary features. Moreover, the squeeze-and-excitation module is embedded
between each convolution operation, which can overcome the insufficiency of the
convolution operation that can only take into account the features information in the
local receptive field and improve the global reception ability of the network.

(3) The idea of multi-source and multi-feature combination as model input integrates in-
formation advantages such as spectrum, texture, and structure, which can significantly
improve the robustness of the model. For buildings, which present complex spatial
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patterns, have multi-scale features, and have large differences between individuals,
they are more targeted, and the detection accuracy of the model is significantly higher.

The rest of the article is organized as follows. The second section introduces in detail
the construction process of squeeze-and-excitation W-Net, the production details of multi-
feature input, and the evaluation method of the network. The third section is the data
set information, network settings, experiments, and results. The fourth section is the
discussion part. And the fifth section summarizes the article.

2. Methodology

The proposed 2D and 3D change detection method for buildings based on squeeze-
and-excitation W-Net includes three parts: (1) Construct the squeeze-and-excitation W-Net
to satisfy the input of homogeneous data, heterogeneous data, and multi-feature combined
images. When performing 2D change detection, the left and right sides of the network,
accept the original image and the characteristic image, respectively. When performing 3D
change detection, the left and right sides of the network accept the original image and its
feature image and height data and its feature image, respectively. (2) Use color moment,
gray level co-occurrence matrix (GLCM), and edge operator to extract the color feature,
texture feature, and shape feature of the image, respectively, and merge the extracted
features with the original image as network input. (3) Train the squeeze-and-excitation
W-Net, save the model with higher validation accuracy and lower validation loss, and
perform change detection in the experimental area. The workflow of the proposed change
detection method is shown in Figure 1.
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Figure 1. Overview of the 2D /3D building change detection (BCD) architecture based on the Squeeze-and-Excitation W-Net.

2.1. The Proposed Novel Squeeze-and-Excitation W-Net
2.1.1. Bilaterally Symmetrical End-to-End Network Architecture

Although the convolutional layer of CNN is a structure suitable for extracting spatial
context features and spectral features simultaneously, its receptive field is limited, and the
output is a category label corresponding to a fixed-size image. It cannot achieve the pixel-
level positioning of category labels in visual tasks [45]. However, the image processing
form of semantic segmentation can classify each pixel on the image to obtain the image
classification result of the located pixel.

U-Net is an extension of FCN and is currently a widely used semantic segmentation
network with good scalability [52]. The excellent characteristics of U-Net make it widely
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used in remote sensing image classification and change detection and have achieved good
results [50,52]. However, the number of convolutional layers is small, and the Batch
Normalization layer is lacking, which causes problems such as low learning efficiency,
learning effect greatly affected by the initial data distribution, and gradient explosion in the
backpropagation process [3,47,52]. In addition, the U-Net single-side input and single-side
output network structure also limits the comprehensive use of multi-source remote sensing
data, making the data input single, and the feature extraction of the data limited to a
small number of convolution operations. Although its skip connection strategy can merge
low-dimensional features and high-dimensional features, it is challenging to balance the
effective extraction of features and the comprehensive use of data in the face of complex
data types and diversified data features.

In order to make up for these shortcomings of U-Net, we designed a two-sided input
W-shaped network, which contains a contracting path on both sides and an expansive path
in the middle. The contraction path on both sides contains four sets of encoding modules,
but the encoding module deepens the number of layers of convolution and introduces the
Batch Normalization layer. The expansion path contains four sets of decoding modules
and also adds the Batch Normalization layer. Among them, the Batch Normalization layer
can normalize the input data of each batch with the mean and variance so that the input
of each layer maintains the same distribution, which can speed up the speed of model
training. In addition, the Batch Normalization layer can increase noise through the idea
of updating the mean and variance of each layer, thereby increasing the robustness of the
model and effectively reducing overfitting. The calculation of the Batch Normalization
layer is performed as in Equation (1)

x® _E [xac)}
0= L J (1)
Var [x(0)]

where, £(F) is the activation value of the k-th neuron after transformation; x(¥) is the neuron
of each batch of training data; E [x(k)} is the average value of each batch of training data

neurons; 4/ Var [x(k)] is the standard deviation of the activation of each batch of training
data neurons.

In addition, in order to meet the needs of change detection tasks, we use a binary
cross-entropy function as the loss function of the W-shaped network in the network. The
formula is performed as in Equation (2)

1 N
Loss =~ 3 ywlog(§n) + (1~ u)-log(1 — 91) @
n=1

where, N represents the number of predicted values output by the model; y, is the sample
label; 7, is the predicted label of the sample by the model; the optimizer used by the
network is Adam.

The skip connection strategy of the W-shaped network is extended to two sides. That
is, the low-dimensional features of symmetrical positions on both sides are copied to
the expansive path, combined with the high-dimensional features, and convolution is
performed. This strategy can divide different data sources into two inputs, avoid the
mutual exclusion of data, better retain the original characteristics of the data, and give play
to the most significant advantage between different data. In addition, the network weights
of the contracting paths on both sides are independent of each other. During the back
propagation of the network, the loss values obtained from the loss function are transmitted
to both sides at the lowest end of the contracting path, and the network weights on both
sides are updated at the same time. In this way; it can achieve the purpose of non-linear
simulation of multi-source data at the same time.
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2.1.2. Squeeze-and-Excitation W-Net

The W-shaped network is improved on the basis of U-Net, expanding the path of data
input, deepening the convolution operation, accelerating the training speed of the model,
improving the robustness of the model, and effectively preventing overfitting. However,
the convolution operation can only be along the data input channel, fusing the spatial and
channel information in the local receptive field [53]. In addition, when comprehensively
considering the multi-source data and the multiple features derived from it, it is difficult to
model the spatial dependence of the data based on the information feature construction
method of the local receptive field. Moreover, the repeated convolution operation without
considering the spatial attention is not conducive to the extraction of useful features.

