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Abstract: This study evaluated the potential of using machine vision in combination with deep
learning (DL) to identify the early blight disease in real-time for potato production systems. Four
fields were selected to collect images (n = 5199) of healthy and diseased potato plants under variable
lights and shadow effects. A database was constructed using DL to identify the disease infestation
at different stages throughout the growing season. Three convolutional neural networks (CNNs),
namely GoogleNet, VGGNet, and EfficientNet, were trained using the PyTorch framework. The
disease images were classified into three classes (2-class, 4-class, and 6-class) for accurate disease
identification at different growth stages. Results of 2-class CNNs for disease identification revealed
the significantly better performance of EfficientNet and VGGNet when compared with the GoogleNet
(FScore range: 0.84–0.98). Results of 4-Class CNNs indicated better performance of EfficientNet when
compared with other CNNs (FScore range: 0.79–0.94). Results of 6-class CNNs showed similar results
as 4-class, with EfficientNet performing the best. GoogleNet, VGGNet, and EfficientNet inference
time values ranged from 6.8–8.3, 2.1–2.5, 5.95–6.53 frames per second, respectively, on a Dell Latitude
5580 using graphical processing unit (GPU) mode. Overall, the CNNs and DL frameworks used in
this study accurately classified the early blight disease at different stages. Site-specific application of
fungicides by accurately identifying the early blight infected plants has a strong potential to reduce
agrochemicals use, improve the profitability of potato growers, and lower environmental risks (runoff
of fungicides to water bodies).

Keywords: deep learning; disease classification; PyTorch; EfficientNet; image processing; machine
vision; smart sprayer

1. Introduction

Canada stands fifth in the list of potato (Solanum tuberosum L.) exporters with its
exports amounting to $1.60 billion per year [1]. Atlantic Canada contributes 37% of
Canadian potato production [2]. Typically, 20 applications of agrochemicals are uniformly
applied during a growing season, without considering the spatial variability of disease
infestations within a potato field. The desire of growers to increase potato production
has resulted in a 150% increase in the uniform usage of agrochemicals during the past
20 years leading to an increased cost of production and environmental degradation [3].
Efficient crop management through the precise and accurate application of agrochemicals
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can enhance potato quality and tuber yield while providing economic and environmental
benefits [4]. The development of smart sprayers, capable of identifying spatially variable
weed and disease distributions within potato fields, can help apply agrochemicals in the
infected localities only. Such precision agriculture technologies, in their infancy stage in
Canada, continue to gain popularity worldwide.

Early blight—a common potato disease, caused by Alternaria solani Sorauer, is found
throughout North America [5]. Like other plant leaf diseases, it typically targets less
productive and older foliage first, followed by steady movement upwards in the plant
canopy causing leave senescence [5]. Visible symptoms of this disease include small
1–2 mm black or brown lesions, at early stages, turning into dark pigmented concentric
rings under conducive environmental conditions, at mature stages of the disease [6].
Currently, management of early blight involves the uniform application of fungicides,
ignoring its spatial distributions, which not only increases the production cost but also
adversely impacts the environment. Therefore, an intelligent classification system to
differentiate diseased plants from healthy plants and achieve the targeted application of
fungicides can improve economic and environmental sustainability.

The identification of plant diseases is a long-researched topic [7]. An accurate and
real-time disease detection system may help in developing mitigation strategies to ensure
economical crop protection on a small scale and food security on a large scale. Furthermore,
an accurate disease classification through machine vision and deep learning (DL) could
provide the basis to accomplish the site-specific application of agrochemicals. Abdul-
lah et al. [8] proposed a method of disease detection by using a neural network. Their
algorithm applied principal components analysis to a set of low-resolution images fol-
lowed by feeding the processed images to a neural network for plant disease detection.
Sena et al. [9] suggested a thresholding and image segmentation model for disease detec-
tion. They divided greyscale images of diseased leaves into different blocks and applied
the programmed threshold levels to detect disease in each image block. Camargo and
Smith [10] presented an alternative image segmentation method for disease quantification.
Their developed algorithm transformed color images to HSV (hue, saturation, value) and
then in I1I2I3 color space. With this method, they were able to quantify diseases of various
plant species. Boese et al. [11] used an unsupervised color-based disease quantification
technique, which divided the image into several classes followed by training of each class
by a probabilistic supervised learning technique. According to Boese et al. [11], this method
had higher accuracy in comparison with previous methods. Although the above-discussed
algorithms provide the basis of disease detection, most of these methods are not feasible
for real-time application of agrochemicals as they require a very long inference time for
image processing.

