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Abstract: The assimilation of microwave and infrared (IR) radiance satellite observations within
numerical weather prediction (NWP) models have been an important component in the effort of
improving the accuracy of analysis and forecast. Such capabilities were implemented during the
development of the high-resolution Copernicus European Regional Reanalysis (CERRA), funded
by the Copernicus Climate Change Services (C3S). The CERRA system couples the deterministic
system with the ensemble data assimilation to provide periodic updates of the background error
covariance matrix. Several key factors for the assimilation of radiances were investigated, including
appropriate use of variational bias correction (VARBC), surface-sensitive AMSU-A observations
and observation error correlation. Twenty-one-day impact studies during the summer and winter
seasons were conducted. Generally, the assimilation of radiances has a small impact on the analysis,
while greater impacts are observed on short-range (12 and 24-h) forecasts with an error reduction of
1–2% for the mid and high troposphere. Although, the current configuration provided less accurate
forecasts from 09 and 18 UTC analysis times. With the increased thinning distances and the rejection
of IASI observation over land, the errors in the analyses and 3 h forecasts on geopotential height
were reduced up to 2%.

Keywords: data assimilation; radiance observations; regional reanalysis; Copernicus Climate Change
Services (C3S); limited area model; satellite observations

1. Introduction

The importance of the reanalysis has expanded over various meteorological and cli-
matological applications over the years, where it can be an effective tool for observing
long-term trends in climate monitoring studies, such as climate anomalies and variabil-
ity [1,2]. Within the numerical weather prediction (NWP) community, the reanalysis can be
used to study the impact of the changing observing system [3]. There are also industrial
applications, including wind power assessment for potential wind farm establishments [4].
The reanalysis provides the best estimate of the atmospheric state throughout an extended
period in the past from the assimilation of archived observations in an NWP system. A
frozen state-of-the-art configuration of the NWP system is used to produce the reanalysis to
ensure that any anomaly and trends are associated with the climatological changes rather
than from the progressive changes in a typical operational NWP system [1].

Among the existing reanalysis datasets, ERA-Interim [5] and the subsequent gener-
ation ERA5 [3] are the most widely used global reanalyses, produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF). In order to resolve smaller-scale
processes, the Uncertainty in Ensemble of Regional Reanalysis (UERRA) Project of the
seventh framework programme (FP7) offers a high-resolution regional reanalysis over
Europe. The UERRA reanalysis is based on the Harmonie regional NWP system, developed
by the HIRLAM (High-Resolution Limited Area Model) consortium with the ALADIN
(Aire Limitée Adaptation Dynamique Développement International) physics [6,7]. It has
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an 11 km horizontal resolution with 65 vertical levels while using an optimal interpolation
(OI) assimilation scheme for surface analysis and three-dimensional variational (3D-VAR)
data assimilation for upper-air analysis. Unlike the global reanalysis systems mentioned
above, UERRA reanalysis does not assimilate satellite radiance observations and any other
non-conventional upper-air observations.

A subsequent service project funded by the Copernicus Climate Change Services
(C3S) delivered an extended near-real-time UERRA reanalysis dataset, up to July 2019.
In parallel, a new modernized reanalysis system called Copernicus Regional Reanalysis
for Europe (CERRA) was developed and currently in production for the period between
the early 1980s to near real-time. The project was led by the Swedish Meteorological
and Hydrological Institute (SMHI), in collaboration with the Norwegian Meteorological
Institute (MET Norway) and Meteo-France. The CERRA dataset will be continuously
updated throughout the production period and available in the Copernicus Climate Data
Store (https://cds.climate.copernicus.eu/#!/home).

Similar to the UERRA system, the CERRA reanalysis system is based on the Harmonie
NWP system with ALADIN physics, OI for surface analysis and 3D-VAR for upper-air
analysis [8,9]. However, it has a higher horizontal and vertical resolution of 5.5 km
and 106 levels, respectively. Additional improvements to the CERRA system include an
Ensemble Data Assimilation (EDA) system coupled with the deterministic CERRA system
to regularly update the flow-dependent information in the background error covariance
matrix (B-Matrix), used in the 3D-VAR deterministic system [10,11]. The flow-dependency
updates in B-Matrix were intended to better represent the evolving errors associated with
passing/changing weather systems, which can lead to producing more representative
analyses and forecasts [12]. Lastly, the CERRA system aims to assimilate additional
observations from the observing system, such as satellite radiance observations and other
non-conventional observations. It is anticipated that the increase in observations will
produce a more accurate representation of the atmospheric conditions.

The assimilation of radiance observations has shown improvement in NWP’s forecast
skills [13–17], especially over the sea where conventional observations are sparse. These
observations also have a higher temporal and spatial resolution while covering over an
extensive area in a given assimilation window. However, the assimilation of radiance
observations is not trivial, where handling radiance bias correction and observation error
correlation can be a challenge. Many NWP centres have adopted variational bias correction
(VARBC) to reduce the radiance bias associated with instrumental, calibration and system-
atic errors in the radiative transfer model [18–20]. In addition, various diagnostic tools and
methods are available to determine the acceptable spatial and inter-channel observation
error correlation [21–23] to appropriately assimilate radiance observations.

This paper describes the development and impact of assimilating radiance observa-
tions in the CERRA system. The configuration of the NWP system and the radiance assim-
ilation setup is discussed in Sections 2 and 3, respectively. The impact of the variational
bias correction is studied in Section 4. The relative impact of the radiance observations
on the data assimilation and forecast systems is examined using two diagnostic metrics
in Section 5, while the impact of the satellite radiances is examined through verification
against conventional observations during both summer and winter periods in Section 6.
Lastly, the discussions and conclusions are presented in Section 7.

2. NWP Configuration

The CERRA system is developed under the framework of the HARMONIE version
40h.1.1 [24], with ALADIN physic and hydrostatic dynamic schemes [7]. It has a 5.5 km
horizontal resolution with 106 vertical levels, spanning up to the model top of 1 hPa. The
domain of CERRA covers Europe, Northern Africa and South-Eastern parts of Greenland,
as shown in Figure 1.

https://cds.climate.copernicus.eu/#!/home
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Figure 1. The domain of the Copernicus European Regional Reanalysis (CERRA) system represented
by the highlighted region in blue shading.

The NWP is initialized with a 3D-VAR assimilation scheme for the upper air and an OI
for the surface assimilation. The upper air analysis is computed through the minimization
of the 3D-VAR cost function J, shown in Equation (1):

J(x) =
1
2
(x− xb)

TB−1(x− xb) +
1
2
(y− H(x))TR−1(y− H(x)) (1)

where xb is the background model state, y is the observation vector, H is the observation
operator and B and R are the background and observation error covariance matrices,
respectively. The NWP system has a 3-hourly cycling interval, where 30 h forecasts are
produced at 00 and 12z assimilation times (cycles) and up to 6 h forecasts are generated
at the 03, 09, 15 and 21z assimilation times. Unlike in the operational NWP systems, the
number of observations assimilated in a reanalysis system is not limited by the observation
cut-off time, since reanalysis is produced in hindsight relative to the time of observation
measurement. Effectively, it has a longer assimilation window, which enables the assim-
ilation of all observations measured within the 3-h assimilation window, including the
reprocessed observation datasets.

An EDA system is coupled with the CERRA system to regularly update the B-Matrix,
which is used in the deterministic 3D-VAR assimilation system. The B-Matrix consists of
the climatological and the Ensemble Flow dependent (EFD) components, calculated from
the EDA’s forecast differences [10]. The EDA system comprises 10 ensemble members,
with 11 km horizontal resolution and has a 6 hourly cycling interval. Due to the different
horizontal resolutions between the EDA and the deterministic system, the forecast differ-
ences were downscaled to the deterministic system’s 5.5 km resolution before being used
to update the B-Matrix. Both systems use the ERA5 reanalysis as the lateral boundary
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conditions and assimilate the same types of observations. A workflow diagram in Figure 2
summarizes CERRA’s coupled systems.