We introduced the attention mechanism [54-56] strategy, using global information to
explicitly model the dynamic non-linear relationship between channels, which can simplify
the learning process and enhance the network representation ability. The main function
of the attention mechanism is to assign weights to each channel to enhance important
information and suppress secondary information. The main operation can be divided into
three parts: squeeze operation Fy;(-), excitation operation Fex (-, W), and fusion operation
Fycate(+, -). Its operation flow chart is shown in Figure 2.

Fex('v W)
X U Fyq () s [T —— MM %
— / 1x1xC 1x1xC \ ///
H' For H Fscate () “ H
— _ > —
W' w W
C' C C

Figure 2. Squeeze-and-excitation operation process.

The squeeze operation uses a global average pooling method to compress features
along the spatial dimension and scale each two-dimensional feature map to a real number,
which has a global receptive field and can represent global information. When the input
is X € RH>XWXC' the output after the regular convolution operation is U € RA*WxC,
The squeeze operation is based on U, and the input of size H x W x C can be compressed
into 1 x 1 x C feature description. For a particular feature map, the squeeze calculation is
performed as in Equation (3)

1
HxW !

ue(i, f) ®)

M=
M=

Ze = qu(uc) =

]

I
—
I
—_

where, 1, is the c-th feature map; i, j represent the pixel positions in the feature map.

The squeeze operation only obtains a 1 x 1 global descriptor, which cannot be used as
the weight of each feature map. However, the excitation operation using two fully connected
layers and the Sigmoid function can more comprehensively capture the interdependence
between channels. Its calculation formula is performed as in Equation (4)

s = Fox(z, W) = 0(g(z, W)) = 0(W6(Wsz)) 4)

where, z is global description; ¢ is the ReLu activation function; W;,W, represents the
weight matrix of two fully connected layers; ¢ represents the Sigmoid function.

The last step is the fusion operation. That is, the channel weight calculated by the
excitation operation is fused with the original feature map, and the calculation is as shown
in Equation (5)

Xc = Fycate(te, Sc) = Sc * Ue &)
where, s. is the c-th global description; u. is the c-th original feature map.

We innovatively embed the squeeze-and-excitation module into the left and right
contracting paths of the W-shaped network and add a squeeze-excitation layer after each
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convolution to learn the dependency of feature channels to improve the learning ability of
the network. This can better deal with the complexity of multi-source and multi-feature
data, and obtain a network that is more robust and more sensitive to specific features. The
structure of squeeze-and-excitation W-Net is shown in Figure 3.
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Figure 3. Schematic diagram of the squeeze-and-excitation W-Net structure.

2.2. Multi-Feature Mapping and Information Mining

In this article, we are in order to provide more detailed and comprehensive, reliable
data for the network. In terms of color, texture, and shape, a variety of features are extracted
from the original image, and these features are combined with the original image as the
input of the network.

2.2.1. Color Moment for Color Features Extraction

The color feature is the most widely used visual feature in color images, and it is widely
used in image retrieval and video retrieval [57]. In addition, it has a small dependence on
the size, direction, and angle of the image, stable performance, and strong robustness to
image degradation and resolution changes [58]. Since the color information in the image is
mostly distributed in the low-order moments of the image, we extract the color features of
the image by calculating the first-order moment (mean), second-order moment (variance),
and third-order moment (skewness) of the image. The color feature map of the entire
image is extracted with a fixed-size sliding window. The calculation equations are shown
in Equations (6)—(8)

1Y
Mean = e = 35 Y. v (6)
(i.,f)=1
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1 N

1/2
2
Variance = 0, = (N Z (Pﬁj - .Mk) ) (7)

(ij)=1

1/3
1Y 3
Skewness = s = (N 2 (Pf,j - Vk) ) ®)

(ij)=1

where, p¥ jis the k-th color component of the (i,j)-th pixel in the image; N is the number of
pixels in the image.

2.2.2. GLCM for Texture Features Extraction

The texture feature is a visual feature that reflects the homogeneity phenomenon in the
image, and it can reflect the periodically changing structural organization and arrangement
properties of the surface of the ground object [59]. It can be obtained according to the
change rule of the gray value of the image pixel within a specific range and is used to
analyze better and understand the original image. The local texture feature is represented
by the gray distribution of the pixel and its neighborhood, and the global texture feature is
the repetition of local features. Therefore, there is a certain gray-scale relationship between
two non-adjacent pixels in the image, that is, gray-scale spatial correlation characteristics.
Capturing and quantitatively describing this spatial correlation characteristic helps to
analyze the original image from the texture level. GLCM can quantitatively describe the
texture characteristics of the image with the gray-scale spatial correlation characteristics
in the image [59,60]. GLCM mainly extracts texture through the conditional probability
density between gray levels of the image, which is a unique matrix. It describes a specific
relationship between the gray values of adjacent pixels or adjacent pixels whose distance is
a specific value. Usually, some scalars are used to characterize GLCM. In this paper, five
scalars, including variance, homogeneity, contrast, dissimilarity, and entropy, were used to
describe image texture characteristics. The equations used are shown in Equations (9)—(13)