As per recent developments in the graphical processing unit (GPU)-embedded proces-
sors, the applications of artificial intelligence have gained exponential growth leading to
the development of novel methodologies and models called DL [12]. GPU-based parallel
computing has supported the development and use of CNNs for various applications.
Krizhevsky et al. [13] tested large datasets of multiple image classes with high accuracy
using various CNNs. More recently, CNNs have become one of the most successful DL
techniques in image processing. Typically, a CNN consists of several layers such as con-
volutional, pooling, and fully connected layers [12]. A convolutional layer is composed
of several mathematical operations, which play key roles in CNN functions, such as
convolution—a special linear operation [14]. The convolutional layer lifts the heavy load
of the computation and is a critical building block of a CNN. Pooling layers usually come
in between consecutive convolutional layers. The main function performed by pooling
layers is to reduce the spatial computational parameter load. The fully connected layers
consist of the activation functions by which the final output, such as object classification, is
extracted [14]. The most common type of activation function is called a rectified linear unit,
which replaces the negative numbers in pixels by zero values to minimize the computation
time and exposes the targets for identification [15]. A digital image stores the data in
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the form of two-dimensional grids; i.e., an array, and a small unit of an array called a
kernel [14]. In CNNs, training is the process to reduce the error between predicted output
and ground truths by the process of convolution.

The CNNs have been successfully implemented in disease detection problems. For
example, Oppenheim and Shani [16] classified four different potato tuber diseases by using
a visual geometry group. Ferentinos [7] was able to attain a 99.5% success rate for detecting
58 diseases in 25 types of plants by training the plant disease images with different CNNs.
Carranza-Rojas et al. [17] proposed a species identification system for botanists using CNN
for herbarium datasets that are comprised of multimillion images of various species. With
the high accuracy of CNN, the DL technique has been suggested for semi or fully automated
species identification systems. Fuentes et al. [18] recognized nine types of disease and pests
in tomato plants by comparing several CNNs. The CNN, based on faster regional CNN
with Visual Geometry Group (VGG) as a feature extractor, attained the highest accuracy for
disease detection. A smartphone-assisted disease detection system supported by a trained
CNN was developed by Mohanty et al. [19] to identify 14 crop species and 26 diseases with
99.4% accuracy. Recently, a new family of CNNs was developed based on a systematic
design called EfficientNet, which is designed based on optimized network width, depth,
and resolution. The optimized design of EfficientNet has resulted in a higher accuracy as
well as a smaller number of learning parameters.

The objective of this study was to evaluate the potential of using artificial intelligence-
based convolutional neural networks to identify the early blight disease in real-time for
potato production systems. This research compares three ages of CNNs (GoogleNet—old,
VGGNet—mid-age, and EfficientNET—new) for identification of early blight disease in
its different growth stages (initial, mid, last) and their possible combinations in potato
production. Furthermore, inference times for the selected CNNs were computed to assess
their adequacy in developing a smart sprayer for the targeted application of fungicides
on an as-needed basis. The disease identification using the integration of CNNs, machine
vision, and assessing potential and feasibility to have integrated them into a smart sprayer
adds novelty and innovation to this research study being reported here.

2. Materials and Methods
2.1. Study Site and Data Collection

For the present study, two fields in New Brunswick, Canada (Florenceville 46.318161
N, 67.617139 W and McCain’s Farms 47.103106 N, 67.855958 W) and two fields in Prince
Edward Island, Canada (Winsloe North 46.359412 N, 63.201919 W and 225 Highway
46.255502 N, 63.201203 W) were selected. Atlantic Canadian provinces climate is considered
humid, strongly influenced by the surrounding seas and oceans throughout the year. The
summer season is relatively shorter with the long winter season. In Atlantic Canadian
provinces, the majority of soils are sandy loam. Images of healthy and diseased potato
plants (Russet Burbank cultivar) were captured using digital cameras namely Canon Power-
Shot SX540 and Logitech C270 HD Webcam. Visual symptomology of early blight was
discussed and identified with a local plant pathologist. These observations coincided with
Kemmit [6] for the identification of early blight disease stages throughout the growing
season. Images were captured based on visual symptoms to categorize for the initial, mid,
and last stages of the disease in potato fields. Literature suggested that the visual symptoms
of early blight (pale, yellow-colored leaves) start appearing in early July, i.e., 35 days after
planting (DAP)—a period counted for observing the initial stage of the disease. Mid-stage
of the disease occurs at 65 DAP (brown color concentric circles on potato plant leaves).
The late stage of the disease evolves at 80 DAP (Figure 1). As no curative measures exist,
accurate identification of disease at an early stage using machine vision is a key to mitigate
the damage. The data points in the captured frame may vary real-time as it is the function
of disease intensity. The more intense disease may have more disease data points than the
less intense disease plants. Furthermore, the disease appeared on potato plants in the form
of patches because of disease spread.
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Figure 1. Sample images for identification of early blight disease stages on potato leaves; (a) pale yellow color leaves at the
initial stage of the disease, (b) concentric brown circles in the leaves at mid-stage, and (c) senescence of leaves at the last
stage of the disease.

