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Abstract: The United Nations’ expanded program for Reducing Emissions from Deforestation and
Forest Degradation (REDD+) aims to mobilize capital from developed countries in order to reduce
emissions from these sources while enhancing the removal of greenhouse gases (GHGs) by forests.
To achieve this goal, an agreement between the Parties on reference levels (RLs) is critical. RLs have
profound implications for the effectiveness of the program, its cost efficiency, and the distribution
of REDD+ financing among countries. In this paper, we introduce a methodological framework for
setting RLs for REDD+ applications in tropical forests in Xishuangbanna, China, by coupling the
Good Practice Guidance on Land Use, Land Use Change, and Forestry of the Intergovernmental
Panel on Climate Change and land use scenario modeling. We used two methods to verify the
accuracy for the reliability of land classification. Firstly the accuracy reached 84.43%, 85.35%, and
82.68% in 1990, 2000, and 2010, respectively, based on high spatial resolution image by building a
hybrid matrix. Then especially, the 2010 Globeland30 data was used as the standard to verify the
forest land accuracy and the extraction accuracy reached 86.92% and 83.66% for area and location,
respectively. Based on the historical land use maps, we identified that rubber plantations are the main
contributor to forest loss in the region. Furthermore, in the business-as-usual scenario for the RLs,
Xishuangbanna will lose 158,535 ha (158,535 × 104 m2) of forest area in next 20 years, resulting in
approximately 0.23 million t (0.23 × 109 kg) CO2e emissions per year. Our framework can potentially
increase the effectiveness of the REDD+ program in Xishuangbanna by accounting for a wider range
of forest-controlled GHGs.

Keywords: reference levels; REDD+; greenhouse gas emissions; Xishuangbanna; monitoring and re-
porting

1. Introduction

Forests account for almost half of the global terrestrial carbon pool, and the vegetation
within them alone (excluding soils) holds approximately 75% of all living carbon. The
total carbon content in forest ecosystems is estimated to be 638 Gt [1–5]. Tropical forests
play a particularly important role in the global carbon budget because they contain as
much carbon in their vegetation and soils as all the temperate-zone and boreal forests
combined [6–12]. Per unit area, tropical forests store, on average, approximately 50%
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more carbon than their nontropical counterparts. Scientists agree that to achieve the goals
of the United Nation’s Framework Convention on Climate Change (UNFCCC), namely
avoiding irreversible damage to the climate system, global warming must not exceed
2 ◦C [13–16]. However, concentrations of CO2 in the atmosphere are already so high that
global emissions will likely peak before they start to decline. Thus, in order to remain under
the above-mentioned threshold, emissions from all major sources (i.e., from developed
countries, major developing country emitters, and deforestation) must begin to decline
within the next decade [17–19].

The Conference of the Parties (COP) agreed that Reducing Emissions from Deforesta-
tion and Forest Degradation (REDD+) with the enhancement of the removal of greenhouse
gas (GHG) emissions by forests in developing countries could support the goals of the
framework through the positive incentives provided by the UNFCCC. The general con-
sensus at Doha in 2012 following last year’s COP17 was that the results of financing,
safeguards, measurements, and reporting and verification for REDD+ were mixed. In
addition, significant progress has been widely recognized as having been made only within
the technical arena relating to reference levels (RLs). The 19th Conference of the Parties
to the UNFCCC (COP19) and the 9th Conference of the Parties to the Kyoto Protocol
(CMP9) were jointly held on the topic of REDD+ funding in Warsaw, Poland, and in-depth
discussions on the action points were conducted.

GHG-based compensation for REDD+ requires an agreement on emission RLs. Key
elements for setting these RLs include the ability to measure changes throughout all
forested areas, the use of consistent methodologies at repeated intervals to obtain accurate
results, and the verification of results with ground-based or very high-resolution obser-
vations [20–24]. RLs have profound implications for the effectiveness of climate-related
policies, cost efficiency, and distribution of REDD+ financing, and they involve a number
of tradeoffs [25–30]. In this paper, referring to the business-as-usual scenario, we introduce
a methodological framework for setting RLs for REDD+ applications in tropical forests
in Xishuangbanna, China, by coupling the Good Practice Guidance (GPG) on Land Use,
Land Use Change, and Forestry published by the Intergovernmental Panel on Climate
Change (IPCC) and land use scenario modeling. This study contributes to the literature by
highlighting key challenges for setting RLs as part of the REDD+ program.