GLCMVuri/mce = ZZP(Z']) (l - #)2 (9)

i
pij)

GLCMyom ity = — 10

Homogeneity ;Jz 14 (i _],)2 ( )

GLCMcontrast = 22(1 - ])2p2(l/]) (11)
i

GLCMDissimilarity = ZZ(Z - ])p(l,]) (12)

]

GLCMEntmpy = ZZP(I/])lOgZP(l/D (13)

i

where, p(i,j) = p(i,7,9,0) = {(x,y), (x +dx,y +dy)eN x N|f(x,y) =i, f(x + dx,y + dy)
=j}; (x,y) is the reference pixel; (x + dx,y + dy) is the shifting pixel; f(x,y) = i represents
that the gray value of the reference point is i; f(x 4+ dx,y +dy) = j represents the gray
value of the shifting pixel is j; the step is fixed at a certain angle, ¢ is the shifting step size,
and 6 is the shifting angle.

2.2.3. Edge Detection Operator for Shape Features Extraction

Shape features are important information describing target objects, and they play an
important role in the identification and detection of target objects [58]. It can provide clear
edge information of objects and retain important structural attributes in the image. When
detecting small and complex objects such as buildings, it can make up for the deficiencies
of the spectrum and texture features that are easily confused and difficult to detect. In this
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Image_1
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paper, five edge detection operators, Canny, Log, Prewitt, Roberts, and Sobel, were used to
extract the shape features of the objects in the image.

2.2.4. Combine Multiple Features

There are considerable differences between buildings, and conventional remote sens-
ing methods are difficult to comprehensively describe their spectrum, texture, shape, and
other features [61,62]. We extracted the color, texture, and shape features contained in
the original data and combined the original data with these derived features to form an
“artificial high-dimensional image” that contained rich image information. “Artificial
high-dimensional image” was used as the input of the squeeze-and-excitation W-Net net-
work, that is, using the means of deep learning to perform abstract learning and deep
feature extraction of the original remote sensing data and features to achieve a detailed,
comprehensive, and accurate description of the object to be detected.

The form of feature combination adopts staggered arrangement and grouping. Taking
a 2D experiment as an example, the input on the left of the network is a combination of
the original image, grayscale image, and color features, and the input on the right is a
combination of texture features and shape features. The number of bands (Band-number)
corresponding to each is shown in Table 1, and the combination is shown in Figure 4.

Table 1. The number of bands for each feature.

Date Image Gray Color_moment = GLCM Edge
Band number 3x2 1x2 9x2 3x5x2 1x5x2

Band-9
+h

Color ! Input_Left
moment moment; Band-26

Gray

Band-15

GLCM(Image_1)

Band-5

Input_Right
Band-40

GLCM (Image_2)

Edge (Image_1) Edge (Image_2)

Figure 4. Schematic diagram of feature combinations. (a) Input on the left side of the network. (b) Input on the right side of

the network.

2.3. Accuracy Assessment

To validate the effectiveness of the proposed squeeze-and-excitation W-Net. This
paper evaluated it from two perspectives: (1) calculate the overall accuracy (OA), F_1 value,
missing alarm (MA), and false alarm (FA) based on reference data to evaluate the network’s
ability to detect buildings; (2) compared with some widely used change detection methods,
including RCVA, support vector machine (SVM), random forest (RF), deep belief network
(DBN), U-Net, SegNet, and DeepLabv3+.
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2.3.1. Comparison with Ground Truth Data

The overall accuracy represents the ratio of the number of pixels correctly recognized
by the model to the number of all samples, and it represents the ability of the model to
classify positive or negative samples correctly. The calculation is as in Equation (14)

TP+ TN

A:
© TP+ FP+TN+FN

(14)

where, TP is the number of positive samples classified by the model correctly; FN is
the number of positive samples classified by the model incorrectly; TN is the number of
negative samples classified by the model correctly; FP is the number of negative samples
classified by the model incorrectly.

The F; value is a comprehensive index that reflects precision and recall. The precision
is the proportion of correctly classified positive samples in all positive samples classified,
and the recall is the proportion of correctly classified positive samples in all positive
samples. For calculation, Equations (15) and (16) are used:

TP TP
recision = 7p 1 pp Rl = 1p T FN 15)

2 % Precision * Recall
F = 16
1 Precision + Recall (16)

The missing alarm is the proportion of positive samples that are mistakenly classified
as negative samples to all positive samples, and the false alarm is the proportion of
negative samples that are mistakenly classified as positive samples to all negative samples.
They reflect the degree of misjudgment of the sample by the model. For calculation the
Equations (17) and (18) are used:

FN

MA = 757N (17)
FP
FA=+57Fp (18)

2.3.2. Comparison with Other Methods

We adopted seven widely used change detection methods and classified them into
traditional methods (RCVA), machine learning methods (SVM and RF), transition meth-
ods (DBN) from machine learning to deep learning (hereinafter referred to as transition
methods), and deep learning methods (U-Net, SegNet, and DeepLabv3+). We evaluated
the performance of squeeze-and-excitation W-Net from these four aspects. Compared with
traditional methods, machine learning methods, and transition methods, the evaluation
index was mainly used as a reference basis. Compared with the deep learning method, in
addition to the evaluation index, the model was evaluated in terms of running time and
convergence rate. The description of each method is as follows:

(1) RCVA [17] is an effective unsupervised multispectral image change detection method.
Based on the RCVA principle, this paper traverses all the pixels of the two images to
obtain the changing area.