The images were taken 140 cm above the soil surface, under natural sunlight between
9:00 a.m. and 4:00 p.m. in 2018. The collected images were resized (1280 × 720 pixels) using
a custom-developed program written in the Python programming language. The pixel
resolution of 1280 × 720 was selected to extend the application of this model for real-time
applications. Moreover, the selected resolution was chosen to assess the feasibility of the
developed CNN model to be integrated with the hardware, to develop a smart variable
rate sprayer using a real-time video feeding from a webcam.

The disease stages were identified by collecting the images throughout the potato-
growing season from June to October 2018. Images of each disease stage, with its symptoms,
were trained with different CNNs. A dataset of 532 images was reserved for testing and
for evaluation of statistical measures after the CNNs are trained (Table 1). The remaining
images were used for training (70%) and validation (30%) of the developed CNNs. The
accuracy of CNNs in identifying the early blight disease stages was assessed using statistical
measures including precision, recall, and FScore.
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Table 1. Number of images used for training and validation to identify the disease stages for selected fields.

Disease Stage Days after
Planting

Disease
Symptoms Label Training/Validation/

Testing
Images
Used Total Images

Early 30

Diseased

Training 622

842Validation 127

Yellow Testing 93

color

Healthy

Training 614

854leaves Validation 151

Testing 89

Mid 55

Diseased

Training 524

728Validation 132

Brown Testing 72

concentric

Healthy

Training 658

913leaves Validation 164

Testing 91

Last 80

Diseased

Training 702

976Validation 176

Senescence Testing 98

of leaves

Healthy

Training 638

886Validation 159

Testing 89

2.2. Multistage Disease Comparison

Plant disease progression is a function of environmental variables (temperature, hu-
midity, wind, etc.). If the CNNs are trained for only three stages (mid, early, and late),
the overlap between disease stages will compromise the accuracy of the CNNs. This will
reduce the CNNs’ applicability for real-time smart sprayer applications due to low disease
identification accuracy. To compensate for variating disease stages, the overlap between
stages, and to clearly distinguish the disease from potato plants, CNN were divided into
three separate experimental groups for accurate identification. These steps have simplified
the tasks of disease detection at various stages of the disease and potato growth. The
2-Class CNN compared one disease and one healthy stage. The 4-Class CNN was used
to compare two disease and two healthy plant stages. The 6-Class CNN compared three
disease and three healthy plant stages simultaneously to differentiate healthy potato plants
accurately and reliably from diseased plants. Healthy plant stages were defined based on
leaf size on the respective phenological stages of a potato plant. The analogy behind these
simulations was to expose the CNNs to all possible scenarios to avoid fungicide spraying
on healthy plants. Furthermore, the agrochemical application can be optimized based
on the severity of disease infestation, picked by variable-rate sprayer integrated with DL
CNNs and machine vision approach solicited by this research.

The 2-, 4-, and 6-Class CNNs

The architecture of the 2-Class CNN was trained on one disease and one healthy potato
plant stage, i.e., initial, mid, and last early blight (Figure 2). All the validation images were
passed through the trained model to evaluate its ability to distinguish various diseases
and healthy potato plant leaves at their various growth stages. The 4-Class CNN was
trained using two stages of disease symptoms and two healthy potato plants (initial + mid,
mid + last, and initial + last). The performance of the 4-class CNN was evaluated by
combining the two groups of images and running these images with the trained model to
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classify the healthy and diseased plants. The 6-Class CNN was trained on three groups of
diseased and healthy plant stages (initial + mid + last). The 6-Class CNN’s performance
was evaluated in terms of differentiation between healthy and diseased plants using all
possible combinations. These interactions using various combinations of diseased and
healthy plants in conjunction with CNNs enabled robust and comprehensive evaluation
of the CNNs. These architectures, extensive training, testing, and validations evaluated
the efficacy of the CNNs and machine vision in disease classification for a potato cropping
system.
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compare the classification accuracy of 2-Class, 4-Class, and 6-Class convolutional neural networks
(CNNs).