Figure 2. A summary of the coupled Ensemble Data Assimilation (EDA) and deterministic system represented by the orange
and blue colour shading, respectively. The B-Matrix is updated using the forecast differences from the 10 ensemble members.
The three-dimensional variational (3D-VAR) from the deterministic system uses the updated B-Matrix to assimilate recent
observations and compute the analysis. The forecasts are initialized using the analyses and integrated in time using the
LBCs, while the 3-h forecasts are used as the first guess or background for the assimilation in the following cycle.

An important focus during the development of the CERRA system was to assimilate as
many observations that are available from the observing system throughout the reanalysis
period. This was a challenging task as all the selected observation types from the 1980s to
near-present have to be appropriately assimilated in the CERRA system. Table 1 shows the
conventional observations that were chosen to be assimilated in the CERRA system, includ-
ing local surface observations that are collected and quality controlled at the meteorological
agencies in the Nordic countries (Norwegian Meteorological Institute (MET Norway),
Danish Meteorological Institute (DMI), Swedish Meteorological and Hydrological Institute
(SHMI), Finnish Meteorological Institute (FMI), Icelandic Meteorological Office (IMO))
and Météo France. Subsequently, the satellite observations selected to be assimilated are
summarized in Table 2. It consists of the Microwave Sounding Unit (MSU), Advanced Mi-
crowave Sounding Unit-A and B (AMSU-A and AMSU-B), Microwave Humidity Sounder
(MHS), Infrared Atmospheric Sounding Interferometer (IASI), Atmospheric Motion Vectors
(AMV), GPS Radio Occultation (GPS-RO) and Ground-Based GNSS Zenith Total Delay
(ZTD). The processing of the satellite radiance observations will be discussed more in detail
in Section 3.

Table 1. Summary of the non-satellite observations assimilated in the CERRA system. The sources of the observations are
listed. Note that MARS represents the European Centre for Medium-Range Weather Forecast’s (ECMWF) Meteorological
Archival and Retrieval System.

Type Source

Conventional (radiosonde, aircrafts, ships, buoys and surface
observations)

MARS

Local Observation DMI, SMHI, MET Norway, FMI, IMO, Météo France
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Table 2. Summary of the satellite observations assimilated in the CERRA system. The satellite platforms of each instrument
and the source of the observation datasets are listed. Note that MARS represents ECMWF’s Meteorological Archival and
Retrieval System, and ECFS is ECMWF’s file storage system.

Instrument Satellites Sources

Advanced Microwave Sounding
Unit-A (AMSU-A)

NOAA-15,16,18,19,
MetOp-A,B,C

MARS Archive

Advanced Microwave Sound-
ing Unit-B (AMSU-B) and
Microwave Humidity Sensor
(MHS)

NOAA-16,17,18,19
MetOp-A,B,C

MARS Archive

Microwave Sounding Unit
(MSU)

NOAA-6,7,8,9,10,11,12,14 MARS Archive

Infrared Atmospheric Sounding
Interferometer (IASI)

MetOp-A,B,C EUMETCAST Dataset and
MARS Archive

Atmospheric Motion Vectors
(AMV)

NOAA, MetOp, METEOSAT MARS Archive

Scatterometer NSCAT-ERS2, Seawinds-
QuickSCAT,
OceanSat2-OceanSCAT,
Metop-A,B,C-ASCAT

EUMETSAT Data Center

GPS Radio Occultation (GPS-
RO)

Metop, COSMIC, CHAMP,
GRACE

Reprocessed Climate Data
Records

Ground-Based GNSS-ZTD (GPS-
ZTD)

GPS and GLONASS EPN EUREF, EUREF GNSS

3. The Pre-Processing and Assimilation of the Radiance Observation

The CERRA system assimilates clear-sky radiance satellite observations, since added
uncertainties from the assimilation of cloud contaminated observations can lead to degra-
dation in forecast skills [25]. The CERRA system is equipped with a cloud detection scheme
for high spectral resolution infrared sounders, developed by [26]. Their approach compares
the observed spectra with the first-guess (FG) spectra of a cloud-free atmospheric state. The
first guess departures are then ranked based on their sensitivity to the clouds and assigned
an attitude in which complete overcast occurs for each particular channel. In the presence
of monotonically increasing departures between the observed and computed spectrum,
the cloud contaminated channels are then identified and removed. A similar approach
described in [17,27] is applied for microwave sounder instruments in the CERRA system.
Specifically, the first-guess departure threshold test compares the observed brightness
temperature (BT) with the clear-sky FG brightness temperature and removes any radiance
observations that have a departure higher than the predefined threshold. It is worth noting
that many meteorological centres have made advancements in assimilating all-sky radi-
ances [25,28]. The CERRA system does not include all-sky radiance assimilation, as such
capabilities have not been yet implemented in the HARMONIE model framework.

The satellite instrument and channel selections in the assimilation of radiances were
adopted from the HARMONIE system [17], shown in Table 3. They span from the early
1980s to near real-time, providing an adequate satellite coverage throughout the majority
of the CERRA reanalysis. The satellite instruments include Microwave Sounding Unit
(MSU), Advanced Microwave Sounding Unit-A/B (AMSU-A/B), Microwave Humidity
Sounder (MHS) and Infrared Atmospheric Sounding Interferometer (IASI). In addition, the
normalized weighting functions of all assimilated IASI channels are shown in Figure 3.
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Table 3. A summary of the instruments, satellite platforms, channels and its respective frequencies (microwave instruments)
or wavenumber (IR instrument) that are assimilated within the CERRA reanalysis period. Infrared Atmospheric Sounding
Interferometer (IASI) channels 333 and 352 are later rejected, which will be explained in Section 5.

Instruments Satellite Platform Channels Frequency (GHz)-Microwave
Wavenumber (cm−1)-IR

MSU NOAA-6, 7, 9, 10,
11, 12, 14

2,3,4 53.74, 54.96, 57.95

AMSU-A NOAA-15, 16, 18,
19,
Metop-A, B, C

5,6,7,8,9 53.596 ± 0.115, 54.40, 54.94, 55.50,
57.290

AMSU-B NOAA-16, 17, 18 3,4,5 183.31 ± 1.0, 183.31 ± 3.0, 190.311
MHS NOAA-19

METOP-A, B, C
3,4,5 183.31 ± 1.0, 183.31 ± 3.0, 190.311

IASI METOP-A, B, C CO2 Absorption
Band:
38, 51, 63, 85, 104, 109,
167, 173, 180, 185, 193,
199, 205, 207, 212, 224,
230, 236, 239, 242, 243,
249, 296, 333*, 337, 345,
352*, 386, 389, 432
H2O Absorption
Band: 2701, 2819, 2910,
2919, 2991, 2993, 3002,
3008, 3014, 3098, 3207,
3228, 3281, 3309, 3322,
3438, 3442, 3484, 3491,
3499, 3506, 3575, 3582,
3658, 4032

CO2 Absorption Band: 654.25,
657.50, 660.50, 666.00, 670.75, 672.00,
686.50, 688.00, 689.75, 691.00, 693.00,
694.50, 696.00, 696.50, 697.75, 700.75,
702.25, 703.75, 704.50, 705.25, 705.50,
707.00, 718.75, 728.00, 729.00, 731.00,
732.75, 741.25, 742.00, 752.75
H2O Absorption Band: 1320.00,
1349.50, 1372.25, 1374.50, 1392.50,
1393.00, 1395.25, 1396.75, 1398.25,
1419.25, 1446.50, 1451.75, 1465.00,
1472.00, 1475.25, 1504.25, 1505.25,
1515.75, 1517.50, 1519.50, 1521.25,
1538.50, 1540.25, 1559.25, 1652.75

3.1. Assimilation of Surface Sensitive Radiance Observations

Unlike most of the microwave channels used in the CERRA system, AMSU-A channel
5 (53.596± 0.115 GHz) has a low peaking weighting function. Consequently, it has a higher
sensitivity to near-surface properties, such as surface skin temperature and emissivity, as
described by [29,30]. Significant advancement has been made in sea emissivity models to
effectively assimilate surface-sensitive microwave channels over sea by [31,32]. However,
the assimilation of radiance over land becomes more challenging as the surface emissivity
over land (1.0) is higher compared to over sea (0.5–0.8) [29,30,33]. As a result, surface
emissivity has a greater effect on the surface-sensitive microwave channels over land
compared to the sea. In addition, the surface emissivity over land is highly dependent on
the land-use type and roughness length, which can have greater spatial variability.