(2) SVM [63] is a machine learning algorithm based on the small sample statistics theory.
It aims to find the optimal decision hyperplane to separate the sample data when the
data points cannot be separated linearly. We used manually selected sample points to
extract training feature values and train the SVM classifier.

(3) RF [64] is a machine learning algorithm that combines ensemble learning theory and
the random subspace method. Since it uses the bootstrap resampling technique to
select training samples, we only provided training data and labels for RE.

(4) DBN [65,66] is developed from the biological neural networks and shallow neural
networks. It is a probabilistic generative model, which is composed of multi-layer
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restricted Boltzmann machine (RBM) and BP network. It uses the joint probability
distribution to infer the sample data distribution. In this paper, a vector of gray values
of pixels arranged in a fixed window is used as input to train multi-layer RBM, and a
small number of labels are used to optimize the model.

(5) U-Netis a classic semantic segmentation network, developed from FCN. We used the
most primitive U-Net model for image segmentation experiments.

(6) SegNet [67]is a semantic segmentation network based on deep convolution and fusion
encoding-decoding structure. This article used the original network architecture
developed from FCN and VGGl1é.

(7) DeepLabv3+ [68] is considered one of the most advanced algorithms for semantic
segmentation. It uses the encoding-decoding structure for multi-scale information
fusion while retaining the original dilated convolution and ASSP layer. Its backbone
network uses the Xception model, which improves the robustness and operating rate
of semantic segmentation.

3. Experiments

To validate the effectiveness of the proposed method, we conducted 2D and 3D BCD
experiments, respectively, and both experiments contain two sets of sub-experiments. The
original remote sensing data for 2D experiments are VHR remote sensing images, and the
3D experiments were VHR remote sensing images and airborne LiDAR point cloud data.

3.1. Datasets
3.1.1. Datasets for 2D Experiments

The data for the first set of sub-experiments came from the Building change detection
dataset of the WHU Building Dataset [69]. The data are aerial images, acquired in April
2011 and April 2016, with a resolution of 0.075 m, including red, green, and blue bands. In
the area covered by the image, a magnitude 6.3 earthquake occurred in February 2011, and
the buildings were seriously damaged. When the image of the area was reacquired in 2016,
the number of buildings increased significantly, and the types and shapes of the buildings
were rich, so It is a high-quality data set for BCD. In this experiment, an area (red rectangle)
with a size of 11,654 x 10,065 pixels and more building changes was selected from the data
set as the experimental area. The image of the experimental area and the reference change
map are shown in Figure 5. Among them, the reference change map is provided by the
data publisher.

(b)

© @ ©

Figure 5. Building change detection dataset, obtained in (a) 2012 and (b) 2016; (c) Study area-2012; (d) Study area-2016; (e)
Ground truth, where white indicates changed region and black indicates the unchanged region.

The data of the second group of sub-experiments was the Multi-temporal Scene
WuHan (MtS-WH) Dataset, which includes two large-size 7200 x 6000 HR remote sensing
images obtained by IKONOS sensors, covering the area of Wuhan, China Hanyang District.
The images were obtained in February 2002 and June 2009, respectively, and fused by the
GS algorithm, with a resolution of 1 m and four bands (blue, green, red, and near-infrared).
Since the MtS-WH data set is mainly used for theoretical research and validation of scene
change detection methods, and the original data only provides the category label of the
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scene, to obtain the changing scene, we obtained the reference change map of the building
area by comparing the scene categories. The image and label are shown in Figure 6.

Figure 6. Multi-temporal Scene WuHan Dataset, obtained in (a) 2002 and (c) 2009; (b) Scene category label-2002; (d) Scene
category label-2009; (e) Ground truth, where white indicates changed region and black indicates the unchanged region.

3.1.2. Datasets for 3D Experiment

The data of the first set of 3D sub-experiments was the Vaihingen data set provided
by ISPRS-Commision II Working Group I1/4. The data set was obtained by the German
Association of Photogrammetry and Remote Sensing in the Vaihingen area of Stuttgart,
Germany. In addition to VHR remote sensing images (near-infrared, red, green) and
reference data, DSM and LiDAR data are also provided. The spatial resolution of the VHR
remote sensing image and DSM was 0.09 m. LiDAR data was acquired by an ALS50 sensor
on 21 August 2008.

Since the Vaihingen data set contains only one period of data, we selected a certain
number of buildings as the assumed change area in order to verify the effectiveness of the
method in this paper. In addition, we used the CSF Plugin Instruction [70] tool to isolate
the ground points in the LiDAR point cloud, generated a DEM based on the point cloud
data, and resampled it to a spatial resolution of 0.09 m. We used the difference between
DSM and DEM to obtain the nDSM data model that eliminated the influence of terrain and
records the height information of all ground objects relative to the ground. The Vaihingen
data set, simulation data, and reference data are shown in Figure 7.

Figure 7. Vaihingen Dataset of (a) Image, (b) DSM and (c) Point cloud; (d) Study area-original;
(e) Study area-assumed; (f) nDSM-original; (g) nDSM-assumed; (h) Ground truth, where white
indicates changed region and black indicates unchanged region.