2.3. Deep Learning Frameworks and Convolutional Neural Networks

The rapid surge in DL and machine vision has provided easier frameworks to run
CNNs. Several frameworks were developed such as Caffe, Torch, Theano, and others,
which facilitate the computational process and efficiency for various applications. These
frameworks have gone through many development phases to attain the desired accuracy for
a particular application. The DL frameworks can build large and complex computational
analyses efficiently. The DL frameworks also help in calculating the gradient losses to reduce
the error between predicted and ground truth data. Due to heavy computational loads
associated with CNNs, a GPU-enabled workstation saves time in training and validation
of an image using DL frameworks. Furthermore, the DL frameworks enable networking
in central processing unit (CPU), GPU, and memory by using DL libraries. The PyTorch
framework was used for all CNNs (training, validation, and testing) to differentiate diseased
and healthy potato plants because of its readily available resources and ease of use.

PyTorch, developed by the Facebook AI research lab, is a fast-maturing framework
with good GPU support [20]. PyTorch has gained popularity in the DL community because
of its in-depth features such as a dynamic graph, easily available resources, and research-
oriented focus. In this study, three CNNs, namely GoogleNet, VGGNet, and EfficentNet,
were selected to identify early blight disease at different stages. These models were selected
based on literature-reviewed accuracies, real-time performance, and applicability in pro-
duction for commercial applications. Szegedy et al. [21] suggested the use of GoogleNet for
accurate predictions. GoogleNet has been successfully used in plant disease identification
and plant parts identification problems [22,23].

The VGGNet architecture consists of 3×3 convolutional filters to improve its accuracy
and reduce overfitting problems [24]. The VGGNet is available in different depths of layers
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such as Vgg-11, Vgg-13, and Vgg-16. In this study, the most recent one, VGGNet-16, was
tested for disease classification stages. EfficientNet is a recently developed model by Tan
and Le [25] which has been designed on a systematic approach of network depth, width,
and resolution. EfficientNet is claimed to be a light as well as an accurate model based on
the compound scaling approach. In this study, we used the lightest EfficientNet model
B0, which is considered to be an accurate model considering image results. Overall, this
study used the old (GoogleNet), mid-age (VGGNet-16), and the recent (EfficientNet) CNNs
using the PyTorch framework to evaluate their potential and accuracy in the classification
of early blight diseased and healthy potato leaves.

2.4. Deep Learning Workstation and Hyperparameter Tuning of CNNs

A custom-designed DL workstation was used to train the selected CNNs. The work-
station consisted of Intel core CPU i9-7900X (3.3Ghz, SkylakeX 10 core), two GPUs (Nvidia
GTX 1080 GeForce, 11GB), two memory sticks of Ram (Vengeance 32 GB), and 1 TB solid
state drive. Ubuntu 16.04 operating system was installed with PyTorch (Version 1.12),
NumPy (Version 1.18.1), Matplotlib (version 3.1.3), Pandas (1.0.1), and associated libraries.
PyTorch provided several code snippets to get the reproducible results for similar configu-
rations of CNNs and datasets. In this study, we selected the random seeds of 20 for deep
learning libraries including NumPy and cuDNN. Furthermore, all data loader workers
were set to zero to achieve similar results.

As DL is computationally expensive, it is important to set the optimal hyperparameters
for CNN models to improve accuracy. The hyperparameters were determined with several
trials of different optimizers, learning rates, and weights initialization. The GoogleNet
performed better if trained from scratch in comparison with pre-trained weights and fine-
tuning. The learning rate was set to 0.01 for 2-Class CNN and 0.001 for 4- and 6-Class
CNNs to reduce over-fitting. Adam optimizer with step down learning rate and 0.95
momenta performed well on our image datasets. VGGNet-16 is computationally a more
expensive CNN than GoogleNet because of a higher number of learning parameters, e.g.,
138 million. For VGGNet-16, the batch size was set to 64 using both GPUs. Because of
the large number of parameters, these CNNs were trained using ImageNet pre-trained
weights to optimize the training time and accuracy. Adam optimizer performed well with
weight decay, the momentum of 0.95, and a learning rate of 0.001 for 2-Class CNN and
0.0001 for 4- and 6-CNNs. The CNN’s convergence was faster with lower learning rates
because of pre-trained weight initialization in these models. EfficientNet was trained using
pre-trained weights of lightest model B0. The lightest model of EfficientNet was selected
to assess its application for real-time image classification. This CNN worked well with a
batch size of 256. Learning rates with Adam optimizers were selected from 10−4 to 10−6

for different classes of disease. Furthermore, a dropout effect of 20% was introduced in
earlier layers of CNN to overcome the over-fitting issues for EfficientNet.