The CERRA system adopted two schemes from the HARMONIE system to utilize the
surface emissivity and skin temperature and appropriately assimilate AMSU-A channel 5
(53.596± 0.115 GHz), as proposed by [29]. The first scheme ingests monthly mean emissiv-
ity atlases, which were computed offline based on AMSU-A/B near-nadir observations
and atmospheric information from ECMWF 45-year reanalysis (ERA-40). When available,
this scheme is preferred to take into account the seasonal variability of the emissivity. The
second and alternative scheme calculates the emissivity dynamically within the data assim-
ilation system by using the AMSU-A/B observations, while the atmospheric conditions
are provided by the RTTOV model [34]. The impact of assimilating AMSU-A channel 5
(53.596± 0.115 GHz) on the CERRA system will be discussed in Sections 5 and 6.
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Figure 3. The normalized weighting function for all assimilated IASI channels.

3.2. Thinning of Radiance Observations

Within the data assimilation framework, one assumes that the observation errors are
not correlated. The correlation of observations errors is often substantial when assimilating
networks of high-density observations such as radiance observations, resulting in sub-
optimal analyses and forecasts. The correlation can exist spatially and inter-channel of
satellite instruments, which can originate from radiative-transfer models, instrument design
or calibration [22]. One approach for reducing the error correlation uses spatial thinning of
the observations. Reference [35] showed improved forecast skills from the global Met Office
NWP system by prescribing optimal spatial thinning for radiance observations. The author
of [16] found the optimal thinning distance for the Advanced TIROS Operational Vertical
Sounder (ATOVS) radiance assimilation in the ALADIN/Hungary limited area model
(LAM) with significant impact on the short-range forecasts. The CERRA system adopted the
thinning distance configuration from the HARMONIE system, which is applied using two
steps [16,17,20,36]. While in the first step a minimum distance (defined by RMIND_RAD1C)
between the active observations is guaranteed, the second step enforces a final prescribed
(defined by “RFIND_RAD1C”) average distance. The summary of the thinning parameters
for radiance observations is shown in Table 4.
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Table 4. The thinning distance parameters for the assimilation of the radiance observations used in
the CERRA system.

Instrument RMIND_RAD1C (km) RFIND_RAD1C (km)

AMSU-A 60 80
AMSU-B 40 80

MHS 40 80
IASI 60 80

3.3. Variational Bias Correction

Assimilating radiance observations with biases can be detrimental to the performance
of the NWP system. The bias can originate from the radiative transfer model used as
the observation operator in the assimilation of radiances. Other sources of bias include
satellite instrumentation errors such as poor calibration, characterization and scanning
position [18,19]. A variational bias correction (VARBC) scheme was implemented into
NWP system by [37] in the common IFS (Integrated Forecast System), ARPEGE (Action de
Recherche Petite Echelle Grande Echelle), ALADIN, and AROME (Application of Research
to Operations at Mesoscale) variational data assimilation systems, which was later activated
in the HARMONIE NWP system [20,36]. The advantage of the VARBC scheme is its ability
to effectively remove potential bias dynamically, without requiring manual updating. This
is especially beneficial in the framework of a reanalysis because less manual maintenance is
needed to incorporate and monitor the biases correction from emerging satellites within the
reanalysis’ lifespan [19]. In addition, the scheme is able to utilize anchoring observations
such as radiosonde to better distinguish between the model bias and the bias from radiance
observations [18]. As a result, the VARBC solely reduces the radiance biases while avoiding
the radiance bias correction being drawn towards the model bias. A model without such
capabilities can lead to the analysis drifting towards the model climate.

The VARBC scheme reduces the observation bias against its departure from the first
guess model state. Originally, the observation departure is defined as Equation (2)

y− H(x) (2)

where y the observation vector, x is the model state vector and H(x) is the observation
operator, which is the RTTOV radiative transfer model for the case of radiance assimilation.

As defined by [38], the radiance observation bias is represented by the linear regression
from a set of predictors pi, weighted by unknown bias predictor coefficients βi. Then
the bias b(x, β) can be implemented into the observation operator Hm(x, β) defined by
Equation (3):

Hm(x, β) = H(x) + b(x, β) = H(x) +
N

∑
n=0

βi pi(x) (3)

Consequently, the 3D-VAR cost function from Equation (1) becomes:

J(x) =
1
2
(x− xb)

T B−1(x− xb) +
1
2
(y− Hm(x))T R−1(y− Hm(x)) +

1
2
(β− βb)

T B−1
β (β− βb) (4)

where β is the set of bias correction predictor coefficients for the current analysis, while βb
represents the coefficients from the previous analysis cycle. Lastly, Bβ is the bias parameter
background error covariance matrix, which is used to constrain the sensitivity on the bias
correction to the new observations. It consists of error variances for the bias parameter σ2

β j

in the diagonal of the matrix shown in Equation (5) [37].

Bβ = diag(σ2
β1

, ..., σ2
βn
), where σ2

β j
=

σ2
oj

NJ
j = 1, ...n (5)
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where the error variances for the bias parameter are defined by the error variance of
the radiance observations σ2

oj
, weighted by factor Nj. Also, n is the number of used

bias predictors.
The set of predictors consists of air-mass and scanning angle predictors [19,37]. In

particular, the air-mass predictors are used to represent the errors from the radiative transfer
model and are dependent on the atmospheric model state. The scanning angle predictors
represent the bias associated with viewing angles relative to nadir. A list of the predictors
used in the HARMONIE system can be found in Table 5. In general, predictors p0 to p7 are
air mass predictors while p8 to p10 and p15 to p17 are scan angle predictors.

Table 5. The relevant variational bias correction (VARBC) bias correction predictors used in the
HARMONIE numerical weather prediction (NWP) system.

Predictor Explanation

p0 1 (Constant)
p1 1000–300 hPa thickness
p2 200–50 hPa thickness
p3 T_skin
p4 total column water
p5 10–1 hPa thickness
p6 50–5 hPa thickness
p7 surface wind speed
p8 nadir viewing angle
p9 nadir view angle **2

p10 nadir view angle **3
p15 nadir viewing angle (Land)
p16 nadir view angle **2 (Land)
p17 nadir view angle **3 (Land)

At the start of the operational life of each satellite and instrument, subsequent cycles
of passive radiance assimilation is typically needed to train the bias correction coefficients
to be representative of the radiance observation biases before the VARBC scheme effectively
reduces the bias. For the purpose of this study, this procedure is called the VARBC spin-up
period, where radiance observations are assimilated passively with active assimilation
of anchoring observations such as radiosonde and GPS Radio Occultation observations.
Given the satellite coverage within the CERRA’s domain and the predefined adaptiveness
setting of the VARBC scheme, the VARBC spin-up period typically spans from 30 to 40 days
for the bias coefficients to converge into stable and representative values and effectively
correct the bias associated with radiance observations [20]. These newly computed bias
correction coefficients will be used in active assimilation of radiance observations during
the production of the CERRA dataset.