2. Data and Methodology
2.1. Research Area

Not only is the forest in the Xishuangbanna region (Figure 1) the world’s largest
preserved area located in the northernmost part of the Earth, but it is home to the majority of
tropical forest ecosystems in China as well. The geology, climate, and soil of Xishuangbanna
are suitable for the growth and reproduction of various organisms. Moreover, 4500 species
of higher plants have been recorded in Xishuangbanna, accounting for about one-seventh
of the total number of higher plants in China. The native vegetation types include those
found in tropical rain forests, montane rain forests, tropical monsoon forests, subtropical
evergreen broad-leaved forests, deciduous broad-leaved forests, warm coniferous forests,
and bamboo forests as well as shrubs and grasses [31–34]. In recent years, due to the
increase in the population, intensification of anthropogenic activities, the enabling climate,
and suitable terrain conditions in the area, the cultivation of rubber and other tropical and
economically important crops has risen rapidly. Thus, the changes to the forest have been
very dramatic.
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Figure 1. Landscape of the Xishuangbanna, China.

2.2. IPCC’s Good Practice Guidance

The IPCC’s existing GPG for Land Use, Land Use Change, and Forestry provides
the recommended approach to account for fluctuations in carbon stocks resulting from
changes in the use and management of forests. This framework has been accepted by all
Parties in the Bali Action Plan of COP13 [35–37]. The IPCC’s GPG framework refers to
two basic inputs for forest carbon accounting, namely activity data and emission factors.
Activity data in the REDD+ context refer to the areal extent of emissions. For example,
in the context of deforestation, activity data refer to the area of deforestation, presented
in hectares (104 m2) over a known time period. Emission factors refer to the emission or
removal of GHGs per unit activity. The emission or removal of GHGs resulting from land
use conversion ultimately alters ecosystem carbon stocks.

2.2.1. Emissions Factors

To estimate emissions factors, the required number of sample plots was determined
to the necessary accuracy using the size of the forest area and other available resources.
Provisional surveys and/or existing data can be utilized to establish sample sizes, and tools
also exist to calculate sample sizes based on fixed precision levels or given fixed inventory
costs [38–41]. In the event carbon stocks and flows are to be monitored over the long term,
permanent sites should be considered in order to reduce between-site variability and to
capture actual trends as opposed to short-term fluctuations [42].

In the study, the aboveground biomass density map was sourced from Global Forest
Watch (http://www.globalforestwatch.org/). This map is a global aboveground biomass
density map produced in 2000 according to the method devised by Baccini [43]. Based
on the improved methodology, the resolution can be increased to as much as 30 m. The
aboveground biomass density map of Xishuangbanna region was extracted using the mask
extraction method.

More recently, Maurizio Santoro [44] have proposed an integration methodology for
estimation of aboveground biomass density for around the year 2010 by combining SAR,
LiDAR, and optical observations together with other datasets such as auxiliary datasets

http://www.globalforestwatch.org/
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from forest inventories, additional remote sensing observations, climate variables, and
ecosystems classifications. We compared with the latest biomass map developed by Santoro
against Global Forest Watch product.

2.2.2. Activity Data

Estimation of activities associated with national-level deforestation monitoring is
practically possible only via remote sensing [45–49]. Since the early 1990s, changes in
forest area have been monitored from space with confidence. Some countries have had
well-established operational systems for over a decade.

Taking into account the availability of the data and their matching, this study used the
Enhanced Thematic Mapper Plus/Thematic Mapper (ETM+/TM) remote sensing images
related to Path number 130 and Row number 044, Path number 131 and Row number 045,
Path number 130 and Row number 045, Path number 129 and Row number 045 in the
study area in 1990, 2000, and 2010 to interpret land use changes(Table 1). The TM/ETM+
remote sensing images and normalized difference vegetation index (NDVI) data were
sourced from the US Geological Survey (USGS, http://earthexplorer.usgs.gov/). We
mosaiced the TM/ETM+ remote sensing images of the same year, used ENVI to perform
geometric correction and radiometric correction, converted all the map data projections
to WGS84/UTM Zone47N (EPSG: 32647), used the Xishuangbanna administrative vector
map for mask extraction, and performed cropping to obtain the images of Xishuangbanna.

Table 1. Landsat imagery used in this study.

Satellite (Sensor) Path Number and Row Number Time Resolution/m Cloudiness/%

Landsat5 TM 130/044 1990-01-06 30/120 3.8
Landsat5 TM 131/045 2000-03-13 30/60/15 0.02

Landsat7 ETM+ 129/045 2010-04-04 30/60/15 1.59

The vegetation in the study area changes obviously with the seasons, and the NDVI
values at different times, thus, have a greater influence on the research results. Thus, this
study synthesized the maximum value of the NDVI data in multiple phases of the same
year and also eliminated the influence of cloud cover on the research results.