The data of the second set of 3D sub-experiments were historical Google Earth images
and UAV LiDAR point cloud data we independently obtained. The data covers an area
in Changchun City, Jilin Province, China, with an image resolution of 0.13 m and a size
of 4332 x 5267 pixels. The two phases of HR images were obtained in May 2009 and
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May 2019, including three bands of red, green, and blue. UAV LiDAR point cloud data
were obtained in May 2019. Due to the lack of point cloud data corresponding to May 2009,
we still assumed the point cloud data of 2009 by means of simulation. HR remote sensing
image, point cloud, and its simulation data, reference data are shown in Figure 8.

(d)

Figure 8. Google Earth image of (a) 2009 and (b) 2019; (c) Point cloud; (d) DSM-assumed; (e) DSM-original;
(f) Ground truth, where white indicates changed region and black indicates an unchanged region.

3.2. Network Training and Change Detection
3.2.1. Network Training and Parameter Selection

We constructed the squeeze-and-excitation W-Net based on the TensorFlow frame-
work. For the operating environment we used an Intel(R) Core(TM) i9-990KF CPU, and
a NVIDIA GeForce RTX 2080 SUPER GPU (8 GB). In the four sub-experiments, the input
image size at the left and right ends of the network was 128 x 128 pixels, and the amount of
training data in each batch was 16. In order to facilitate comparison with other methods and
minimize the time expenditure, the epoch of each experiment was set to 100, the training
images used in the experiment were 1000, and the reduction ratio set in the network was
16, as provided in the original article [53].

For the traditional method, we obtained the binary change map by setting the thresh-
old. For the machine learning method, we used the manually selected sample points
to train the classifier to get the detection result. For the transition method, we used the
reference change map to select the appropriate number of samples to train the network to
get the detection results. For the deep learning method, we choose 1000 training images,
set the epoch to 100, used the recommended hyperparameters, and trained the network to
get the detection results.

3.2.2. 2D Change Detection

The original data in 2D experiments (experiment 1 and experiment 2) only contained
remote sensing images. The input of the first, second, and third methods was the original
remote sensing image. The input of the fourth method is the original image and the feature
image. The experimental details of each method are shown in Tables 2 and 3, and the
detection results are shown in Figures 9 and 10.
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Table 2. Details of experiment 1.

Classes Methods Details Time

Traditional RCVA Window size: 3 x 3, Threshold: 100 213.28 min
Machine-learning SVM Number of sample points: building 233, others 266 99.54 min
RF Number of trees: 108, Maximum depth of the tree: 8 15.69 min

Transitional DBN Window size: 2 x 2, Number of samples: 5000 9.44 min
U-Net Minimum loss: 0.62, Maximum accuracy: 97.44% 16.38 min

Deep-learning SegNet Minimum loss: 0.11, Maximum accuracy: 96.30% 36.35 min

DeepLabv3+  Minimum loss: 0.12, Maximum accuracy: 96.76% 9.34 min

Proposed Minimum loss: 0.27, Maximum accuracy: 97.68% 34.06 min

RCVA: robust change vector analysis; SVM: support vector machine; RF: random forest; DBN: deep belief

network.

Table 3. Details of experiment 2.

Classes Methods Details Time
Traditional RCVA Window size: 3 x 3, Threshold: 80 76.22 min
Machine-learning SVM Number of sample points: building 200, others 230 241.91 min
RF Number of trees: 108, Maximum depth of the tree: 8 4.32 min
Transitional DBN Window size: 2 x 2, Number of samples: 5000 5.32 min
U-Net Minimum loss: 0.56, Maximum accuracy: 78.18% 25.48 min
Deep-learning SegNet Minimum loss: 0.51, Maximum accuracy: 81.55% 35.59 min
DeepLabv3+  Minimum loss: 0.42, Maximum accuracy: 83.42% 3.58 min
Proposed Minimum loss: 0.24, Maximum accuracy: 83.76% 33.05 min

© | 0 | ) | (h)

Figure 9. Binary change maps (Experiment 1) obtained by the (a) RCVA, (b) SVM, (c) RF, (d) DBN, (e) U-Net, (f) SegNet, (g)
DeepLabv3+, and (h) Proposed method.
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Figure 10. Binary change maps (Experiment 2) obtained by the (a) RCVA, (b) SVM, (c) RE, (d) DBN, (e)U-Net, (f) SegNet,
(g) DeepLabv3+, (h) Proposed method.

3.2.3. 3D Change Detection

3D change detection also included two sets of sub-experiments (experiment 3 and
experiment 4). Although DSM data was added to the 3D experiment, the image of the first
group of sub-experiment was simulated data, so the comparative experiments of the first,
second, and third methods were not performed. The experimental details of each method
are shown in Tables 4 and 5, and the detection results are shown in Figures 11 and 12.

Table 4. Details of experiment 3.

Classes Methods Details Time
U-Net Minimum loss: 0.30, Maximum accuracy: 99.50% 34.72 min
. SegNet Minimum loss: 0.04, Maximum accuracy: 99.02% 36.62 min
Deep-learning . : ; : o .
DeepLabv3+  Minimum loss: 0.02, Maximum accuracy: 99.57% 15.01 min
Proposed Minimum loss: 0.06, Maximum accuracy: 99.26% 34.42 min

Table 5. Details of experiment 4.