The adaptiveness of the VARBC scheme depends on the bias parameter background
error covariance matrix, which can explicitly be controlled by the parameter Nj. For
example, a larger Nj value in Equation (5) will reduce the error variances for the bias
parameter β j and the diagonal of the bias parameter background error covariance matrix,
thus decreasing the penalty in the bias correction term in the cost function from Equation (4),
which allows the scheme to be more adaptive to the latest observations. However, an overly
adaptive VARBC scheme risks sampling spurious bias signals that are not representative
of the systematic biases. On the other hand, a smaller Nj value will stiffen the scheme’s
adaptiveness and result in a less responsive but a more stable convergence of the bias
coefficients. The optimal Nj value allows for a stable bias coefficient but is adaptive to
change in the atmospheric conditions such as weather pattern fluctuation, seasonal and
climatological variations. Reference [36] discussed the turning of a similar parameter
for ATOVS in the context of the limited area model within the HARMONIE system and
proposed an optimal value, which is also used in the CERRA system.
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Throughout the development of the CERRA system, it was discovered that the passive
assimilation of radiance observation in the VARBC spin-up period disables observation
thinning, which results in ingesting relatively more observations than their active assimi-
lation would have allowed. Specifically, substantially more radiance observations from
higher spatial resolution instruments, such as IASI and MHS were ingested into the VARBC
scheme. Consequently, the default Nj values prescribed for IASI and MHS are insuffi-
cient to stabilize the convergence of the bias coefficient during the VARBC spin-up period.
Rather than changing the values of Nj for IASI and MHS, it was found more effective to
actively assimilate them. This approach enables correct observation thinning and reduces
the number of observations used in the VARBC scheme, which effectively stabilizes the
convergence of the bias coefficients. However, the active assimilation of radiance observa-
tions with premature bias coefficients would cause the climate of the NWP system to drift
towards the bias of radiance observation and degrade the representativeness of the bias
coefficients. A possible solution consists of a two-step assimilation approach, illustrated
in Figure 4. The first cycled assimilation procedure generates the first guess fields (3-h
forecasts) with active assimilation of only conventional and anchoring observations. The
second data assimilation procedure ingests the first guess field from the first procedure
and assimilates the radiance observations with conventional/anchoring observations to
update bias coefficients. Consequently, the non-cycling of the first guess field in the second
procedure prevents the climate of the NWP system from drifting towards the bias of the
radiance observations, while allowing for observation thinning through active assimilation
of radiance during the VARBC spin-up period.

Figure 4. A workflow diagram of the two-step data assimilation approach used to spin up the VARBC coefficients in the
CERRA system.

4. Impact of Variational Bias Correction

The VARBC coefficients were effectively spun up by adopting the two-step data
assimilation approach. Figure 5 (left) illustrates the progression of the bias correction
predictor coefficients during the 47-day VARBC spin up period for IASI channel 239
(704.50 cm−1) on MetOp-B at the 09 UTC cycle. This plot shows that the bias correction
coefficients for most of the predictors have converged to stable values after approximately
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43 days. In addition, Figure 6 (top-left) shows the evolution of the bias correction for the
same channel over land and sea. The result reveals that observation minus first-guess
(OMF) and observation minus analysis (OMA) biases slowly decrease towards 0 K from
−0.43 and −0.2 K, respectively. After 43 days, the OMF and OMA biases have reduced
to near-zero, which is consistent with the convergence of the bias correction predictor
coefficients seen in Figure 5 (left). On the other hand, the non-corrected bias of OMF
maintained approximately the same values, as expected. Similar results in Figure 5 (right)
show the convergence of bias correction predictor coefficients for AMSU-A channel 6
(54.40 GHz) on MetOp-A after 15 days. Furthermore, the bias comparison in Figure 6
(top-right) indicates the OMF and OMA are reduced below 0.1K with the same period
from −0.5 and −0.3 K, respectively. Overall, the two-step data assimilation procedure for
the VARBC coefficients spin-up has been demonstrated to be effective in stabilizing the
gradual reduction of the biases from the radiance observations and iteratively refining the
bias coefficients during the spin-up period. Comparable results were found for the other
IASI, AMSU-A, and AMSU-B/MHS channels.

Figure 5. The (left,right) plot depicts the time evolution of the at 9 UTC assimilation cycle for IASI channel 239 on MetOp-B
(AMSUA channel 6 on MetOp-A) during a 47-day (30 days) VARBC spin-up period. The predictors used are shown at the
bottom of the plots.

Once the bias coefficients from the VARBC spin-up period are considered to be rep-
resentative of the biases associated with the assimilated radiance observations, it can be
used in the full NWP system. Unlike the VARBC spin-up procedures, the first guess in the
operational CERRA system is cycled in the subsequent assimilation time, as described in
Figure 2. A 21-day experiment with the full CERRA system was conducted to examine the
performance of the VARBC scheme and the impact of the radiance assimilation. Figure 7
(top-left) illustrates the time series of non-corrected OMF bias, corrected OMF bias and
OMA bias for IASI channel 296 (718.75 cm−1) on MetOp-B at the 9 UTC cycle. This result
shows a reduction between the non-corrected OMF biases and the corrected OMF bias,
decreasing from 0.2 K to less than 0.1 K. One can also see that the biases are relatively
stable and have minimal fluctuation throughout the period of the experiment. This result is
consistent with relatively stable bias predictor coefficients found in Figure 7 (right). Overall,
these findings suggest that the VARBC coefficients that were computed during the spin-up
period can be effectively used in the full NWP system for a long-term experiment and
production of the CERRA dataset. Similar results were found for AMSUA, AMSU-B and
MHS instruments.
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Figure 6. The (top-left) plot (top-right) illustrates the evolution of biases at 9 UTC assimilation for IASI channel 239 on
MetOp-B (AMSU-A channel 6 on MetOp-A) during a 47-day (30 days) VARBC spin-up period. The dashed line represents
the non-corrected observation minus first-guess (non-cor OMF) bias, while the solid line depicts the corrected observation
minus first-guess (OMF) bias. The bold solid line shows the corrected observation minus analysis (OMA) bias. The green
(blue) line shows the biases for observations over land (sea). The bottom plots illustrate the number of observations over
land (sea) shown by the green (blue) bar.

Figure 7. The time-series of the biases at 9 UTC assimilation time for IASI channel 296 on MetOp-B during a 23-day active
assimilation experiment from the full CERRA system (top-left). The number of observations over land (sea) shown by the
green (blue) bar (bottom-left). The time-series of bias correction predictor coefficients (right).



Remote Sens. 2021, 13, 426 13 of 28

In order to have a more comprehensive approach to analyze the bias for all of the 55
assimilated IASI channels, Figure 8 shows the spectral profile of the non-corrected OMF
bias, corrected OMF bias and OMA bias for all of the selected IASI channels on MetOp-A
at 9 UTC assimilation time. Generally, the channels with relatively high peaking weighting
functions from CO2 absorption bands (Channel 38 to 193; 654.25 to 693.00 cm−1) have non-
corrected OMF biases between 0.2 to 0.5 K. The lower peaking channels (Channel 199–432;
694.50 to 752.75 cm−1) have smaller non-corrected OMF biases, fluctuating close to 0.2 K.
Lastly, the respective values for the channels in the water absorption bands (Channel
2701–4032; 1320.00 to 1652.75 cm−1) are as high as 1.2 K. As expected, the corrected OMF
and OMA biases for channels from CO2 absorption bands are systematically close to zero.
However, few channels in the water absorption band have higher bias-corrected OMF,
reaching up to 2.3 K. Due to this high bias-corrected OMF bias, the observation errors were
configured to be greater compared to the other absorption bands to reduce the impact on
the analyses and forecasts [39]. Similar results are also seen for other cycles that assimilate
IASI observations.

Figure 8. The left plot shows the biases of the 55 IASI channels that are actively assimilated in the
full operational CERRA system. The non-corrected OMF (dashed line) bias, corrected OMF bias
(solid line) and OMA bias (bolded line). The green (blue) lines represent the respective biases for
observations over land (sea). The right plot shows the number of observations over land (green) and
sea (blue) for each channel.

5. Relative Impact of Radiance Observations in CERRA Analyses and Forecast

The relative impact of assimilating radiance observations on CERRA analyses and
forecasts are studied using two diagnostic metrics, namely the Degrees of Freedom for
Signal (DFS) [40] and the Moist Total Energy Norm (MTEN) [41]. The DFS and MTEN
compute, respectively, the sensitivity of the analysis and forecast systems to the individual
observation types used in the data assimilation.
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5.1. The Sensitivity of the CERRA Analyses to the Radiance Observations

The DFS provides an insight into the sensitivity of the data assimilation system to the
individual observation type, as introduced by [40]. This diagnostic tool has been used in
various studies to examine the impact of observations [3,20,30,42,43]. It is interpreted as
the trace of the gradient of the analysis in observation space with respect to the observation
vector, which can be approximated from the observation vector y, the perturbed observation
vector ŷ, analysis xa, the analysis produced from the perturbed observations x̂a, background
state xb and the observation error covariance matrix R, as shown in Equation (6).