According to the characteristics of land use cover in the study area (Table 2), we
divided the land use cover into eight types: forestland, shrubland, grassland, cultivated
land, rubber forest, tea gardens, construction land, and water. The training samples
were determined using QuickBird images in Google Earth. The terrain of the study
area is relatively complex, and many “homogeneous spectrum” phenomena occur in the
interpretation of remote sensing images. To avoid this phenomenon, it is necessary to
select as many training samples as possible. Different band combinations of Landsat7
ETM images have different characteristics. The selection of the training samples was
carried out according to these characteristics. The ETM541 band combination is helpful for
distinguishing different vegetation types when supplemented by NDVI data. The training
samples of natural forests, shrubs, rubber plantations, and tea gardens were selected. The
ETM453 band combination was used to select the cultivated land and water, while the
construction land was extracted through the ETM743 band combination, and the remainder
was categorized as other land. Supervised classification was performed using the selected
training samples to obtain the preliminary classification results, and the accuracy test was
conducted. If the results did not agree, the training samples were reselected, and the
supervised classification and accuracy tests were reperformed until they were ideal. Finally,
the classification results were recoded, clustered, and eliminated, and the broken patches
were merged into the adjacent largest classification to unify the smallest unit.

http://earthexplorer.usgs.gov/
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Table 2. Land use classification followed for this study.

Type Code Land Use Type Land Use Type Interpretation

1 Forestland Primary and secondary forests
2 Shrubland Forest coverage is less than 20%
3 Grassland Less than 20% is covered by shrub, and grass is predominant
4 Cultivated land Paddy fields and irrigated land
5 Rubber plantations Man-made rubber plantations
6 Tea gardens Man-made tea plantations
7 Construction land Residential building land in urban and rural areas
8 Water Water body

The Land Use Dynamic Index considers the transfer of land use types during the
study period, and reflects the intensity of regional land use changes during this time. It
is essential to find hot spots of land use changes at different spatial scales. It is one of the
important parameters to analyze the dynamic changes in land use space [50]. Equation (1)
was used to calculate the index.

Ki =
Ut1 −Ut2

Ut1

× 1
t2 − t1

× 100% (1)

Ki is the land use dynamic degree for land use type i in a certain period of time, Ut1

and Ut2 are the number of certain land use types at the start of the period t1 and its end t2,
respectively, and t2 − t1 is the research duration.

S =

[
n

∑
i=1

(∆Si−j

Si

)]
× 100× 1

t
× 100% (2)

S is the comprehensive land use dynamic degree in the study area corresponding to
t time period. ∆Si−j is the area of land use type converted i converted to other land use
types in the study period; Si is the area of type i land use type at the beginning of the study;
t is the time period of land use change.

2.3. Land Use Scenario Modeling for Reference Levels

Land use simulation is based on years of known land use changes. It predicts future
land use changes. Most land use models used to simulate the process of land use change
typically need to solve two problems: the quantity problem and the distribution problem.
The quantity problem refers to how much of the land area has changed, while the distribu-
tion problem involves pinpointing where those land changes occurred. This study applied
the Land Change Modeler (LCM) [51–53], which uses the Markov chain model to predict
the number of future land use changes, and then calculates the distribution location of
these changes according to the Multilayer Perceptron (MLP) model.

Markov chain is a kind of “no after-effect” random stored procedure, as it assumes
that the state of the current variable is only related to its previous state, not to its states at
other moments. Therefore, it has good operability and is used in the simulation of various
land use changes. In Equation (3) of Markov chain, for any positive integer n and possible
states i0, i1, ..., in of the random variables,

P(Xn = in|Xn−1 = in−1) = P(Xn = in|X0 = i0, X1 = i1, . . . . . . , Xn−1 = in−1) (3)

As the land use change conforms to the basic characteristics of the Markov process, it
can be regarded as a Markov process. Therefore, the Markov chain analysis can describe
the land use change process and predict the future land use change trend. It is an important
transformation tool in land use change modeling. However, the following prerequisites
must be fulfilled [54–56]: (1) In a certain area, different types of land use should be
transformable into each other, (2) the conversion between different types of land use can
include many events, which are difficult to describe with a specific formula, and (3) within
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the time limit of the study, the conversion status of the land use structure is relatively stable,
which meets the requirements of the Markov chain. Moreover, the area ratio of the mutual
conversion between the types of land uses equals the state transition probability.