2.5. Statistical Analysis and Inference Time

The performance of all CNNs using the PyTorch framework was evaluated using
the well-established statistical measures of precision, recall, and FScore [22]. Results were
also assessed based on loss and accuracy during the training and validation phases of the
CNNs. A confusion matrix provided the parameters to calculate these statistical measures.
Inference time is a key to assess the applicability of the CNNs for real-time application (e.g.,
real-time detection of disease by smart sprayers before application of agrochemicals). The
neural network must be efficient in terms of both computation time and memory during
the inference [26] to qualify for real-time applications. Adequate accuracy in conjunction
with inference time is considered one of the key elements in practical applications of the
recommended CNN for efficient resource allocation and power consumption. Inference
time was recorded for each CNN using a Dell Latitude 5580 (8 GB ram, Core I7 7 generation
processor) on GPU mode using DL framework libraries. One image was used three times
to calculate the average inference time for all CNNs. A batch size of 1 was selected to
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calculate the inference time for real-time application with less powerful devices with no
GPU for applicability and lower power consumption.

3. Results
3.1. Training Results
The 2-, 4- and 6-Class CNNs

In the training of initial early blight detection, validation accuracy values of all the
CNNs were recorded in the range of 0.95 to 0.97. GoogleNet achieved slightly lower
validation accuracy in comparison with VGGNet and EfficientNet. Results reported that
the validation accuracy for all CNNs ranged from 0.99 to 1.00 for mid-stage early blight
detection (Table 2). Similarly, validation accuracy ranged between 0.99 and 1.00 for the
last stage early blight. The performance accuracy of CNNs was non-significant for the
detection of mid and late stages of early blight. Results of the 4-Class CNNs revealed
validation accuracy of 0.92. The validation accuracy of joint stages (initial + mid) was
observed to be lower when compared with the individual stages, i.e., initial, mid, and
late separately (Table 2). For the mid + last early blight disease stage, the validation
accuracy ranged from 0.84 to 0.86. The narrow range of accuracy revealed that all the
CNNs performed similarly. The classification accuracy ranged from 0.92 to 0.94 for the
initial + last stage of early blight disease. Results depicted slightly higher validation
accuracy for the initial + last stage of the disease in comparison with initial + mid and
mid + last stages for 4-Class CNNs. The validation accuracy for 6-Class CNN ranged from
0.81 to 0.85 for the initial + mid + last disease stage. Because of the high number of similar
classes, low validation accuracy values were observed for 6-Class CNN with relatively
high training and validation losses (Table 2).

Table 2. Training and statistical evaluation of the 2-, 4- and 6-Class convolutional neural networks in classifying the early
blight disease stages for the potato production system.

Class Model Growth Stage 1 Val Acc 2 Val Loss 3 Tr Loss Precision Recall

2 Class
CNNs

GoogleNet
Initial 0.95 0.33 0.01 0.8 0.91
Mid 1.00 0.03 0.01 0.92 0.94
Last 1.00 0.00 0.00 0.83 0.87

VGGNet
Initial 0.96 0.61 0.00 0.88 0.87
Mid 0.99 0.04 0.01 0.97 0.95
Last 0.99 0.06 0.00 0.88 0.9

EfficientNet
Initial 0.97 0.07 0.01 0.88 0.88
Mid 0.99 0.02 0.00 0.99 0.97
Last 1.00 0.01 0.00 0.87 0.87

4 Class
CNNs

GoogleNet

Initial + Mid 0.92 0.28 0.03 0.87 0.87

Mid + Last 0.86 0.62 0.20 0.83 0.83

Initial + Last 0.92 0.01 0.00 0.93 0.93

VGGNet
Initial + Mid 0.92 0.27 0.01 0.84 0.85
Mid + Last 0.86 0.13 0.07 0.79 0.78

Initial + Last 0.93 0.25 0.12 0.88 0.88

EfficientNet
Initial + Mid 0.92 0.01 0.01 0.88 0.88
Mid + Last 0.84 0.79 0.30 0.85 0.85