DFS = Tr[
∂Hixa

∂yo
i

] = ∑
yo

i ∈Observations

∂Hixa

∂yo
i
≈ (ŷ− y)R−1((H(x̂a − xb)− H(xa − xb)) (6)

Figure 9 illustrates the absolute DFS, characterizing the impacts of each type of
observation assimilated in the CERRA system on 26 December 2017. This comparison
shows that the aircraft wind measurements (AIREP-U) have the highest impact on the
analysis, while slightly lower effects are observed for the atmospheric motion vector (AMV),
Scattometer (SCATT) and aircraft temperature measurements (AIREP-T). Weaker influences
are also seen from radiosonde observations, which can be attributed to its availability
mainly at 00 UTC and 12 UTC, whereas the other observations are also available in other
assimilation times. In other words, the impact of radiosonde would be ranked higher if
the absolute DFS was evaluated for 00 and 12 UTC assimilation times individually, rather
than computing these results for all eight assimilation times simultaneously. Comparable
results are found among the radiance observations with IASI having the highest absolute
DFS, while AMUS-B and AMSU-A rank behind. Overall, the absolute DFS for radiance
observations are generally smaller than conventional observations. It is worth noting that
the same comparison was made for 2 January 2018, 30 May 2018 and 11 June 2018 with
comparable results.

5.2. The Relative Sensitivity of the CERRA Forecasts to the Observation

One can infer the sensitivity of the forecast model from a subset of observations by
examining the loss of moist total energy norm when removing them from the assimilation
system [20]. Essentially, the MTEN can be expressed as a cost function J, which is computed
through a comparison between the control forecast xctr

t that was initialized with the assimi-
lation of all observations versus the forecast xi

t that was initialized without the assimilation
of the subset of observations, as shown in Equation (7). The forecast time is defined by t,
while i represents the index of the observations subset to be removed and studied. Also, a
localization operator P can be used to examine the sensitivity of the forecast model within
a specific subset of the model domain, such as between particular model levels, spatial
regions, and/or sea/land masks [41,44].

J =< P(xi
t − xctr

t ), P(xi
t − xctr

t ) >=

ˆ ηo

η1

ˆ
D
(u2 + v2 +

Cp

Tr
T2 +

RT
p2

r
p2 +

L2

CpTr
q2)

∂pr

∂η
dη dD (7)

where T, q, p, u and v represent temperature, specific humidity, surface pressure; u and v
wind components, respectively. In addition, pr, Tr, cp, R, L represent the reference pressure,
reference temperature, specific heat at constant pressure, gas constant for dry air and latent
heat condensation. Depending on the localization operator P, the energy norm can be
integrated between vertical levels from the native model levels η0 and η1 and/or across
subsections of the model domain. One should note that MTEN is sensitive to present
synoptic patterns and observation coverage from the various assimilation times. Therefore,
it is expected to have slightly varied results for different periods [17,20].
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Figure 9. The absolute DFS computed from all assimilation times on 26 December 2017. All obser-
vations that are assimilated in the CERRA system were examined, including geopotential height
(SYNOP Z) and wind components (SYNOP U) measurements from land surface stations; drift buoys
(DRIBU); wind components (TEMP U), temperature (TEMP T) and specific humidity (TEMP Q)
measurements from radiosonde; wind components (AIREP U) and temperature (AIREP T) measure-
ments from aircraft observations; wind components from pilots or PIREP (PILOT U); zenith total
delay (ZTD); GNSS Radio-Occultation (GPS-RO); Atmospheric Motion Vector (AMV); Scattometer
(SCATT); Advance Microwave Sounding Unit-A (AMSU-A), Advanced Microwave Sounding Unit-B
and Microwave Humidity Sounder (AMSU-B); and Infrared Atmospheric Sounding Interferometer
(IASI). The numerical values above the bar plots represent the number of each observation type.

Figure 10 depicts the vertical profiles of MTEN showing the CERRA forecast sensitivity
to aircraft, radiosonde, IASI, AMSU-B/MHS, AMSU-A and only channel 5 AMSU-A
(53.596± 0.115 GHz) observations. The comparison consists of MTEN vertical profiles
for 3, 12 and 24-h forecasts that are initialized at 12 UTC on 26 January 2018 and 30 May
2018. Overall, the aircraft observations have the strongest MTEN for the 3, 12 and 24-h
forecasts, suggesting that the aircraft observations have the greatest impact, especially for
the upper troposphere and the tropopause. Subsequently, radiosonde observations have the
second greatest impact, while smaller influence was observed for radiance observations,
especially for the 3-h forecast. However, the difference in impact between the upper-
air conventional observations and the radiance observation reduces for the 12 and 24-h
forecasts. This implies that the impact from the assimilated radiance observations is more
predominant in the longer forecasts than shorter forecast lengths. Also, the results show
that the assimilation of the AMSU-A channel 5 (53.596± 0.115 GHz) with the utilization
of emissivity and skin temperature has considerable impact compared to all channels of
AMSU-A, especially within the lower troposphere for all forecast lengths. In addition, the
impact of AMSU-A and MHS for 3 and 12-h forecasts extends further towards the lower
troposphere, while the influence of IASI is more pronounced for the mid-troposphere. This
can be attributed to sensitivity in the atmosphere with respect to the weighting functions
of the selected channels from the three satellite instruments. These findings are consistent
with MTEN comparisons that were computed for additional dates, including 2 January
2018, 30 May 2018 and 11 June 2018 (not shown). However, the ranking of the impacts
among the radiance observations changes for the different initialization times and forecast
lengths due to the evolving weather patterns and the varying observations coverage from
the passing satellite platforms at each individual assimilation time.
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Figure 10. Vertical profiles of the loss of moist total energy norm (MTEN) in CERRA forecasts when removing subsets of observation
from the assimilation system, including aircraft (AIREP), radiosonde (TEMP), IASI, AMSU-B/MHS (AMSU-B), AMSU-A (AMSUA)
and only channel 5 from AMSU-A (AMSUA_Ch5) observations. The first and second columns show the results for forecasts initialized
from 12 UTC on 26 January 2018 and 30 May 2018, respectively. The 3 (f03), 12 (f12) and 24 (f24) hour forecasts are shown in the first,
second and third rows, respectively.
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6. Impact of Radiance Observations through Verification Scores

As previously mentioned, DFS and MTEN diagnostic metrics provide the relative
impact of the radiance observations on analysis and forecast, but it does not provide
information on the quality of the impact (positive or negative). Consequently, the impact
from a subset of observations can be further assessed by performing data denial Observing
System Experiments (OSEs), where the observations of interest are removed from the full
assimilation system [39,45–47]. The produced analyses and forecasts (impact experiments)
are then compared with their counterpart from the full (control) assimilation system to
assess the changes in the analyses and forecasts through verification scores. It is essential
to ensure that the difference in the quality of the analysis and forecast between the control
and the impact experiments are significant and not attributed to the chaotic variability
in the atmosphere. This issue becomes more critical for regional NWP systems and with
relatively shorter experiment periods because of the fewer available observation samplings
used in the verification. Based on the Student’s T-test, significant tests are used to compute
the normalized mean root mean square error (RMSE) difference, where the temporal auto-
correlation is corrected using the first-order auto-regressive process, as discussed in [48]
and used by [17,20]. It is worth noting that the significance of the statistical results are
only valid for the relatively short duration of the experimental period, within the larger
reanalysis period. The verifications focus on the changes in the atmospheric part of the
CERRA analyses and forecasts, which verifies the analyses and forecasts against radiosonde
observations at 00 and 12 UTC, while providing insight on the significance of the results.