MLP is a very widely used neural network in remote-sensing image processing,
especially remote sensing image classification. MLP was used in the model primarily to
calculate the land use change potential, that is, the future conversion probability between
each land use type. The process involved analyzing future land use by establishing a land
use driving force model and the quantitative relationship between each land use type to
assess the probability of change. Based on the calculated potential distribution of soil use
changes, the location of possible future land use changes can be determined. The back
propagation algorithm used in MLP consists of two parts, namely the forward propagation
of information and the backward propagation of errors. In the forward propagation process,
the input information is calculated from the input layer through the hidden layer to the
output layer, and each layer for the state of a neuron only affects the state of the next layer
of neurons [57,58]. If the expected output is not obtained in the output layer, the error
change value of the output layer is calculated, and then turned to reverse propagation, and
the error signal is returned back along the original connection path through the network to
modify the weights of neurons in each layer until the desired target is reached. During the
forward propagation process, the state of the activated neuron is updated layer-by-layer
from the input layer to the output layer, as shown in Equation (4):

xj = ∑
i

aiwji. (4)

xj represents the total input received by neuron j, wji represents the weight between
neurons j and i, αi denotes neuron i once xj is calculated. The most commonly used
mapping function is the S (sigmoid) function, as shown in Equation (5).

aj = f
(
xj
)
=

1
1 + 1

exp
( xj

T

) . (5)

It is crucial to check the accuracy and effect of the model to determine whether the
model needs to be adjusted. The Receiver Operating Characteristic (ROC) curve test
evaluates the model by comparing the predicted land change probability distribution
map with the actual changed 0–1 map (the changed land value is 1, and the unchanged
land value is 0) [59–61]. This step converts the simulated and reference images into a
2 × 2 table, with each table corresponding to a different threshold. The number of pixels
within the thresholds of A, B, C, and D create the statistical figure for each ROC curve
threshold. The following data are produced; x and y form the point (x, y), where x is the
ratio of classifications labeled as true−, namely D/(B + D), and y is the proportion of true+
classifications, that is, A/(A + C). In order to be expressed as a positive value on the x
axis, the opposite part of true− is generally represented by B/(B + D). Thus, the ROC
curve test provides the Area Under the ROC Curve (AUC), which is obtained using the
following formula:

AUC =
n

∑
i=1

(xi − xi+1)×
{

yi +
yi+1 − yi

2

}
(6)

where xi refers to x for each threshold i, that is, B/(B + D), and y is calculated using
D/(B + D).

3. Results and Discussion
3.1. Analysis of Historical Land Use

The land use maps in 1990, 2000, and 2010 and the accuracies are shown in Figure 2
and Appendix A. Firstly we randomly generated 2866, 2549, and 2481 sample points in 1990,
2000, and 2010 through hierarchical random sampling method. There were 1520 sample
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points, 1227 sample points, and 1008 sample points in forest area in 1990, 2000, and 2010,
respectively. Then we evaluated the accuracy of classification for sample points based on
Google earth.
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GlobeLand30, which was developed by the National Geomatics Center of China, is an
open-access 30m resolution global land cover data product with an overall classification
accuracy of over 80% [62,63]. We compared the area and spatial location of the forest
land in 2010 extracted by Globeland30 with those in this study (Figure 3). Firstly, about
600 sample points are randomly generated within Xishuangbanna administrative region.
Then these sample points are overlapped with Globeland30 and land use map respectively.
Finally we evaluate the accuracy of land use map based on the consistency of forest land
and nonforest land in Globeland30.Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 22 
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In terms of the forest land area, the forest land area extracted from Globeland30 was
1.21× 106 ha, and that from this study is 1.05×106 ha, with the accuracy 86.92%. In terms of
spatial location of the forest land, among 600 randomly generated sample points, 376 were
the forest land and 230 were nonforest land in Globeland30; in comparison, 331 sample
points were the forest land and 275 sample points were nonforest land in this study. The
overall accuracy is 83.66%, and the kappa coefficient is 0.657.