Initial + Last 0.94 0.03 0.00 0.95 0.95

6 Class
CNNs

GoogleNet Initial + Mid + Last 0.81 0.21 0.08 0.74 0.74
VGGNet Initial + Mid + Last 0.82 0.32 0.12 0.73 0.72

EfficientNet Initial + Mid + Last 0.85 0.12 0.02 0.74 0.75
1 Val acc = validation accuracy; 2 Val Loss = validation loss; 3 Tr loss = training loss.
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3.2. Statistical Evaluation of the 2-, 4- and 6-Class CNNs, and Inference Time

In the detection of the initial stage of the disease, the 2-Class CNNs (VGGNet and
EfficientNet) performed well by generating and computing the highest number of true
positives (82) (Figure 3). The VGGNet precision and recall scores were 0.88 and 0.87, respec-
tively. EfficientNet achieved the highest precision score of 0.99 with 71 true positive and
1 false-positive image for the -mid-stage of the disease. The VGGNet performed well by
achieving precision and recall scores of 0.88 and 0.90 for the last stage of early blight.
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The 4-Class CNN (EfficientNet) performed comparatively better with precision and
recall scores of 0.88 and 0.88, respectively for the initial + mid stage of disease detection
(Table 2) with an average of 77.8 true positives and 10.5 false negatives per class (Figure 4).
At the mid + last disease stage, EfficientNet performed comparatively better with precision
and recall scores of 0.85 and 0.85, respectively (Table 2) with an average of 74.5 true positives
and 13 false negatives per class (Figure 4). During the detection of the initial + last stage of
the disease symptoms, EfficientNet performed comparatively better concerning precision
and recall scores of 0.94 and 0.94 (Table 2) with an average of 87 true positives and 5.75 false
negatives per class (Figure 4). Overall, the results suggested that the 4-Class EfficientNet
performed better in early blight disease detection using multiple combinations when
compared with the GoogleNet and VGGNet (Table 2; Figure 3).
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and diseased plants.

The 6-Class CNN (EfficientNet) performed better when compared with CNNs at
the initial + mid + last stage of early blight by achieving precision and recall scores of
0.74 and 0.75, respectively (Table 2). For the combined combination of all disease stages
(initial + mid + last stage), EfficientNet achieved an average of 66 true positives and 22.67
false-positive per class (Figure 5). In summary, results of the confusion matrix in conjunc-
tion with precision and recall revealed that the 2-, 4- and 6-Class EfficientNet performed
better in detecting early blight disease at individual and combined stages when compared
with GoogleNet and VGGNet.

FScore is another criterion to evaluate the performance accuracy of the CNNs. Results
of 2-Class CNNs revealed the FScore ranged from 0.853 to 0.905; 0.935 to 0.975; and 0.844 to
0.950 for initial, mid, and last stages of early blight disease, respectively (Figure 6). Results
suggested that the CNNs performed comparatively better in detecting early blight disease
with higher FScore during mid and late stages when compared with initial stages. During
all individual stages, i.e., early, mid, and late, VGGNet and EfficientNet performed better
than the GoogleNet for disease detection (Figure 6).
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Figure 5. Confusion matrices of 6-Class convolutional neural networks, where IH = number of actual
and predicted initial healthy plants; ID = number of actual and predicted initial diseased plants;
MH = number of actual predicted mid healthy plants; MD = number of actual and predicted mid
diseased plants; LH = number of actual and predicted healthy plants; LD = number of actual and
diseased plants.
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Figure 6. FScore comparison of various convolutional neural networks to evaluate their performance accuracy in early
blight disease detection in the potato cropping system.

Results of 4-Class CNNs showed the FScore ranged from 0.875 to 0.910; 0.790 to 0.865;
and 0.920 to 0.940 for initial + mid, mid + last, and initial + last stages of early blight
disease, respectively (Figure 6). The recorded FScores ranged between 0.720 and 0.760 for
initial + mid + last stage early blight disease detection for 6-Class CNNs (Figure 6). During
individual and combination stages of the disease progression, EfficientNet was found to be
the best performing CNN when compared with the GoogleNet and VGGNet. The results
of VGGNet, however, were non-significantly different when compared with EfficientNet.
Results of FScore support the trends of other statistical measures including the confusion
matrices, precision, and recall.