The first OSE (“NoRAD”) was conducted to assess the impact of all radiance obser-
vations by removing them from the full assimilation system. The verification scores of
the analyses and forecasts were then compared against the control experiment (“Allsat”),
which consisted of an assimilation system with all radiance observations. The experiments
were performed for both the summer and winter periods, spanning from 23 December
2017 to 16 January 2018 and 28 May to 19 June 2018, respectively. In addition, an eight days
model warm-up period was applied to all the experiments, prior to the verification periods.
Figures 11 and 12 illustrate the vertical profile of the normalized mean RMSE Difference at
90% confidence for geopotential height between “AllSat” and “NoRAD” for the summer
and winter periods, respectively. Negative values in the figures indicate the normalized
mean RMSE for “AllSat” experiment is less than that of the impact experiment, suggesting
the errors of the forecast or analysis is reduced when the subset of observations is included
in the full assimilation system. In other words, it can also be interpreted as the deterioration
of the analysis and forecast caused by removing the subset of observations from the full
system, indicating that the subset of observations has a positive impact. This study focuses
on the impact on Geopotential height because of the high statistical significance across
many of the analysis times and forecast lengths. Such high statistical significant results are
not as distinct for the other verified variables.

From the winter period in Figure 11, the assimilation of all radiance observations
(green line) has minimal impact on the analyses (left and middle plots), while increasing
the normalized mean RMSE by 1–2% between 200–100 hPa and below 500 hPa on the 3-h
forecasts from 09 UTC (right plot). On the other hand, the 24-h forecast from 12 UTC has
an error reduction by 1.5 to 2.5% below 300 hPA, while the neutral impact is observed
above 200 hPa (not shown). The summer case in Figure 12 illustrates a minimal impact on
the analyses at 12 UTC. There is a positive impact on the 3-h forecasts from 09 UTC below
400 hPa with 2% reduction in RMSE reduction with significance at 500 hPa, although 1%
significant degradation is also observed between 150 and 50 hPa. In addition, the impact
on the 6-h forecasts from the 18 UTC cycle shows a significant improvement of 1% below
500 hPa, but a negative impact up to 2% for 300 hPa and above. Such negative impact in
the upper troposphere and stratosphere is not observed on the other forecast lengths and
assimilation times, which prompted further examination to determine the cause of this
phenomenon.
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In the initial investigation, several one-day OSEs were conducted for AMSU-A, AM-
SUB/MHS and IASI for both the summer and winter periods. A comparison of the
geopotential height forecast fields at various vertical levels showed that AMSU-A and
IASI had the strongest impact, while minimal influence was observed from AMSUB/MHS
(not shown). From the short experiments, the assimilation of AMUS-A typically has
a positive impact when verified against radiosonde observations, while the impact of
IASI was inconclusive. This indistinctive impact from IASI may be contributed by the
CERRA system’s inability to characterize skin temperature and emissivity for the assim-
ilation surface-sensitive IASI channels over land. ECMWF’s global NWP system had
similar constraints, resulting in rejecting all IASI observations over land in their assimi-
lation system [49]. This issue in the CERRA system was initially addressed by rejecting
predominant surface-sensitive channels, but a few relatively low peaking channels are
still assimilated, which can lead to additional uncertainties into the system. Due to the
shortened experiments, the results can be questionable without insight on its significance.

In order to substantiate this hypothesis in a robust manner with significance, two addi-
tional 21+ days OSEs were performed for AMSU-A (“NoAMSUA”) and IASI observations
over land (“NoIASI(Land)”) for the summer and winter periods. Similar to “NoRad” com-
parison, the vertical profiles of the normalized geopotential height mean RMSE difference
at 90% confidence for “AllSat” minus “NoAMSUA” and “AllSat” minus “NoIASI(Land)” are
shown in Figure 11 (Winter) and Figure 12 (Summer). In the winter case (Figure 11), the
assimilation of AMSU-A reduced the error by 0.5 to 1% with significance on the analyses
at 00 and 12 UTC (left and middle plots). Furthermore, there is also an error reduction of
1.5 to 2% at 400 and 300 hPa on the 3-h forecasts from 09 UTC (right plot). However, the
assimilation of IASI observation over land increased the error by 0.5 to 1.5% for the 3-h
forecasts, initialized at 09 UTC. The results in the summer case (Figure 12) indicate that
the assimilation of AMSU-A reduced the error of the analyses at 12 UTC by 1 to 1.5% for
pressure levels between 925 to 500 hPa (left plot). The error reduction is also seen below
150 hPa for the 3-h forecast from 09 UTC by 1 to 2.5% (middle plot). Furthermore, the
assimilation of IASI over land increased the error by 0.5 to 1.8% of the analysis at 00 UTC
(not shown) and of that of 3-h forecasts from 09 UTC (middle plot). The results from the
6-h forecasts, initialized at 18 UTC showed an improvement in the error of 0.5 to 1% for
pressure levels between 300 and 925 hPa but deteriorated the forecast at 200 and 100 hPa
(right plot).

In the summer case, the negative impacts on 6-h forecasts from 18 UTC cycle are
highly correlated between “NoRad” and “NoIASI(Land)” experiments within the upper
troposphere and the stratosphere. By rejecting the IASI observations over land, the negative
impact in the upper levels is slightly reduced, although the observed positive impact in the
lower troposphere also reduced well. Further, we also observed that the positive impacts
on other forecast lengths and assimilation times are enlarged. Overall, the results suggest
that the rejection of IASI observations over land improves the accuracy of the analyses and
forecasts. However, the residual negative impact is still present for the upper troposphere
and stratosphere in the case of 6-h forecasts from 18 UTC.

Further investigations were conducted to determine the cause of the upper level
negative impact from assimilating all radiance observations for the 6-h forecast at 18 UTC,
during the summer period. Among various possibilities, the radiance observation error
correlation and the configuration of the thinning distance for radiance assimilation were
examined. One can use a method proposed by [21] (referred to as the Desroziers method
hereafter) to derive the spatial correlation of observation errors, which is computed based
on the observation and analysis departures in observation space. This approach was
used during the development of the CERRA system to study the appropriate thinning
distance for the assimilation of ATOVS and IASI observations. Based on Desroziers method,
Figure 13 illustrates the observation error correlation against the spatial separation distance
for AMSU-A channels 5–9 (53.596± 0.115− 57.290 GHz). The results for channels 6, 8 and
9 (54.40, 57.290 and 55.50 GHz) suggest that the correlation of observation error has reached
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lower than the threshold of 0.2. This value of the threshold for an optimal thinning distance
was suggested by [23]. However, the correlation for channel 5 (53.596± 0.115 GHz) remains
to be greater than this threshold for the separation distances less than between 80 and
100 km. This is also seen from [22], where channel 5 (53.596± 0.115 GHz) has a relatively
higher correlation due to its sensitivity to the surface. Lastly, channel 7 (54.94 GHz) has
a less conclusive result as the correlation fluctuates over the threshold from a distance of
40 to 100 km, which can be attributed to the significantly fewer number of observations
used in the computation, compared with that of the other channels. Furthermore, the
AMSU-B/MHS comparison suggests that the observation error correlation for channel 4
(183.31± 3.0 GHz) remains slightly above 0.2 from 40–60 km (not shown). Similarly, few
IASI channels in moisture absorption bands and high peaking CO2 absorption bands are
highly correlated (0.25 to 0.35) for separation distances greater than 120–200 km, including
channels 104, 180, 2991, 3098, 3309 and 3506 (670.75, 689.75, 1392.50, 1419.25, 1472.00 and
1521.25 cm−1) (not shown). Overall, the results suggest that the currently prescribed
thinning distance parameters for the assimilation of radiance observations might not be
appropriate and therefore further tuning is needed.

Figure 11. The vertical profile of the normalized by the mean scores, Root Mean Square Error (RMSE) difference at 90%
confidence for the geopotential height (in meter) between the control experiment (“AllSat”) and the individual experiments
(“NoAMSUA” (blue), “NoIASI(Land)” (orange) or “NoRad” (green)). The AllSat experiment assimilates all observations;
the “NoAMSUA” experiment assimilates all observations, except for AMSU-A; “NoIASI(Land)” experiment assimilates all
observations, except for IASI observations over land; “NoRad” does not assimilate any radiance observations. The computed
statistics are valid for the winter case, spanning from 23 December 2017 to 16 January 2018. Each subplot depicts the
comparison at a specific analysis (F00) or forecast lengths (F03) that is initialized at a particular assimilation time.
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Figure 12. The same as Figure 11, but for the summer case and different forecast lengths, spanning from 28 May to 19 June
2018.