The areas, changes, and dynamics of the three types of land use in 1990, 2000, and
2010 are shown in Figure 4.
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As shown in Figure 4, the areas under cultivated land, forested land, and water
bodies in Xishuangbanna showed a downward trend from 1990 to 2010. Among them,
the decrease in forest area is the most obvious, with a total reduction of 360,819 ha
(360,819 × 104 m2) over the past 20 years, a dynamic land use change degree of −1.42%, a
decrease of 265,491 ha (265,491 × 104 m2) from 1990 to 2000, and a reduction of 95,328 ha
(95,328 × 104 m2) from 2000 to 2010. The area of cultivated land showed an increasing
trend in the previous 10 years, marked by a rise of 18,153 ha (18,153 × 104 m2) and a
dynamic land use change degree of 1.24%. The area of cultivated land decreased by a total
of 21,456 ha (21,456× 104 m2) in the latter 10 years, with a dynamic land use change degree
of −1.31%. The area under water bodies declined continuously for the two decades, with a
total reduction of 3996 ha (3996 × 104 m2) and a dynamic degree of −2.17%. Grasslands,
rubber plantations, shrubland, tea gardens, and construction land in Xishuangbanna region
showed increasing trends from 1990 to 2010. Among them, the area of rubber plantations
showed the most obvious growth, with a total increase of 249,948 ha (249,948 × 104 m2)
in 20 years, and a dynamic land use change degree of 9.87%. Moreover, the area under
tea gardens increased by 43,686 ha (43,686 × 104 m2) in the past 20 years, the dynamic
land use change degree being 6.26%. Although the areas under grassland, shrubland, and
construction land increased, the changes were relatively insignificant.

In summary, the economic development of the Xishuangbanna region and the im-
provement in people’s quality of life led to a rise in the cultivation of cash crops such as
rubber and tea in the region in the past 20 years, resulting in a large number of forests
being felled.

During the period 1990–2000, carbon emissions for Global Forest Watch and Santoro
datasets were 7.85 million t CO2e and 5.63 million t CO2e, respectively, with a difference
of 28.30%. During the period 2000–2010, carbon emissions for Global Forest watch and
Santoro datasets were 2.82 million t CO2e and 2.00 million t CO2e, respectively, with a
difference of 28.81%. Carbon emissions for the period 1990–2000 were about 2.8 times as
much as those for the period 2000–2010 (Figure 5).
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Figure 5. Carbon emissions for the period 1990–2000 and the period 2000–2010.

3.2. Influencing Factors of Land Use Change

There are many drivers that lead to deforestation and forest degradation within
REDD+. Direct drivers are human activities or immediate actions that directly impact forest
cover and loss of carbon such as agriculture expansion (both commercial and subsistence),
infrastructure extension, and wood extraction. Indirect drivers are complex interactions
of social, economic, political, cultural, and technological processes to cause deforestation
or forest degradation. They act at multiple scales: international (markets, commodity
prices), national (population growth, domestic markets, national policies, governance), and
local circumstances (subsistence, poverty) [64–67]. Since RLs refer to the business-as-usual
scenario, which means without any change in REDD+ drivers (situation, government,
socio-economic forces, etc. that occur over time), this study only considered seven factors
influencing land use change, namely distance to a road, distance to a river, elevation, slope,
aspect, distance to an administrative center, and nature reserves (Table 3 and Figure 6).

Table 3. Factors influencing land use change and data acquisition methods.

No. Influencing Factor Data Acquisition Method

1 Elevation Using the Shuttle Radar Topography Mission (SRTM) data, the topographic data
of Xishuangbanna region were extracted through the mask

2 Slope A slope map was generated from the extracted elevation data

3 Aspect An aspect map was generated through the Digital Elevation Model (DEM)

4 Distance to a road
Using the traffic map, roads classified as level 3 and above in Xishuangbanna

region were vectorized, and distance analysis was used to obtain the distribution
map of the roads nearest to the studied areas in the region

5 Distance to a river
The main rivers in Xishuangbanna region were vectorized, and distance analysis
was used to obtain the distribution map of the rivers closest to the studied areas in

Xishuangbanna region

6 Distance to an administrative center Distance analysis was conducted for all such centers in Xishuangbanna region

7 Nature reserves (limiting factors) The distribution map showing Xishuangbanna’s nature reserves was analyzed as
land transfer within reserves is restricted
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Cramer’s V coefficients (Table 4) were calculated to measure the correlation between
the above-mentioned factors impacting land use change and land distribution. The larger
the value, the stronger the correlation.
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Table 4. Cramer’s V coefficients indicating correlations between the influencing factors of land use change and land distribution.

Distance to a Road Distance to a River Elevation Slope Aspect Distance to an Administrative Center

Overall 0.1334 0.0905 0.2539 0.1608 0.0431 0.1252
Woodland 0.0001 0.0001 0.3482 0.0001 0.0001 0.0001
Shrubland 0.2735 0.1809 0.1192 0.2131 0.0729 0.1871

Grass 0.0795 0.0815 0.1289 0.0406 0.0560 0.0933
Cultivated land 0.0462 0.0347 0.1355 0.0210 0.0216 0.0455

Rubber plantations 0.1550 0.0708 0.5297 0.1984 0.0570 0.1542
Tea gardens 0.2148 0.1277 0.1230 0.1665 0.0308 0.1516