Classes Methods Details Time

Traditional RCVA Window size: 3 x 3, Threshold: 120 35.15 min
Machine-learning SVM Number of sample points: building 558, others 1360 335.07 min

RF Number of trees: 108, Maximum depth of the tree: 8 2.05 min

Transitional DBN Window size: 2 x 2, Number of samples: 5000 9.68 min
U-Net Minimum loss: 0.19, Maximum accuracy: 99.61% 33.81 min

Deen-1 . SegNet Minimum loss: 0.03, Maximum accuracy: 99.02% 37.46 min

cep-learning DeepLabv3+ Minimum loss: 0.07, Maximum accuracy: 99.19% 1.45 min

P , y

Proposed Minimum loss: 0.009, Maximum accuracy: 99.40% 34.40 min
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(b) ) )

(2)

Figure 12. Binary change maps (Experiment 4) obtained by the (a) RCVA, (b) SVM, (c) RF, (d) DBN, (e) U-Net, (f) SegNet,
(g) DeepLabv3+, and (h) Proposed method.

According to the formula in Section 2.3.1, the evaluation index corresponding to the
four groups of detect results were calculated, as shown in Tables 6 and 7.

Table 6. Accuracy assessment on 2D change detection results.

Experiment 1 Experiment 2
Methods
OA F1 MA FA OA F1 MA FA

RCVA 0.8097 0.2821 0.6211  0.1431  0.6233 0.3087 0.7916  0.0958
SVM 0.8411 04860 0.2385 0.1502 0.7008 0.6215 0.3915  0.2366
RF 0.7093 0.3624 0.1628 0.3047 0.6590 0.5698 0.4405  0.2736
DBN 09020 0.6539 0.0620 0.1019  0.7210 0.6953 0.2114  0.3247
U-Net 09646 0.8014 0.2771 0.0089  0.7742 0.7387 0.2091  0.2372
SegNet 09578 0.7985 0.1520 0.0302  0.7669 0.6597 0.4403  0.0928
DeepLabv3+ 09546 0.7654 0.2494 0.0231 0.7682 0.7359 0.1998  0.2534
Proposed 09722 0.8569 0.1564 0.0137  0.7699 0.7409 0.1849  0.2608

OA: overall accuracy; F1: F1 value; MA: missing alarm; FA: false alarm.

It can be seen from Tables 6 and 7 that, except for individual cases, the detection
results obtained by the proposed method, OA and F1 were both the maximum, and MA
and FA are both the minimum. Moreover, except for the generally low detection accuracy
of experiment 2, the OA values of the proposed methods were all greater than 0.97, and
the F1 values were all greater than 0.86. This shows that the squeeze-and-excitation W-Net
proposed in this paper with multi-source and multi-feature data as input could obtain
higher quality detection results than other methods. Furthermore, our proposed network
not only surpassed traditional methods, machine learning methods, and transition methods
but also performed better than the typical semantic segmentation network of deep learning
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methods. It can also be seen Figures 9-12 that the detection results obtained by the method
in this paper could accurately and clearly reflect the changing buildings. This proves that
the squeeze-and-excitation W-Net we designed can be successfully applied to the 2D and
3D change detection of buildings.

Table 7. Accuracy assessment on 3D change detection results.

Experiment 1 Experiment 2
Methods
OA F1 MA FA OA F1 MA FA

RCVA / / / / 0.7647 0.2442  0.6271  0.1908
SVM / / / / 0.8865 0.5164  0.4059  0.0803
RF / / / / 0.8953 0.5438 0.3878  0.0726
DBN / / / / 0.8940 0.6387  0.0815  0.1087
U-Net 0.9940  0.9523 0.0609 0.0023  0.9956 09784  0.0278  0.0017
SegNet 0.9901 09208 0.0919 0.0044  0.9906 09552  0.0183  0.0084
DeepLabv3+ 0.9896 09138 0.1370 0.0018  0.9916 09585  0.0481  0.0039
Proposed 0.9946 09571 0.0532 0.0022  0.9956 09784  0.0288  0.0016

4. Discussion

To evaluate the proposed method fully. Section 4.1 provides an intuitive evaluation of
the methods from the aspect of comparison methods. Section 4.2 analyzes the performance
of the squeeze-and-excitation network. The influence of multi-feature input on the model
is discussed in Section 4.3.

4.1. Comparison with Previous Studies

The seven previous research methods used in this article were all representative and
could fully illustrate the advantages of our method. RCVA eliminates the influence of
image registration errors by considering neighborhood information [17]. It divides the
spectral change intensity value of the pixel by the threshold and then obtains the changing
area, which limits the detection accuracy to the quality of the threshold selection. However,
the linear threshold does not have much physical meaning and is highly subjective. Besides,
the degree of confusion of pixel spectral values in HR remote sensing images is so great that
RCVA, which simply takes pixel spectral values as the research object, appears powerless
when processing HR remote sensing images. SVM generates the optimal classification
hyperplane by solving a convex quadratic programming problem [63]. It can perform non-
linear classification tasks. However, the training of the classifier requires enough training
samples. We manually select a limited amount of training samples, and the detection results
obtained after training the SVM are not ideal. The indexes in Tables 6 and 7 also show
that the hand-selected training sample points of experiment 4 are several times more than
experiment 1 and experiment 2. Compared with experiment 1, the OA and F1 of experiment
4 were increased by more than 5% and 3%, respectively, and the FA value was reduced
by more than 7%. This shows that the number of training sample points directly affects
the detection performance of SVM. Similarly, this situation is the same for RF. Because
compared with experiment 1, the OA and F1 of experiment 4 were increased by more than
18%, and the FA was reduced by more than 23%. However, hyperparameters such as the
number of decision trees and the maximum depth of the decision tree would affect the
classification effect of RF [64]. However, under the premise of a fixed number of samples,
we found that by adjusting the hyperparameters, the influence of the hyperparameters is
much smaller than the training samples. It can also be observed Figures 9-12 that although
the detection results of SVM and RF have a certain degree of error, they can reflect the main
change areas of the building. This shows that compared to traditional methods, machine
learning methods have certain advantages. The DBN network belonging to the transition
method has higher OA and F1 and relatively lower MA and FA. However, the price of this
improvement is the need to feed a larger number of training samples. We automatically
selected 5000 training samples by reference map, avoiding the time-consuming way of
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manually selecting samples. This method of automatically selecting training samples can
provide sufficient training samples for DBN. The trained model has a better detection effect,
which may be related to this.