Figure 13. The observation error correlation with respect to the spatial separation distance of pairing observations for
AMSU-A channel 5–9 (53.596± 0.115− 57.290 GHz), computed from the Desroziers diagnostic (left plot). The number of
observation samplings for the respective channels (right plot).

In order to address the high observation error correlation for radiance observations in
the CERRA system, one can increase the thinning distance and/or inflate the observation
error for these observations [22,50]. Consequently, three impact experiments with different
thinning distance configurations for radiance observations were conducted, while rejecting
IASI channels 104, 180, 2991, 3098, 3309 and 3506, due to its highly correlated observation
errors. An additional impact experiment (“AMSUA Sigma_O x2”) was performed with
the default thinning distance setting, but inflating the observations errors for AMSU-
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A observations by a factor of two. Lastly, a control experiment (Thin_60_80 km) with
the default configuration described in Table 4 was conducted. A summary of the five
experiments with different configurations is shown in Table 6.

The five experiments were conducted to produce the single-cycle 6-h forecast from
18 UTC 30 May 2018 to further address the negative impact of all radiance observations
on the upper troposphere and the stratosphere. This investigation is limited to a single
forecast cycle due to the limited computation resources. Figure 14 depicts a vertical profile
of geopotential height RMSE difference between the control experiment (“Thin_60_80 km”)
and the (four) impact experiments for the 6-h forecast, initialized at 18 UTC on 30 May 2018.
The forecasts are verified against radiosonde observations. Positive values indicate that the
control experiment with the default settings has larger RMSE than the impact experiments,
suggesting that the impact experiments with the new setting improve the forecast’s accuracy.
The results show all three impact experiments with increased thinning distances have lower
RMSE than the control experiment, especially for the upper troposphere. Specifically, the
“Thin_100_120 km + Blk” experiment has the lowest RMSE (largest difference compared to
the control), while further increasing the thinning distance in the “Thin_110_130 km + Blk”
experiment did not result in an additional RMSE reduction. Lastly, inflating the observation
errors for AMSU-A radiance observations by two times in the “AMSUA Sigma_O x2”
experiment reduced the forecast error to the level of that of the “Thin_100_120 km + Blk”
experiment below 500 hPa. However, the reduction in forecast errors was significantly
reduced for atmosphere aloft. One should consider these findings with caution since the
results have minimal significance when only a single cycle was used in this investigation.
Therefore, longer impact experiments with increased thinning distance are discussed in
later sections, where the “Thin_100_120 km + Blk” experiment was conducted for a longer
period during both the summer and winter seasons.

The results in Figures 11–14 from the previous discussions suggest that the accuracy
of the analyses and forecasts can be further improved by tuning the thinning distance for
radiance observations and also by rejecting the IASI observations over land. In order to
verify the effects of these modifications, three experiments were conducted and compared
against the control experiment (“NoRad”), where all radiance observations were removed
from the full assimilation system. The first impact experiment (“AllSat”) follows the
default setting of the CERRA system, where all observations are assimilated. The second
experiment (“noIASI(Land)”) adopts the same configuration as the “AllSat” experiment but
rejects the IASI observations over land. Lastly, the third impact experiment (“Thin(100–
120 km)_noIASI(Land)”) also follows the configuration from the “AllSat” experiment, but
does not assimilate IASI observations over land and increased the thinning distance for the
radiance observation to RMIND_RAD1C = 100 km and RFIND_RAD1C = 120 km.

Figures 15 and 16 illustrate the vertical profile of the normalized mean Root Mean
Square Error Difference (at 90% Confidence) for geopotential height, comparing the impact
experiments minus the control experiment using verification against radiosondes. Negative
differences indicate a normalized mean RMSE reduction when compared against the
control experiment (NoRad), suggesting that the impact experiments produce more accurate
analyses and forecasts compared to the control experiment.

Table 6. A summary of the experiments with different thinning distance parameters, observation error inflation and
observation rejection settings. RMIND_RAD1C limits the minimum horizontal distance between a pair of observations,
while RFIND_RAD1C is the average horizontal distance between a pair of observations after thinning.

Experiments RMIND_RAD1C (km) RFIND_RAD1C (km) Rejected IASI Channels

Thin_60_80 km (Control Experiment) Adopted from Table 3 Adopted from Table 3 No
80_100 km + Blk 80 km 100 km 104, 180, 2991, 3098, 3309, 3506

100_120 km + Blk 100 km 120 km 104, 180, 2991, 3098, 3309, 3506
110_130 km + Blk 110 km 130 km 104, 180, 2991, 3098, 3309, 3506

AMSUA Sigma_O x2 Inflate observation errors for AMSUA radiance observation by 2 factors
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Figure 14. A vertical profile of Root Mean Square Error (RMSE) difference of 6-h forecast geopotential
height between the control experiment (Thin_60_80 km) and the four impact experiments. The 6-h
geopotential height forecasts, initialized at 18 UTC on 30 May 2018 were verified against radiosonde
observations. Table 6 summarizes the configuration of the five experiments that were examined in
this comparison.

The winter case results in Figure 15 show that the “Allsat” experiment provides
the smallest normalized mean RMSE reduction against the “NoRad”, while increases
in forecast error were also observed in some cases. On the other hand, “Thin(100–120
km)_noIASI(Land)” generally has the largest reduction in normalized mean RMSE, followed
by “noIASI(Land)”. Specifically, the 3-h forecast from 09 UTC has an approximately 2% error
reduction for “Thin(100–120 km)_noIASI(Land)” compared to “AllSat” for pressure levels
between 925 to 700 hPa. On the contrary, “noIASI(Land)” has only roughly 1% error reduc-
tion compared to “AllSat”. Although a more modest error difference is seen for other cases,
it is evident that the radiance assimilation setup in “Thin(100–120 km)_noIASI(Land)” and
“noIASI(Land)” both lead to improved accuracy in analyses and forecasts of geopotential
height, compared to “AllSat”. Nevertheless, “Thin(100–120 km)_noIASI(Land)” produced
the best results for the winter period. The large reduction in normalized mean RMSE
from “Thin(100–120 km)_noIASI(Land)” is less predominant in the summer case, shown in
Figure 16. In particular, there is minimal difference in reduction between “Thin(100–120
km)_noIASI(Land)” and “noIASI(Land)”, but both comparisons have up to 1 to 2% nor-
malized mean RMSE reduction compared to “Allsat” for the analyses at 12 UTC and 3-h
forecasts from 03 and 21 UTC cycles. Furthermore, “Thin(100–120 km)_noIASI(Land)” has
the largest error reduction of 1.5% for the 6-h forecasts at 18 UTC above 300 hPa. However,
the positive impact for the lower troposphere is slightly reduced compared to “AllSat”.
Lastly, “Thin(100–120 km)_noIASI(Land)” and “noIASI(Land)” marginally degrade the 12-h
forecast from 12 UTC. Overall, there is an added benefit by rejecting the IASI observation
over land and/or increasing the thinning distance for radiance observations, leading to
improvements in the accuracy of the analyses and 3-h forecasts.

By establishing “Thin(100–120 km)_noIASI(Land)” as the most optimal assimilation
configuration for radiance observations in the CERRA system, one can further evaluate
its performance against the control experiment “NoRad”. From the winter case results, the
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analyses at 12 UTC and the 3-h forecasts from 09 and 21 UTC suggest that “Thin(100–120
km)_noIASI(Land)” have a neutral impact compared to “NoRad” below 200 hPa. However,
a positive impact is seen for the 12 and 24-h forecasts, initialized at 12 UTC, where there is
a normalized mean RMSE Difference of −1 to −2% for the mid-troposphere. The analysis
and 3-h forecast below 400 hPa from 09 and 12 UTC also showed improvement by 0.5 to 1%
and 1.5 to 2%, respectively. Similarly, the 12-h forecasts from 12 UTC improved by 1 to 1.5%
for 400 and 500 hPa. The negative impact seen from the “AllSat” experiment was reduced
by 1% for atmospheric layers above 500 hPa, with the modification of configuration in the
“Thin(100–120 km)_noIASI(Land)” experiment. However, the positive impact below 500 hPa
in the “AllSat” experiment was reduced by 0.5% from the same changes in configuration.