Construction land 0.1411 0.0893 0.0451 0.1076 0.0294 0.1025
Other land 0.0492 0.0217 0.2130 0.0256 0.0199 0.0361

3.2.1. Distance to a Road

Besides playing a very important role in the economic and social development of a
region, traffic conditions impact the land use status of a region. The overall correlation
between the land type and distance from a road is 0.1334. Firstly, compared with the
overall value, Cramer’s V coefficient for shrubland and tea gardens is 0.2735 and 0.2148,
respectively, which is much higher than the overall value. Thus, the distance from a road
is a relative important factor affecting shrubland and tea gardens. Secondly, Cramer’s V
coefficient of the impact of the distance from a road on rubber plantations and construction
land is 0.1550 and 0.1411, respectively, quite similar to the overall value. Thus, the affected
land types dominated by road traffic in the Xishuangbanna region are shrubland, tea
gardens, rubber plantations, and construction. It is evident that these land types are
affected by anthropogenic activity. The reason of highest correlation between the shrubland
and road is that it is very common in Xishuanbbanna to have roads built across shrubland
rather other areas.

3.2.2. Distance to a River

The precipitation in Xishuangbanna region is abundant and evenly distributed. The
dependence of most land use types on rivers is not obvious, except for shrubland and tea
gardens. Among them, the influencing factor, namely the overall correlation value of the
distance from a river to the land type is 0.0905, and the Cramer’s V coefficients for tea
gardens (0.1277) are higher than this overall value. This result indicates that the distance
from a river is the main factor affecting tea gardens.

3.2.3. Terrain-Related Factors

Topographic factors play a very important limiting role in various production activities.
The study area is mainly mountainous, and, thus, the topographic factors of elevation,
slope, and aspect cannot be ignored. Firstly, the overall value of the correlation is 0.2539,
and woodland and rubber plantations alone show higher correlation coefficients than this
overall value (the corresponding Cramer’s V coefficients are 0.3482 and 0.5297). During the
period 1990–2010, the rubber plantation in Xishuangbanna continuously expanded from
low-altitude flat valleys to mountainous areas in high altitudes due to high rubber price
from the international market, population pressure, and economic development. This is the
reason for the highest correlation between the elevation and rubber plantation. Cramer’s V
coefficients of elevation for shrubland, grassland, cultivated land, tea gardens, construction
land, and other land are 0.1192, 0.1289, 0.1355, 0.1230, 0.0451, and 0.2130, respectively,
indicating that their correlation coefficients are lower than the overall value.

Secondly, the slope affects the water distribution, wind speed, and soil texture required
for crop growth. The overall value of the correlation for the slope is 0.1608, while Cramer’s
V coefficients for shrubland, rubber plantations, and tea gardens are 0.2131, 0.1984, and
0.1665, respectively, higher than the overall value. Thus, this factor can be regarded as the
main factor impacting these land uses. However, in overall terms, Cramer’s V coefficient is
less than the corresponding values for grassland, cultivated land, construction land, and
other land (0.0406, 0.0210, 0.1076, and 0.0256, respectively).
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Finally, the aspect primarily affects the length of time and temperature for the growth
and final yield of crops. The overall value in this case is 0.0431, while Cramer’s V coefficients
for shrubland, grassland, and rubber plantations are all greater than the overall value
(0.0729, 0.0560, and 0.0570, respectively).

3.2.4. Distance to an Administrative Center

Governmental administrative organizations are typically located in townships. Given
the increasingly strict forest protection policies being applied to Xishuangbanna region,
areas closer to governmental administrative organizations can be conveniently supervised
and regulated, resulting in a certain deterrent effect on forest destruction and illegal mining
of local resources. The overall value of the distance from a township is 0.1252. The
corresponding Cramer’s V coefficients for rubber plantations, and tea gardens (0.1542,
and 0.1516, respectively) are higher than the overall value. However, the coefficients for
grassland, cultivated land, construction land, and other land (namely, 0.0933, 0.0455, 0.1025,
and 0.0361, respectively) are less than the overall value. Therefore, rubber plantations and
tea gardens are clearly (and expectedly) impacted by distance to a township, whereas this
is not so for the remaining land use types.

3.2.5. Limiting Factor (Nature Reserve)

Xishuangbanna Nature Reserve is a national nature reserve consisting of five small sub-
reserves, namely the Mengyang, Menglun, Mengla, Shangyong, and Manzhang Reserves.
These sub-reserves are not geographically connected to each other and cover a total area
of 242,500 ha (242,500 × 104 m2). Notably, 12.68% of the total area of the Prefecture is
allocated to nature conservation, namely the protection of the tropical forest ecosystem and
its rare wildlife. Relatively little land change has been observed in the protected area, and
man-made damage has also been effectively contained. In this study, the conversion rate of
certain land use types, such as forestland, in the protected area was set to 0; in other words,
anthropogenic activities in these areas are completely restricted.