The inference time is one of the crucial factors to induce the implementation of the
developed CNNs for real-time applications (e.g., smart sprayer development to achieve
targeted application if fungicides). The computed inference time ranged from 155–168,
121–145, and 398–458 milliseconds for EfficientNet, GoogleNet, and VGGNet, respectively
(Figure 7). The lowest inference time was recorded for GoogleNet when compared with
other CNNs. There were non-significant differences in inference time when computed
for various disease stages, both individually and in combination. The inference time was
observed to be highest for VGGNet when compared with other CNNs (Figure 7). The
highest disease detection accuracy for EfficientNet (as described by the precision, recall, and
FScore) in combination with lower inference time make it an excellent candidate for further
processing and real-time application.
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4. Discussion

Symptoms of initial stages of early blight disease in potato plants include pale-yellow
chlorotic leaves of the infected plant (Figure 1). The values of validation accuracy of CNNs
in detecting initial early blight disease ranged from 0.95 to 0.97. These validation accuracy
values were lower as compared to the mid and last stages of early blight disease. This may
be due to the relative difficulty in detecting disease symptoms at this stage. Slightly lower
precision scores were recorded in comparison with recall scores due to higher false positives
during the initial stage (Figure 3). The lower precision score depicts the CNNs’ inability to
correctly classify the disease images and confusion with healthy plant images. GoogleNet
was found to be less accurate in detecting disease infestation as indicated by the low
precision and recall scores when compared with other CNNs. The architecture of GoogleNet
that starts with a big receptive field to reduce computation requirements [21] might have
resulted in the poor detection of small-sized disease symptoms for the initial stage of early
blight disease. These results are in concurrence with the findings of Russakovsky et al. [27]
who also reported the inability of GoogleNet in detecting small features. VGGNet achieved
the highest FScore in detecting symptoms of initial early blight most likely because the
architecture of VGGNet uses a small filter size of 3 × 3, which helps the CNN to identify
small and complex objects [24]. These results suggested non-significant differences between
VGGNet and EfficientNet in terms of disease detection at the early stages.

The validation accuracy values for CNNs during the mid-stage of early blight disease
were observed to be slightly higher (e.g., 0.99 to 1.00) when compared with the early stage
where the symptoms were confused with leaves. The precision and recall scores for the
chosen CNNs were non-significantly different. The FScore displayed a similar statistical
pattern as precision and recall. Similar values of validation accuracy were observed for the
last stage of early blight disease; however, a slightly lower FScore was achieved for the
last stage of the disease. In the last stage early blight detection, a similar performance of
GoogleNet was observed in detecting the initial stage of early blight due to the reasons
quoted above for GoogleNet’s architecture. In the 4-Class CNN at the mid + late stage,
EfficientNet optimized architecture did not perform well in comparison with VGGNet.
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This might be due to overlapping symptoms at both stages due to environmental factors.
The convolution and max-pooling filters throughout the VGGNet architecture might have
helped VGGNet to perform better in the detection of all disease stages of 2- and 4-Class
CNNs.

During the detection of initial + mid stage, early blight disease symptoms, the pale-
yellow color, brown concentric circles, and plant development stages were the main targets
for the CNNs to pick up during DL processing. The validation accuracy of 0.92 was
recorded for the three CNNs. There were non-significant differences between precision
and recall scores for initial + mid early blight disease CNNs. The initial healthy class was
problematic for initial + mid early blight CNNs as it was highly confused with the mid
healthy class (Figure 4). In the higher class CNNs, the performance of GoogleNet was
lower in comparison with VGGNet and EfficientNet. EfficientNet’s architecture was able
to classify the complex and difficult targets with higher accuracy as suggested by precision,
recall, FScore, and confusion matrices (Table 2; Figures 4–6). In general, EfficientNet CNN
was found to be the best performer in terms of early blight disease detection.

In the mid + last stage of early blight disease detection, the brown concentric leaves,
leave senescence and plant development stages were the main targets for 4-Class CNNs
using DL. The validation accuracy values for the mid + last stage CNNs ranged from
0.84 and 0.86, which were slightly lower than the values of initial + mid and initial + last
stages. Mid healthy plant stages and last disease stages were problematic for these CNNs
as the models were confused by the last healthy and initial disease stages (Figure 4). A
similar trend of FScore was observed for various CNNS as shown in the initial + mid stage
(Figure 6). Non-significant differences were observed in terms of precision and recall scores
(Table 2).