On the whole, the detection results of deep learning methods are of higher quality
than the other three types of methods. Figures 9 and 12e-h show that the building areas
were relatively straightforward and accurate, and there was almost no large-scale false
detection. The indexes in Tables 6 and 7 also show that the detection results of the deep
learning method had a higher level of accuracy, and the values of OA, F1, MA, and FA
were all significantly improved compared to the other three methods. Among them,
the maximum increase of OA was 26.29%, the maximum increase of F1 was 73.42%, the
maximum decrease of MA was 60.88%, and the maximum decrease of FA was 18.92%. It is
worth mentioning that in the longitudinal comparison with other methods, the squeeze-
and-excitation W-Net achieved the largest increase and decrease of the three indexes of OA,
F1, and FA. This fully demonstrates that the squeeze-and-excitation W-Net we designed has
powerful feature extraction, synthesis, and analysis capabilities and can correctly classify
buildings and non-buildings. In the four groups of experiments, U-Net has shown relatively
good performance, and the best indexes appear in almost every group of experiments. And
in experiment 4, its OA and F1 are the same as the maximum value corresponding to the
squeeze-and-excitation W-Net, which reflects the advantages of U-Net because this reflects
the ability of the network to quickly complete network convergence and achieve higher
validation accuracy under the premise of 100 training times. In contrast, the detection
results of SegNet and DeepLabv3+ were relatively low. SegNet will calculate the category
probability of each pixel at the end of the network and then obtain the category probability
of the pixel through the Softmax function [67]. The premise to ensure that the model can
correctly infer the pixel category is that the model is fully trained. This increases the time
cost and makes the execution of the model inefficient. Therefore, under 100 limited training
times, SegNet may not be well trained, which makes the detection result unsatisfactory.
Since DeepLabv3+ was proposed, some people considered it to be one of the most advanced
algorithms for semantic segmentation. Its encoder-decoder structure can fuse multi-scale
information, and its dilated convolution and ASSP layer and backbone network Xception
can improve the robustness and operating rate of semantic segmentation. However, the
network did not seem to have strong robustness when dealing with complex multi-source
data. After performing small-scale training, the detection results were not ideal, and even
the highest MA appeared among the four deep learning methods. This also shows that
although an optimized network structure can improve network performance, a lightweight
and fast convergence network model should also be the focus of future research.

4.2. Analysis of Network Models

Although the squeeze-and-excitation W-Net has obtained good detection results, its
network convergence rate, operating speed, and the ability to feature learning of the
network have not been fully discussed. In Tables 2-5, we counted the time consumption
of various methods when performing detection or training. The implementation of non-
deep learning methods was different, and there was no unified standard for data usage
and calculation methods, so their time consumption was not comparable. In addition,
the implementation of DeepLabv3+ was not a TensorFlow framework, and it was not a
Python platform, so its time consumption was not explained. U-Net, SegNet, and squeeze-
and-excitation W-Net are all constructed through the TensorFlow framework and were
similar in terms of data input, network construction methods, and hyperparameter settings.
Therefore, the three networks can be compared in terms of time consumption, convergence
rate, and feature learning ability. From Tables 2-5, it can be seen that the training time
of squeeze-and-excitation W-Net in the four sets of experiments is not the largest, which
shows that the network we designed obtains higher quality detection results while adding
less time cost. To analyze the execution performance of the network, we analyzed the
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training details of the three networks in 4 sets of experiments and visualized the validation
loss and validation accuracy during the network training process, as shown in Figure 13.
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Figure 13. Validation accuracy and loss curve of U-Net, SegNet, and squeeze-and-excitation W-Net, for experiment 1 (a,b),

experiment 2 (c,d), experiment 3 (e,f), and experiment 4 (g,h).

Figure 13a,c,e,g shows the validation loss values of the three models. It can be seen
from the curve that the squeeze-and-excitation W-Net had a faster convergence rate, and
the loss value decreases rapidly as the number of training increased and approached 0.
The other two networks performed poorly, the loss value failed to drop to near 0 within
a fixed number of training times, and even the loss value increased. This shows that
the network model we propose has a strong ability to extract features of data and can
mine deep features of data. The loss value has been declining, which may be attributed
to the non-linear modeling effect of the squeeze-and-excitation module. Figure 13b,d,f,h
show the validation accuracy curve. It can also be seen that the squeeze-and-excitation
W-Net had high validation accuracy in the four sets of experiments and maintained a
good upward trend. It is worth mentioning that the reference change map in experiment
2 did not clearly label the objects, and there was a slight confusion among the objects.
The training accuracy of the other two models was obviously affected by this, and the
accuracy curve fluctuated greatly or climbed slowly. The squeeze-and-excitation W-Net
still maintained a high accuracy, and the accuracy value had an obvious upward trend. We
believe that this relies on the independent data input form of the squeeze-and-excitation
W-Net at the left and right ends and the form of network training. Both the left and right
ends are down-sampled at the same time, and the advantages of low-dimensional features
are copied at the same time in the corresponding layer so that the network has stronger
robustness when dealing with the confusion of positive and negative samples.