3.3. Future Land Use Simulation Results and Inspection

The expansion of rubber and other cash crops has caused massive forest loss and
fragmentation in Xishuangbanna. The region experienced the most severe forest losses
and degradation particularly for the period 1990 to 2010. Therefore, we chosen the period
1990 to 2010 for REDD+ in Xishuangbanna as the baseline, which is crucial to measure the
emission reduction performance and consequently to negotiate meaningful deforestation
emission reduction targets. As a result, the land use change data for 1990 and 2000 were
used as inputs to the model of the Markov chain and MLP, and the 2010 land use change
data were used as the verification values to simulate future land use. The validation of
AUC value from the ROC curve method is 0.8, indicating that the results provided by the
model are ideal. The land use prediction results for the Xishuangbanna region in the next
20 years of 2016–2035 are shown in Figure 7.

Area under forestland shows a downward trend and is the largest change over the
20 years, with the areal reduction amounting to 158,535 ha (158,535 × 104 m2). Conversely,
the areas under rubber plantations, tea gardens, and cultivated land increase, with rub-
ber plantations showing the highest increase (by 108,450 ha (108,450 × 104 m2)). The
areas under tea gardens and cultivated land also increase, but only slightly (by 39,204 ha
(39,204 × 104 m2) and 31,707 ha (31,707 × 104 m2), respectively). The areas under shrub-
land, grassland, construction land, and water bodies remained stable. Thus, in the next
20 years, the Xishuangbanna region will undergo further deforestation; simultaneously,
given its improved economic development and the rising human demand for resources,
the cultivation of cash crops such as rubber and tea will continue to increase, which will
add pressure on the region’s forests.
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Figure 7. Land use forecast for Xishuangbanna region for the next 20 years (unit: ha or 104 m2).

3.4. Reference Levels in Xishuangbanna

According to IPCC’s Good Practice Guidance, the source/or sink estimates were
determined by multiplying the activity data by a carbon stock coefficient (i.e., emission
factor) at two points in time. In this study, the combination of the IPCC method and
the land use change model showed that the carbon emissions from the study region
obviously increased year by year over the 20 years of this study (Figure 8); the simulated
growth trend provides an estimate of 0.35 million t CO2e of annual carbon emissions
on average. Simultaneously, the large increase in rubber plantations facilitated a rise
in carbon absorption, resulting in average annual carbon sequestration of 0.13 million t
CO2e. Although the total amount of carbon sequestration attributable to cultivated land,
grassland, shrubland, and tea gardens changed, the overall increase was not large. In
general, the total carbon emissions in Xishuangbanna rose year by year during the past two
decades. The average annual carbon emissions in the past two decades were estimated to
be 0.23 million t CO2e, while the total carbon emissions in the same time period amounted
to 4.6866 million t CO2e, indicating an obvious increase.
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4. Conclusions

A careful assessment of RLs for REDD+ in Xishuangbanna, China provides significant
insights to REDD+ project. The implications that emerge from this study are as follows.

1. We developed a methodological framework to estimate carbon emissions for the
REDD+ program in the tropical forests of Xishuangbanna, China. By coupling IPCC’s
GPG and land use scenario modeling, we could successfully estimate the RLs. Within the
framework, the Enhanced Thematic Mapper Plus/Thematic Mapper(ETM+/TM) remote
sensing images in the study area were used to interpret land use changes in 1990, 2000, and
2010. The Land Use Dynamic Index was used for the transfer of land use types during the
study period to identify that rubber plantations were the main contributor to forest loss
in this region. The Markov chain model was used to predict the number of future land
use changes and the Multilayer Perceptron model was applied to calculate the distribution
location of these changes.

2. According to Paragraph 71 of Decision 1/CP.16, forests RLs are one of the elements
to implement REDD+ activities for developing country parties. Moreover, the COP recog-
nizes the importance and necessity of adequate and predictable financial and technology
support for developing such RLs. Identifying these RLs is, therefore, a critical step in the
provision of financial incentives and/or creation of carbon markets. Furthermore, they
guide the design of the REDD+ strategy. In this study for the business-as-usual scenario
of the RLs, Xishuangbanna will lose 158,535 ha (158,535 × 104 m2) of forest area in next
20 years, resulting in approximately 0.23 million t (0.23 × 109 kg) CO2e emissions per year.
This is due to the improved economic development and the rising human demand for
resources, such as the cultivation of rubber and tea.