The brown pale-yellow leaves senescence, and plant development stages were the
main detection targets for 4-Class CNNS at initial + last stage early blight disease detection.
In this stage, the values of validation accuracy were in the range of 0.92 and 0.94, which
were the highest values of accuracy ranges among 4-Class CNNs. The detection accuracy
of the 4-Class CNN at the initial + last stage of the disease evolution was supported by
the highest statistical measures of precision, recall, and FScore. This may be due to the clear
distinction between healthy plant development stages and disease symptoms of the initial
and last stage of early blight. The 6-Class CNNs performed significantly lower in terms of
detection accuracy when compared with the 2- and 4-Class CNNs. The possible reason for
this finding could be a higher number of similar healthy and disease classes. Moreover,
overlapping of symptoms during different disease stages might have contributed to the
lower accuracy. Initial + mid + last early blight validation accuracy values were in the
range of 0.81 to 0.85. Mid-diseased, last-diseased, and last healthy classes were problematic
in 6-Class CNN (Figure 5). EfficientNet was the highest performing CNN for 6-Class CNN.
However, there were non-significant differences about FScore for 6-Class CNNs. The idea
of training the CNNs with various combinations of healthy and diseased plants at different
stages was to identify and develop robust CNN for practical applications and assess its
potential to be integrated into a smart sprayer to achieve the site-specific application of
fungicides within potato fields.

GoogleNet inference time was recorded to be 121–145 milliseconds on a Dell Latitude
5580 with all three CNNs. However, the values of inference time for all classes’ CNNs
were in a similar range with no major effect of inference time on CNN classes. The highest
inference time was observed for VGGNet 398–458 milliseconds. This was mainly due to its
higher number of learning parameters in one forward pass in comparison with GoogleNet
and EfficientNet. EfficientNet inference ranged from 5.95–6.53 FPS. The lowest inference
time was recorded for GoogleNet when compared with other CNNs. However, the detec-
tion accuracy of the GoogleNet was lower when compared with other CNNs. VGGNet
performed well in terms of disease detection accuracy as suggested by FScore, recall, and
precision; however, higher inference time makes it lower priority candidate for real-time
applications. GoogleNet and EfficientNet can be used with a tradeoff between model
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accuracy and inference speed for real-time smart sprayer development. The inference times
for all the CNNs were significantly different; however, the lower differences were observed
between GoogleNet and EfficientNet. Bianco et al. [28] reported similar ranges of the
inference time for GoogleNet and VGGNet. Overall, the results of accuracy in combination
with the statistical measure for various CNN architectures and inference time suggested
that the EfficientNet can be deployed and integrated to develop a smart sprayer for targeted
application of fungicides in potato fields.

5. Conclusions

Several combinations of datasets with different CNNs were tested for the identification
and classification of early blight disease in the potato production system. All CNNs were
able to accurately identify diseased and healthy plants for collected data with variable
accuracy, precision, recall, and FScore. Results suggested that the performance accuracy of
EfficientNet and VGGNet was higher in terms of disease detection at different stages when
compared with GoogleNet. GoogleNet was observed to have the lowest inference time
compared with EfficientNet and VGGNet. Considering the disease detection accuracy of the
EfficientNet during different stages of disease evolution, as illustrated by statistical measure
(recall, precision, and FScore), in conjunction with reasonably lower inference time supported
the use of EfficientNet for further processing integration into a variable rate smart sprayer
for targeted applications of fungicides within potato fields. Site-specific applications of
fungicides using a machine vision and DL-based sprayer, only in diseased areas of the
potato fields, have a significant potential to lower the agrochemicals in agricultural fields.
Targeted application of fungicides can directly be translated into farm profitability and
reduced unintended risk to the environment such as runoff of fungicides into water bodies
and negative impacts on aquatic habitats. In the case of more than one disease, the potato
plant species, and ground surface cover, the sprayer nozzle may get mixed signals of
detection (of other weeds and/or diseased plants). However, in the potato field of North
America, early blight is the most common potato disease and has been addressed in
this study. Future research will cover more diseases and varieties of potato and other
cropping systems.

Future Work

The trained EfficientNET CNN will be deployed and integrated into hardware (noz-
zles, solenoid valves, relays, flow meters, wiring, toggle switches, controller, etc.) using
custom-developed software to develop a machine vision and DL-based smart sprayer
for targeted application of fungicides in potato fields. The components of the developed
sprayer will be calibrated before installation into the smart sprayer. Real-time image acqui-
sition, processing, and delay time will be calculated to accurately synchronize the solenoid
valves in the areas where early blight disease has been detected. Extensive lab and field
evaluations will be performed to testify the performance accuracy of the developed smart
sprayer. The development of this smart sprayer using machine vision, CNNs, and DL will
be a breakthrough for the potato industry. Other herbicides and fungicides applications
will be explored during the later stages of this development process.
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