4.3. The Effect of Multi-Feature

The way we propose using multi-source and multi-feature data as the network input
has played a non-negligible role in improving the detection accuracy of the deep learning
network. Especially, it is difficult to accurately separate objects such as buildings with
a high degree of diversity and complexity from a highly confusing background using a
single feature. To verify the impact of multi-source and multi-feature data on the deep
learning network, we conducted comparative experiments on the three networks with
multi-feature and original image data as input. In the experiment with multiple features as
input, we combined the original image and its features in the manner shown in Table 1 and
Figure 4, and used this as the input to train the network. In the experiment where a single
feature was the input, we only used the original image as the input to train the network.
Taking Experiment 2 and Experiment 4 as examples, we visualized the comparison results,
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as shown in Figures 14 and 15. At the same time, we counted the changes in OA, F1, MA,
and FA values. As shown in Figure 16, the histogram is an index value with a single feature
as the input, and the range of change represents the increase or decrease in the accuracy
index of a single feature relative to the accuracy index with multiple features as the input.

Figure 14. Binary change maps (Experiment 1) obtained by the (a) U-Net_Multi-feature, (b) SegNet_Multi-feature,
(c) DeepLabv3+_Multi-feature, (d) squeeze-and-excitation W-Net_Multi-feature, (e) U-Net_only-image, (f) SegNet_only-
image, (g) DeepLabv3+_only-image, and (h) squeeze-and-excitation W-Net_only-image.

Figure 15. Binary change maps (Experiment 4) obtained by the (a) U-Net_Multi-feature, (b) SegNet_Multi-feature,
(c) DeepLabv3+_Multi-feature, (d) squeeze-and-excitation W-Net_Multi-feature, (e) U-Net_only-image, (f) SegNet_only-
image, (g) DeepLabv3+_only-image, and (h) squeeze-and-excitation W-Net_only-image.
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Figure 16. Histograms of the difference between the input of multi-feature and the input of only-image, for (a) experiment

1, (b) experiment 2, (c) experiment 3, and (d) experiment 4.

The results in Figures 14 and 15 are shown that the detection results of the models
obtained by the two data input methods were clearly different. The detection result
corresponding to the multi-feature input method had less misjudgment of the building,
and the obtained building area was further complete and had clear boundaries. This reflects
the way that multi-feature data is used as the model input can make the deep learning
model have strong robustness for detecting complex objects. In addition, the increase in
OA and F1 and the decrease in MA and FA shown in Figure 16 were relatively significant.
That is, when the input was converted from original image data to multi-feature data, the
values of OA and F1 were increased except for individual cases, and the values of MA and
FA were decreased. This can be further proved from the data level that the multi-feature
input method can better train the model than the single-feature input method. This method
also contributes more to the improvement of model performance and can play a role in
improving the robustness of the model.

5. Conclusions

In this article, we proposed a new bilaterally symmetrical end-to-end network ar-
chitecture called squeeze-and-excitation W-Net, which can perform 2D and 3D building
change detection. The two-sided network input end can meet the comprehensive applica-
tion of homogeneous and heterogeneous data. The deepened convolutional layer and the
introduced Batch Normalization layer make the network feature extraction ability stronger,
faster training rate, and more robust. The W-shaped network structure has two-sided
skip connections, which can extend the low-dimensional features on both sides to the
upsampling of high-dimensional features, and significantly improve the network’s image
restoration capability and detection accuracy. Furthermore, we innovatively carried out
sufficient feature mining and information extraction on the original data. We obtained
the spectrum, texture, shape, and other features in the original image and used these
features together with the original image as input to train the network. Experiments
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showed that this idea effectively improved the network’s detection ability and the ability
to extract information from complex features. To make effective use of multiple features,
we uniquely embed the squeeze-and-excitation module after each convolution in W-Net.
The squeeze-and-excitation layer can learn the dependency relationship between feature
channels, making the network more sensitive to essential features, and has a stronger
ability to process complex multi-source and multi-feature data.

We applied our method to four challenging data sets. We selected four classic and
commonly used methods of traditional methods, machine learning methods, transition
methods, and deep learning methods for comparative experiments. The qualitative and
quantitative analysis of the experimental results showed that, in most cases, our method
obtained higher OA and F1 values and lowered MA and FA values. And while improving
the detection accuracy, the time cost of the squeeze-and-excitation W-Net we designed is
lower. This shows that the network is highly scalable and can be applied to large-scale
change detection tasks. It is worth mentioning that both experiment 3 and experiment 4
used homogeneous and heterogeneous data simultaneously. This is a challenge to the per-
formance of the network. Moreover, our network can use these two kinds of data together
and achieve good detection results, and the network convergence and execution efficiency
are high. In summary, this paper proposes a change detection method based on a new
squeeze-and-excitation W-Net deep learning network. It can effectively perform building
2D and 3D change detection and has strong data mining capabilities and adaptability. It is
a change detection method with strong practical value and promotion significance.
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