5. Future Scope

Estimating carbon emissions based on RLs is a multidisciplinary task. It requires
expertise in forestry science, ecological modeling, statistics, remote sensing, and field
techniques. Undertaking this exercise is demanding given global geographical diversity,
and, thus, building technical capacity to this end is essential. Modeling future emissions
based on historical trend rates and understanding the relationships between deforestation
patterns and the drivers of deforestation are essential for RL estimation [68–70].

Remote sensing technology using optical sensors is capable of measuring the carbon
content of different forest types when supported by field information from, for example,
sample plots used to calibrate the technology. Using this methodology, a multitemporal set
of remotely sensed data can be used to detect forest changes over time [71–73]. Thus, freely
available Landsat images can provide reliable measurements of forest change, especially
when complemented with high-resolution satellite imagery from sensors such as QuickBird,
which provide data for image analysis training and validation.
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Appendix A

Table A1. The accuracies in 1990.

Reference Date (1990)
Total UA

Classification Forest
Land

Shrub
Land

Cultivated
Land

Rubber
Plantations Water GrassLand Constructionland Tea

Gardens

Forest land 1350 67 0 45 0 30 0 28 1520 88.82%
Shrub land 55 320 11 25 0 13 0 0 424 75.47%
Cultivated land 0 0 245 0 15 0 12 0 272 90.07%
Rubber plantations 24 12 0 277 0 10 0 0 323 85.76%
Water 0 12 0 0 40 13 0 0 65 61.54%
Grassland 15 0 15 0 0 65 0 0 95 68.42%
Construction land 0 0 10 0 0 0 45 0 55 81.82%
Tea gardens 0 12 15 11 0 0 0 74 112 66.07%
Total 1444 423 296 358 55 131 57 102 2866
PA 93.49% 75.65% 82.77% 77.37% 72.73% 49.62% 78.95% 72.55% OA = 84.30%
Omissionerror 0.065 0.243 0.172 0.226 0.273 0.504 0.211 0.275 Kappa = 0.770
Commission error 0.120 0.043 0.012 0.018 0.009 0.011 0.004 0.014

Table A2. The accuracies in 2000.

Reference Date (2000)
Total UA

Classification Forest
Land

Shrub
Land

Cultivated
Land

Rubber
Plantations Water Grassland Constructionland Tea

Gardens

Forest land 1100 54 20 31 0 0 0 22 1227 89.65%
Shrub land 27 385 0 29 0 15 0 0 456 84.43%
Cultivated land 0 0 260 0 15 0 11 0 289 90.91%
Rubber plantations 15 12 0 163 0 10 0 0 200 81.50%
Water 0 12 0 0 30 13 0 0 55 54.55%
Grassland 0 0 15 0 0 57 0 0 72 79.17%
Construction land 0 0 14 0 0 0 45 0 59 76.27%
Tea garden 0 11 0 13 0 0 0 80 104 76.92%
Total 1142 474 309 236 45 95 56 102 2459
PA 96.32% 81.22% 84.14% 69.07% 66.67% 60.00% 80.36% 78.43% OA = 86.21%
Omission error 0.037 0.188 0.159 0.309 0.333 0.400 0.196 0.216 Kappa = 0.805
Commission error 0.096 0.036 0.014 0.017 0.010 0.006 0.006 0.010

Table A3. The accuracies in 2010.

Reference Date (2010)
Total UA

Classification Forest
Land

Shrub
Land

Cultivated
Land

Rubber
Plantations Water Grassland Constructionland Tea

Gardens

Forest land 856 54 0 45 0 25 0 28 1008 84.92%
Shrub land 16 275 15 25 0 0 0 0 331 83.08%
Cultivated land 0 0 245 0 15 0 12 0 272 90.07%
Rubber plantations 38 12 0 390 0 10 0 0 450 86.67%
Water 0 14 0 0 40 0 0 0 54 74.07%
Grassland 20 0 25 0 0 80 0 0 125 64.00%
Construction land 0 0 14 0 0 0 45 0 59 76.72%
Tea gardens 0 20 17 13 0 0 0 132 182 72.53 %
Total 930 375 316 473 55 115 57 160 2481
PA 92.04% 77.33% 77.53% 82.45% 72.73% 69.57% 78.95% 82.50% OA = 83.15%
Omission error 0.080 0.267 0.225 0.175 0.273 0.304 0.211 0.175 Kappa = 0.781
Commission error 0.098 0.027 0.014 0.030 0.006 0.019 0.006 0.022
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