Figure 15. The vertical profile of the normalized by the mean scores Root Mean Square Error (RMSE) difference for
geopotential height (at 90% confidence) between the four impact experiments (“AllSat”, “NoIASI(Land)” or “Thin(100–
120 km)_noIASI(Land)”) minus the control experiment (“NoRad”). The control experiment assimilates all observations,
except the radiance observations; “AllSat” experiment assimilates all observations; “NoIASI(Land)” experiment assimilates
all observations, except the IASI observations over land; “Thin(100–120 km)_noIASI(Land)” experiment assimilates all
observations, except the IASI observations over land and have an increased thinning distance at RMIND_RAD1C = 100 km
and RFIND_RAD1C = 120 km for all radiance observations. Therefore, the performance of the three impact experiments are
relative to the control experiment. The computed statistics are valid for the winter case, spanning from 23 December 2017
to 16 January 2018. Each subplot depicts the comparison at a specific analysis (F00) or forecast lengths (F03, F12) that is
initialized at a particular assimilation cycle.



Remote Sens. 2021, 13, 426 24 of 28

Figure 16. Same as Figure 15 but for the summer case, spanning from 28 May to 19 June 2018.

7. Discussion and Conclusions

This study has considered some of the challenges of satellite radiance assimilation,
while demonstrating its impact on the CERRA system. It was discovered that the use of pas-
sive assimilation during the VARBC bias coefficient spin-up was not appropriate for high
spatial satellite instruments with high-density observation, within the framework of the
limited area model. The two-step assimilation alternative approach was able to effectively
spin-up the VARBC bias coefficients to be suitable for use in the CERRA production system.

The relative impacts of the satellite radiance observations on the CERRA data assimi-
lation and forecast systems were assessed using DFS and MTEN diagnostic metrics. The
results indicate that the conventional observations had the strongest impact on both the
analysis and forecasts. However, the difference in impact between the radiance and con-
ventional observations is smaller for the short-range (12 and 24-h) forecasts. In other words,
the impact of the radiance observation is more predominant on longer forecast lengths.
Similar results have been observed in studies with a similar regional model setup [41].

The discussion in this paper focused mainly on the impact of radiance observations on
geopotential height analyses and forecasts since it has the most distinguishable statistical
significance of the impacts compared to that of the other verified variables. This means
that less significant impacts of the satellite radiance observations on the other upper-air
and surface variables were observed, but not discussed.

The impacts of the satellite radiance observations and their significance were demon-
strated through examining the normalized mean RMSE difference of 21+ days OSEs during
winter and summer periods. Overall, satellite radiance observations have a neutral impact
on the analyses of geopotential height in the lower troposphere, while a slightly nega-
tive impact for the upper troposphere and in the stratosphere. Similar neutral impacts
were also observed in 3-h forecasts and positive impacts on the 12 and 24-h forecasts
(Figures 15 and 16). The 6-h forecast at 18 UTC was problematic due to the observed large
negative impact above 300 hPa. Further investigation was done to determine the cause
of this significant negative impact. The preliminary findings suggest that AMSU-A and
IASI have the greatest impact on geopotential, while a weaker impact was seen from
AMUS-B/MHS. Additional OSEs were conducted for AMSU-A and IASI observations
over land. The results showed that AMSU-A had a neutral impact on the analysis while
reducing the errors up to 2.5% for the 3-h forecasts below 300 hPa. On the other hand, IASI
observation over land generally increases the errors in the analysis, as well as in the 3 and
6-h forecasts. This can be caused by a lack of consideration of surface emissivity and skin
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temperature to appropriately assimilate IASI observations over land in the CERRA system.
By rejecting this subset of observations, an improvement in the analysis and 3-h forecast
accuracy was observed in the upper troposphere. Similar improvement was observed in
the stratosphere for the 6-h forecasts from 18 UTC cycle

The Desroziers method applied to the satellite radiance first-guess and analysis depar-
tures and verification of OSEs against radiosonde observations that led to the discovery of
the radiance assimilation settings in the CERRA system did not appropriately consider the
possible observation error correlation for certain assimilated instruments channels. The
inflation of observations errors and the increase in the thinning distance were tested in
rudimentary verification experiments. The obtained results suggest that increasing the thin-
ning distance (RMIND_RAD1C = 100 km and RFIND_RAD1C = 120 km) and rejecting IASI
observations over land yield a considerable error reduction in the forecasts of geopotential
heights. These findings are also reflected in a 21+ days OSE in the summer and winter
periods, where the errors were reduced up to 2% for the analyses and 3-h forecasts. In
addition, the large errors in the upper troposphere and in the stratosphere observed in the
6-h forecasts from 18 UTC were greatly reduced, although the error reduction in the lower
troposphere was slightly diminished. Despite this fact, the tested configuration enhanced
the CERRA system by improving the accuracy of the analyses and the 3-h forecasts, while
keeping the positive impacts on the short-range forecasts (12 and 24 h).

Applying the modified configurations showed that the assimilation of radiance obser-
vations improves the accuracy of short range forecasts (12- and 24-h) of geopotential in the
lower and mid-troposphere, while neutral to slightly positive impact was observed on the
3-h forecast. Neutral impact was also observed in the tropospheric levels of the analyses,
while an increased error was detected for the stratosphere. The increase in error in the
analysis, verified against the radiosonde observations does not necessarily indicate the
analyses has deteriorated. It is more likely due to the fact that the assimilation of radiance
observations causes such a balance between the control variables, which deviates from
the observed radiosonde network. This balance seems to represent better the atmospheric
state, since the issued forecasts (12 and 24 h) are of significantly better quality.

Overall, the assimilation of radiance observation provides a relatively small, but
significant positive impact on the analysis and forecasts in reducing the normalized mean
RMSE errors in geopotential heights. Given the short development period of the CERRA
system and limited computational resources, it was not feasible to further enhance the
assimilation of the radiance observations. The development of subsequent generations
of the CERRA system can benefit from the results of this study and further continue the
investigation of reducing the effect of high observation error correlations by combining
the utilization of observation error inflation and observation thinning to preserve the
small-scale information from observations, as discussed in [50].
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Abbreviations
The following abbreviations are used in this manuscript:

3D-VAR Three-dimensional Variational Data Assimilation
AIREP Aircraft Observations
ALADIN Aire Limitée Adaptation Dynamique Développement International
AMSU-A Advanced Microwave Sounding Unit-A
AMSU-B Advanced Microwave Sounding Unit-B
AMV Atmospheric Motion Vectors
AROME Application of Research to Operations at Mesoscale
ARPEGE Action de Recherche Petite Echelle Grande Echelle
ATOVS Advanced TIROS Operational Vertical Sounder
BT Brightness Temperature
C3S Copernicus Climate Change Service
CERRA Copernicus Regional Reanalysis for Europe
ECMWF European Centre for Medium-Range Weather Forecasts
EDA Ensemble Data Assimilation
EFD Ensemble Flow Dependent
FG First-Guess
FMI Finnish Meteorological Institute
FP7 Seventh Framework Programme
GPS-RO GPS Radio Occultation
ZTD Zenith Total Delay
HIRLAM High-Resolution Limited Area Model
IASI Infrared Atmospheric Sounding Interferometer
IFS Integrated Forecast System
IMO Icelandic Meteorological Office
IR Infrared
LAM Limited Area Model
MTEN Moist Total Energy Norm
MHS Microwave Humidity Sounder
MSU Microwave Sounding Unit
NWP Numerical Weather Prediction
OI Optimal Interpolation
OMA Observation Minus the analysis
OMF Observation Minus the First-Guess
OSE Observing System Experiments
PILOT Pilot Observation
RMSE Root Mean Square Error
SCATT Scattomemter
SMHI Swedish Meteorological and Hydrological Institute
SYNOP Surface Synoptic Observations
TEMP Radiosonde Sounding Observations
UERRA Uncertainty in Ensemble of Regional Reanalysis
VARBC Variational Bias Correction
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